aboutsummaryrefslogtreecommitdiffstats
path: root/lib/tsan/rtl/tsan_mutex.cpp
blob: 7a0918f2a2c070da72b824f99002cdc0a7bc2628 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//===-- tsan_mutex.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_libc.h"
#include "tsan_mutex.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"

namespace __tsan {

// Simple reader-writer spin-mutex. Optimized for not-so-contended case.
// Readers have preference, can possibly starvate writers.

// The table fixes what mutexes can be locked under what mutexes.
// E.g. if the row for MutexTypeThreads contains MutexTypeReport,
// then Report mutex can be locked while under Threads mutex.
// The leaf mutexes can be locked under any other mutexes.
// Recursive locking is not supported.
#if SANITIZER_DEBUG && !SANITIZER_GO
const MutexType MutexTypeLeaf = (MutexType)-1;
static MutexType CanLockTab[MutexTypeCount][MutexTypeCount] = {
  /*0  MutexTypeInvalid*/     {},
  /*1  MutexTypeTrace*/       {MutexTypeLeaf},
  /*2  MutexTypeThreads*/     {MutexTypeReport},
  /*3  MutexTypeReport*/      {MutexTypeSyncVar,
                               MutexTypeMBlock, MutexTypeJavaMBlock},
  /*4  MutexTypeSyncVar*/     {MutexTypeDDetector},
  /*5  MutexTypeSyncTab*/     {},  // unused
  /*6  MutexTypeSlab*/        {MutexTypeLeaf},
  /*7  MutexTypeAnnotations*/ {},
  /*8  MutexTypeAtExit*/      {MutexTypeSyncVar},
  /*9  MutexTypeMBlock*/      {MutexTypeSyncVar},
  /*10 MutexTypeJavaMBlock*/  {MutexTypeSyncVar},
  /*11 MutexTypeDDetector*/   {},
  /*12 MutexTypeFired*/       {MutexTypeLeaf},
  /*13 MutexTypeRacy*/        {MutexTypeLeaf},
  /*14 MutexTypeGlobalProc*/  {},
};

static bool CanLockAdj[MutexTypeCount][MutexTypeCount];
#endif

void InitializeMutex() {
#if SANITIZER_DEBUG && !SANITIZER_GO
  // Build the "can lock" adjacency matrix.
  // If [i][j]==true, then one can lock mutex j while under mutex i.
  const int N = MutexTypeCount;
  int cnt[N] = {};
  bool leaf[N] = {};
  for (int i = 1; i < N; i++) {
    for (int j = 0; j < N; j++) {
      MutexType z = CanLockTab[i][j];
      if (z == MutexTypeInvalid)
        continue;
      if (z == MutexTypeLeaf) {
        CHECK(!leaf[i]);
        leaf[i] = true;
        continue;
      }
      CHECK(!CanLockAdj[i][(int)z]);
      CanLockAdj[i][(int)z] = true;
      cnt[i]++;
    }
  }
  for (int i = 0; i < N; i++) {
    CHECK(!leaf[i] || cnt[i] == 0);
  }
  // Add leaf mutexes.
  for (int i = 0; i < N; i++) {
    if (!leaf[i])
      continue;
    for (int j = 0; j < N; j++) {
      if (i == j || leaf[j] || j == MutexTypeInvalid)
        continue;
      CHECK(!CanLockAdj[j][i]);
      CanLockAdj[j][i] = true;
    }
  }
  // Build the transitive closure.
  bool CanLockAdj2[MutexTypeCount][MutexTypeCount];
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      CanLockAdj2[i][j] = CanLockAdj[i][j];
    }
  }
  for (int k = 0; k < N; k++) {
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < N; j++) {
        if (CanLockAdj2[i][k] && CanLockAdj2[k][j]) {
          CanLockAdj2[i][j] = true;
        }
      }
    }
  }
#if 0
  Printf("Can lock graph:\n");
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      Printf("%d ", CanLockAdj[i][j]);
    }
    Printf("\n");
  }
  Printf("Can lock graph closure:\n");
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      Printf("%d ", CanLockAdj2[i][j]);
    }
    Printf("\n");
  }
#endif
  // Verify that the graph is acyclic.
  for (int i = 0; i < N; i++) {
    if (CanLockAdj2[i][i]) {
      Printf("Mutex %d participates in a cycle\n", i);
      Die();
    }
  }
#endif
}

InternalDeadlockDetector::InternalDeadlockDetector() {
  // Rely on zero initialization because some mutexes can be locked before ctor.
}

