aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib/crypto/krb/s2k_des.c
blob: 31a613bebc6185f387bbbec0c75cb6f450ef0be6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
 * Copyright (C) 1998 by the FundsXpress, INC.
 *
 * All rights reserved.
 *
 * Export of this software from the United States of America may require
 * a specific license from the United States Government.  It is the
 * responsibility of any person or organization contemplating export to
 * obtain such a license before exporting.
 *
 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 * distribute this software and its documentation for any purpose and
 * without fee is hereby granted, provided that the above copyright
 * notice appear in all copies and that both that copyright notice and
 * this permission notice appear in supporting documentation, and that
 * the name of FundsXpress. not be used in advertising or publicity pertaining
 * to distribution of the software without specific, written prior
 * permission.  FundsXpress makes no representations about the suitability of
 * this software for any purpose.  It is provided "as is" without express
 * or implied warranty.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

/*
 * RFC 3961 and AFS string to key.  These are not standard crypto primitives
 * (RFC 3961 string-to-key is implemented in OpenSSL for historical reasons but
 * it doesn't get weak keys right), so we have to implement them here.
 */

#include <ctype.h>
#include "crypto_int.h"

#undef min
#define min(a,b) ((a)>(b)?(b):(a))

/* Compute a CBC checksum of in (with length len) using the specified key and
 * ivec.  The result is written into out. */
static krb5_error_code
des_cbc_mac(const unsigned char *keybits, const unsigned char *ivec,
            const unsigned char *in, size_t len, unsigned char *out)
{
    krb5_error_code ret;
    krb5_keyblock kb;
    krb5_key key;
    krb5_crypto_iov iov[2];
    unsigned char zero[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    krb5_data outd, ivecd;

    /* Make a key from keybits. */
    kb.magic = KV5M_KEYBLOCK;
    kb.enctype = ENCTYPE_DES_CBC_CRC;
    kb.length = 8;
    kb.contents = (unsigned char *)keybits;
    ret = krb5_k_create_key(NULL, &kb, &key);
    if (ret)
        return ret;

    /* Make iovs for the input data, padding it out to the block size. */
    iov[0].flags = KRB5_CRYPTO_TYPE_DATA;
    iov[0].data = make_data((unsigned char *)in, len);
    iov[1].flags = KRB5_CRYPTO_TYPE_DATA;
    iov[1].data = make_data(zero, krb5_roundup(len, 8) - len);

    /* Make krb5_data structures for the ivec and output. */
    ivecd = make_data((unsigned char *)ivec, 8);
    outd = make_data(out, 8);

    /* Call the cbc_mac operation of the module's DES enc-provider. */
    ret = krb5int_enc_des.cbc_mac(key, iov, 2, &ivecd, &outd);
    krb5_k_free_key(NULL, key);
    return ret;
}

/*** AFS string-to-key constants ***/

/* Initial permutation */
static const char IP[] = {
    58,50,42,34,26,18,10, 2,
    60,52,44,36,28,20,12, 4,
    62,54,46,38,30,22,14, 6,
    64,56,48,40,32,24,16, 8,
    57,49,41,33,25,17, 9, 1,
    59,51,43,35,27,19,11, 3,
    61,53,45,37,29,21,13, 5,
    63,55,47,39,31,23,15, 7,
};

/* Final permutation, FP = IP^(-1) */
static const char FP[] = {
    40, 8,48,16,56,24,64,32,
    39, 7,47,15,55,23,63,31,
    38, 6,46,14,54,22,62,30,
    37, 5,45,13,53,21,61,29,
    36, 4,44,12,52,20,60,28,
    35, 3,43,11,51,19,59,27,
    34, 2,42,10,50,18,58,26,
    33, 1,41, 9,49,17,57,25,
};

/*
 * Permuted-choice 1 from the key bits to yield C and D.
 * Note that bits 8,16... are left out: They are intended for a parity check.
 */
static const char PC1_C[] = {
    57,49,41,33,25,17, 9,
    1,58,50,42,34,26,18,
    10, 2,59,51,43,35,27,
    19,11, 3,60,52,44,36,
};

static const char PC1_D[] = {
    63,55,47,39,31,23,15,
    7,62,54,46,38,30,22,
    14, 6,61,53,45,37,29,
    21,13, 5,28,20,12, 4,
};

/* Sequence of shifts used for the key schedule */
static const char shifts[] = {
    1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,
};

/* Permuted-choice 2, to pick out the bits from the CD array that generate the
 * key schedule */
static const char PC2_C[] = {
    14,17,11,24, 1, 5,
    3,28,15, 6,21,10,
    23,19,12, 4,26, 8,
    16, 7,27,20,13, 2,
};

static const char PC2_D[] = {
    41,52,31,37,47,55,
    30,40,51,45,33,48,
    44,49,39,56,34,53,
    46,42,50,36,29,32,
};

/* The E bit-selection table */
static const char e[] = {
    32, 1, 2, 3, 4, 5,
    4, 5, 6, 7, 8, 9,
    8, 9,10,11,12,13,
    12,13,14,15,16,17,
    16,17,18,19,20,21,
    20,21,22,23,24,25,
    24,25,26,27,28,29,
    28,29,30,31,32, 1,
};

/* P is a permutation on the selected combination of the current L and key. */
static const char P[] = {
    16, 7,20,21,
    29,12,28,17,
    1,15,23,26,
    5,18,31,10,
    2, 8,24,14,
    32,27, 3, 9,
    19,13,30, 6,
    22,11, 4,25,
};

/*
 * The 8 selection functions.
 * For some reason, they give a 0-origin
 * index, unlike everything else.
 */
static const char S[8][64] = {
    {14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,
     0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
     4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,
     15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13},

    {15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,
     3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,
     0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,
     13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9},

    {10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,
     13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,
     13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,
     1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12},

    { 7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,
      13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,
      10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
      3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14},

    { 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
      14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
      4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
      11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3},

    {12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,
     10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
     9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,
     4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13},

    { 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,
      13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,
      1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2,
      6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12},

    {13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,
     1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,
     7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,
     2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11},
};


/* Set up the key schedule from the key. */
static void
afs_crypt_setkey(char *key, char *E, char (*KS)[48])
{
    int i, j, k, t;
    char C[28], D[28];          /* Used to calculate key schedule. */

    /*
     * First, generate C and D by permuting
     * the key.  The low order bit of each
     * 8-bit char is not used, so C and D are only 28
     * bits apiece.
     */
    for (i = 0; i < 28; i++) {
        C[i] = key[PC1_C[i] - 1];
        D[i] = key[PC1_D[i] - 1];
    }
    /*
     * To generate Ki, rotate C and D according
     * to schedule and pick up a permutation
     * using PC2.
     */
    for (i = 0; i < 16; i++) {
        /* Rotate. */
        for (k = 0; k < shifts[i]; k++) {
            t = C[0];
            for (j = 0; j < 28 - 1; j++)
                C[j] = C[j + 1];
            C[27] = t;
            t = D[0];
            for (j = 0; j < 28 - 1; j++)
                D[j] = D[j + 1];
            D[27] = t;
        }
        /* Get Ki.  Note C and D are concatenated. */
        for (j = 0; j < 24; j++) {
            KS[i][j] = C[PC2_C[j]-1];
            KS[i][j+24] = D[PC2_D[j]-28-1];
        }
    }

    memcpy(E, e, 48);
}

/*
 * The payoff: encrypt a block.
 */

static void
afs_encrypt_block(char *block, char *E, char (*KS)[48])
{
    const long edflag = 0;
    int i, ii;
    int t, j, k;
    char tempL[32];
    char f[32];
    char L[64];                 /* Current block divided into two halves */
    char *const R = &L[32];
    /* The combination of the key and the input, before selection. */
    char preS[48];