#if SANITIZER_DEBUG && !SANITIZER_GO
void InternalDeadlockDetector::Lock(MutexType t) {
  // Printf("LOCK %d @%zu\n", t, seq_ + 1);
  CHECK_GT(t, MutexTypeInvalid);
  CHECK_LT(t, MutexTypeCount);
  u64 max_seq = 0;
  u64 max_idx = MutexTypeInvalid;
  for (int i = 0; i != MutexTypeCount; i++) {
    if (locked_[i] == 0)
      continue;
    CHECK_NE(locked_[i], max_seq);
    if (max_seq < locked_[i]) {
      max_seq = locked_[i];
      max_idx = i;
    }
  }
  locked_[t] = ++seq_;
  if (max_idx == MutexTypeInvalid)
    return;
  // Printf("  last %d @%zu\n", max_idx, max_seq);
  if (!CanLockAdj[max_idx][t]) {
    Printf("ThreadSanitizer: internal deadlock detected\n");
    Printf("ThreadSanitizer: can't lock %d while under %zu\n",
               t, (uptr)max_idx);
    CHECK(0);
  }
}

void InternalDeadlockDetector::Unlock(MutexType t) {
  // Printf("UNLO %d @%zu #%zu\n", t, seq_, locked_[t]);
  CHECK(locked_[t]);
  locked_[t] = 0;
}

void InternalDeadlockDetector::CheckNoLocks() {
  for (int i = 0; i != MutexTypeCount; i++) {
    CHECK_EQ(locked_[i], 0);
  }
}
#endif

void CheckNoLocks(ThreadState *thr) {
#if SANITIZER_DEBUG && !SANITIZER_GO
  thr->internal_deadlock_detector.CheckNoLocks();
#endif
}

const uptr kUnlocked = 0;
const uptr kWriteLock = 1;
const uptr kReadLock = 2;

class Backoff {
 public:
  Backoff()
    : iter_() {
  }

  bool Do() {
    if (iter_++ < kActiveSpinIters)
      proc_yield(kActiveSpinCnt);
    else
      internal_sched_yield();
    return true;
  }

  u64 Contention() const {
    u64 active = iter_ % kActiveSpinIters;
    u64 passive = iter_ - active;
    return active + 10 * passive;
  }

 private:
  int iter_;
  static const int kActiveSpinIters = 10;
  static const int kActiveSpinCnt = 20;
};

Mutex::Mutex(MutexType type, StatType stat_type) {
  CHECK_GT(type, MutexTypeInvalid);
  CHECK_LT(type, MutexTypeCount);
#if SANITIZER_DEBUG
  type_ = type;
#endif
#if TSAN_COLLECT_STATS
  stat_type_ = stat_type;
#endif
  atomic_store(&state_, kUnlocked, memory_order_relaxed);
}

Mutex::~Mutex() {
  CHECK_EQ(atomic_load(&state_, memory_order_relaxed), kUnlocked);
}

void Mutex::Lock() {
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Lock(type_);
#endif
  uptr cmp = kUnlocked;
  if (atomic_compare_exchange_strong(&state_, &cmp, kWriteLock,
                                     memory_order_acquire))
    return;
  for (Backoff backoff; backoff.Do();) {
    if (atomic_load(&state_, memory_order_relaxed) == kUnlocked) {
      cmp = kUnlocked;
      if (atomic_compare_exchange_weak(&state_, &cmp, kWriteLock,
                                       memory_order_acquire)) {
#if TSAN_COLLECT_STATS && !SANITIZER_GO
        StatInc(cur_thread(), stat_type_, backoff.Contention());
#endif
        return;
      }
    }
  }
}

void Mutex::Unlock() {
  uptr prev = atomic_fetch_sub(&state_, kWriteLock, memory_order_release);
  (void)prev;
  DCHECK_NE(prev & kWriteLock, 0);
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Unlock(type_);
#endif
}

void Mutex::ReadLock() {
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Lock(type_);
#endif
  uptr prev = atomic_fetch_add(&state_, kReadLock, memory_order_acquire);
  if ((prev & kWriteLock) == 0)
    return;
  for (Backoff backoff; backoff.Do();) {
    prev = atomic_load(&state_, memory_order_acquire);
    if ((prev & kWriteLock) == 0) {
#if TSAN_COLLECT_STATS && !SANITIZER_GO
      StatInc(cur_thread(), stat_type_, backoff.Contention());
#endif
      return;
    }
  }
}

void Mutex::ReadUnlock() {
  uptr prev = atomic_fetch_sub(&state_, kReadLock, memory_order_release);
  (void)prev;
  DCHECK_EQ(prev & kWriteLock, 0);
  DCHECK_GT(prev & ~kWriteLock, 0);
#if SANITIZER_DEBUG && !SANITIZER_GO
  cur_thread()->internal_deadlock_detector.Unlock(type_);
#endif
}

void Mutex::CheckLocked() {
  CHECK_NE(atomic_load(&state_, memory_order_relaxed), 0);
}

}  // namespace __tsan