    /* First, permute the bits in the input. */
    for (j = 0; j < 64; j++)
        L[j] = block[IP[j] - 1];
    /* Perform an encryption operation 16 times. */
    for (ii = 0; ii < 16; ii++) {
        /* Set direction. */
        i = (edflag) ? 15 - ii : ii;
        /* Save the R array, which will be the new L. */
        memcpy(tempL, R, 32);
        /* Expand R to 48 bits using the E selector; exclusive-or with the
         * current key bits. */
        for (j = 0; j < 48; j++)
            preS[j] = R[E[j] - 1] ^ KS[i][j];
        /*
         * The pre-select bits are now considered in 8 groups of 6 bits each.
         * The 8 selection functions map these 6-bit quantities into 4-bit
         * quantities and the results permuted to make an f(R, K).  The
         * indexing into the selection functions is peculiar; it could be
         * simplified by rewriting the tables.
         */
        for (j = 0; j < 8; j++) {
            t = 6 * j;
            k = S[j][(preS[t + 0] << 5) +
                     (preS[t + 1] << 3) +
                     (preS[t + 2] << 2) +
                     (preS[t + 3] << 1) +
                     (preS[t + 4] << 0) +
                     (preS[t + 5] << 4)];
            t = 4 * j;
            f[t + 0] = (k >> 3) & 1;
            f[t + 1] = (k >> 2) & 1;
            f[t + 2] = (k >> 1) & 1;
            f[t + 3] = (k >> 0) & 1;
        }
        /* The new R is L ^ f(R, K).  The f here has to be permuted first,
         * though. */
        for (j = 0; j < 32; j++)
            R[j] = L[j] ^ f[P[j] - 1];
        /* Finally, the new L (the original R) is copied back. */
        memcpy(L, tempL, 32);
    }
    /* The output L and R are reversed. */
    for (j = 0; j < 32; j++) {
        t = L[j];
        L[j] = R[j];
        R[j] = t;
    }
    /* The final output gets the inverse permutation of the very original. */
    for (j = 0; j < 64; j++)
        block[j] = L[FP[j] - 1];
}

/* iobuf must be at least 16 bytes */
static char *
afs_crypt(const char *pw, const char *salt, char *iobuf)
{
    int i, j, c;
    int temp;
    char block[66];
    char E[48];
    char KS[16][48];            /* Key schedule, generated from key */

    for (i = 0; i < 66; i++)
        block[i] = 0;
    for (i = 0; (c = *pw) != '\0' && i < 64; pw++){
        for(j = 0; j < 7; j++, i++)
            block[i] = (c >> (6 - j)) & 01;
        i++;
    }

    afs_crypt_setkey(block, E, KS);

    for (i = 0; i < 66; i++)
        block[i] = 0;

    for (i = 0; i < 2; i++) {
        c = *salt++;
        iobuf[i] = c;
        if (c > 'Z')
            c -= 6;
        if (c > '9')
            c -= 7;
        c -= '.';
        for (j = 0; j < 6; j++) {
            if ((c >> j) & 01) {
                temp = E[6 * i + j];
                E[6 * i + j] = E[6 * i + j + 24];
                E[6 * i + j + 24] = temp;
            }
        }
    }

    for (i = 0; i < 25; i++)
        afs_encrypt_block(block, E, KS);

    for (i = 0; i < 11; i++) {
        c = 0;
        for (j = 0; j < 6; j++) {
            c <<= 1;
            c |= block[6 * i + j];
        }
        c += '.';
        if (c > '9')
            c += 7;
        if (c > 'Z')
            c += 6;
        iobuf[i + 2] = c;
    }
    iobuf[i + 2] = 0;
    if (iobuf[1] == 0)
        iobuf[1] = iobuf[0];
    return iobuf;
}

static krb5_error_code
afs_s2k_oneblock(const krb5_data *data, const krb5_data *salt,
                 unsigned char *key_out)
{
    unsigned int i;
    unsigned char password[9]; /* trailing nul for crypt() */
    char afs_crypt_buf[16];

    /*
     * Run afs_crypt and use the first eight returned bytes after the copy of
     * the (fixed) salt.
     *
     * Since the returned bytes are alphanumeric, the output is limited to
     * 2**48 possibilities; for each byte, only 64 possible values can be used.
     */

    memset(password, 0, sizeof(password));
    if (salt->length > 0)
        memcpy(password, salt->data, min(salt->length, 8));
    for (i = 0; i < 8; i++) {
        if (isupper(password[i]))
            password[i] = tolower(password[i]);
    }
    for (i = 0; i < data->length; i++)
        password[i] ^= data->data[i];
    for (i = 0; i < 8; i++) {
        if (password[i] == '\0')
            password[i] = 'X';
    }
    password[8] = '\0';
    /* Out-of-bounds salt characters are equivalent to a salt string
     * of "p1". */
    strncpy((char *)key_out,
            (char *)afs_crypt((char *)password, "#~", afs_crypt_buf) + 2, 8);
    for (i = 0; i < 8; i++)
        key_out[i] <<= 1;
    /* Fix up key parity again. */
    k5_des_fixup_key_parity(key_out);
    zap(password, sizeof(password));
    return 0;
}

static krb5_error_code
afs_s2k_multiblock(const krb5_data *data, const krb5_data *salt,
                   unsigned char *key_out)
{
    krb5_error_code ret;
    unsigned char ivec[8], tkey[8], *password;
    size_t pw_len = salt->length + data->length;
    unsigned int i, j;

    /* Do a CBC checksum, twice, and use the result as the new key.  */

    password = malloc(pw_len);
    if (!password)
        return ENOMEM;

    if (data->length > 0)
        memcpy(password, data->data, data->length);
    for (i = data->length, j = 0; j < salt->length; i++, j++) {
        password[i] = salt->data[j];
        if (isupper(password[i]))
            password[i] = tolower(password[i]);
    }

    memcpy(ivec, "kerberos", sizeof(ivec));
    memcpy(tkey, ivec, sizeof(tkey));
    k5_des_fixup_key_parity(tkey);
    ret = des_cbc_mac(tkey, ivec, password, pw_len, tkey);
    if (ret)
        goto cleanup;

    memcpy(ivec, tkey, sizeof(ivec));
    k5_des_fixup_key_parity(tkey);
    ret = des_cbc_mac(tkey, ivec, password, pw_len, key_out);
    if (ret)
        goto cleanup;
    k5_des_fixup_key_parity(key_out);

cleanup:
    zapfree(password, pw_len);
    return ret;
}

static krb5_error_code
afs_s2k(const krb5_data *data, const krb5_data *salt, unsigned char *key_out)
{
    if (data->length <= 8)
        return afs_s2k_oneblock(data, salt, key_out);
    else
        return afs_s2k_multiblock(data, salt, key_out);
}

static krb5_error_code
des_s2k(const krb5_data *pw, const krb5_data *salt, unsigned char *key_out)
{
    union {
        /* 8 "forward" bytes, 8 "reverse" bytes */
        unsigned char uc[16];
        krb5_ui_4 ui[4];
    } temp;
    unsigned int i;
    krb5_ui_4 x, y, z;
    unsigned char *p, *copy;
    size_t copylen;
    krb5_error_code ret;

    /* As long as the architecture is big-endian or little-endian, it
       doesn't matter which it is.  Think of it as reversing the
       bytes, and also reversing the bits within each byte.  But this
       current algorithm is dependent on having four 8-bit char values
       exactly overlay a 32-bit integral type.  */
    if (sizeof(temp.uc) != sizeof(temp.ui)
        || (unsigned char)~0 != 0xFF
        || (krb5_ui_4)~(krb5_ui_4)0 != 0xFFFFFFFF
        || (temp.uc[0] = 1, temp.uc[1] = 2, temp.uc[2] = 3, temp.uc[3] = 4,
            !(temp.ui[0] == 0x01020304
              || temp.ui[0] == 0x04030201)))
        abort();
#define FETCH4(VAR, IDX)        VAR = temp.ui[IDX/4]
#define PUT4(VAR, IDX)          temp.ui[IDX/4] = VAR

    copylen = pw->length + (salt ? salt->length : 0);
    /* Don't need NUL termination, at this point we're treating it as
       a byte array, not a string.  */
    copy = malloc(copylen);
    if (copy == NULL)
        return ENOMEM;
    if (pw->length > 0)
        memcpy(copy, pw->data, pw->length);
    if (salt != NULL && salt->length > 0)
        memcpy(copy + pw->length, salt->data, salt->length);

    memset(&temp, 0, sizeof(temp));
    p = temp.uc;
    /* Handle the fan-fold xor operation by splitting the data into
       forward and reverse sections, and combine them later, rather
       than having to do the reversal over and over again.  */
    for (i = 0; i < copylen; i++) {
        *p++ ^= copy[i];
        if (p == temp.uc+16) {
            p = temp.uc;
#ifdef PRINT_TEST_VECTORS
            {
                int j;
                printf("after %d input bytes:\nforward block:\t", i+1);
                for (j = 0; j < 8; j++)
                    printf(" %02x", temp.uc[j] & 0xff);
                printf("\nreverse block:\t");
                for (j = 8; j < 16; j++)
                    printf(" %02x", temp.uc[j] & 0xff);
                printf("\n");
            }
#endif
        }
    }

#ifdef PRINT_TEST_VECTORS
    if (p != temp.uc) {
        int j;
        printf("at end, after %d input bytes:\nforward block:\t", i);
        for (j = 0; j < 8; j++)
            printf(" %02x", temp.uc[j] & 0xff);
        printf("\nreverse block:\t");
        for (j = 8; j < 16; j++)
            printf(" %02x", temp.uc[j] & 0xff);
        printf("\n");
    }
#endif
#define REVERSE(VAR)                            \
    {                                           \
        krb5_ui_4 old = VAR, temp1 = 0;         \
        int j;                                  \
        for (j = 0; j < 32; j++) {              \
            temp1 = (temp1 << 1) | (old & 1);   \
            old >>= 1;                          \
        }                                       \
        VAR = temp1;                            \
    }

    FETCH4 (x, 8);
    FETCH4 (y, 12);
    /* Ignore high bits of each input byte.  */
    x &= 0x7F7F7F7F;
    y &= 0x7F7F7F7F;
    /* Reverse the bit strings -- after this, y is "before" x.  */
    REVERSE (x);
    REVERSE (y);
#ifdef PRINT_TEST_VECTORS
    {
        int j;
        union { unsigned char uc[4]; krb5_ui_4 ui; } t2;
        printf("after reversal, reversed block:\n\t\t");
        t2.ui = y;
        for (j = 0; j < 4; j++)
            printf(" %02x", t2.uc[j] & 0xff);
        t2.ui = x;
        for (j = 0; j < 4; j++)
            printf(" %02x", t2.uc[j] & 0xff);
        printf("\n");
    }
#endif
    /* Ignored bits are now at the bottom of each byte, where we'll
     * put the parity bits.  Good.  */
    FETCH4 (z, 0);
    z &= 0x7F7F7F7F;
    /* Ignored bits for z are at the top of each byte; fix that.  */
    z <<= 1;
    /* Finish the fan-fold xor for these four bytes.  */
    z ^= y;
    PUT4 (z, 0);
    /* Now do the second four bytes.  */
    FETCH4 (z, 4);
    z &= 0x7F7F7F7F;
    /* Ignored bits for z are at the top of each byte; fix that.  */
    z <<= 1;
    /* Finish the fan-fold xor for these four bytes.  */
    z ^= x;
    PUT4 (z, 4);

#ifdef PRINT_TEST_VECTORS
    {
        int j;
        printf("after reversal, combined block:\n\t\t");
        for (j = 0; j < 8; j++)
            printf(" %02x", temp.uc[j] & 0xff);
        printf("\n");
    }
#endif

#define FIXUP(k) (k5_des_fixup_key_parity(k),                   \
                  k5_des_is_weak_key(k) ? (k[7] ^= 0xF0) : 0)

    /* Now temp.cb is the temporary key, with invalid parity.  */
    FIXUP(temp.uc);

#ifdef PRINT_TEST_VECTORS
    {
        int j;
        printf("after fixing parity and weak keys:\n\t\t");
        for (j = 0; j < 8; j++)
            printf(" %02x", temp.uc[j] & 0xff);
        printf("\n");
    }
#endif

    ret = des_cbc_mac(temp.uc, temp.uc, copy, copylen, temp.uc);
    if (ret)
        goto cleanup;

#ifdef PRINT_TEST_VECTORS
    {
        int j;
        printf("cbc checksum:\n\t\t");
        for (j = 0; j < 8; j++)
            printf(" %02x", temp.uc[j] & 0xff);
        printf("\n");
    }
#endif

    FIXUP(temp.uc);

#ifdef PRINT_TEST_VECTORS
    {
        int j;
        printf("after fixing parity and weak keys:\n\t\t");
        for (j = 0; j < 8; j++)
            printf(" %02x", temp.uc[j] & 0xff);
        printf("\n");
    }
#endif

    memcpy(key_out, temp.uc, 8);

cleanup:
    zap(&temp, sizeof(temp));
    zapfree(copy, copylen);
    return ret;
}

krb5_error_code
krb5int_des_string_to_key(const struct krb5_keytypes *ktp,
                          const krb5_data *string, const krb5_data *salt,
                          const krb5_data *parm, krb5_keyblock *keyblock)
{
    int type;

    if (parm != NULL) {
        if (parm->length != 1)
            return KRB5_ERR_BAD_S2K_PARAMS;
        type = parm->data[0];
        if (type != 0 && type != 1)
            return KRB5_ERR_BAD_S2K_PARAMS;
    } else
        type = 0;

    /* Use AFS string to key if we were told to. */
    if (type == 1)
        return afs_s2k(string, salt, keyblock->contents);

    return des_s2k(string, salt, keyblock->contents);
}