aboutsummaryrefslogtreecommitdiffstats
path: root/lib/tsan/rtl/tsan_clock.cpp
blob: 4b7aa0653da6bbeae2db384dc5e0149a2f1e2df3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//===-- tsan_clock.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_placement_new.h"

// SyncClock and ThreadClock implement vector clocks for sync variables
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
// ThreadClock contains fixed-size vector clock for maximum number of threads.
// SyncClock contains growable vector clock for currently necessary number of
// threads.
// Together they implement very simple model of operations, namely:
//
//   void ThreadClock::acquire(const SyncClock *src) {
//     for (int i = 0; i < kMaxThreads; i++)
//       clock[i] = max(clock[i], src->clock[i]);
//   }
//
//   void ThreadClock::release(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = max(dst->clock[i], clock[i]);
//   }
//
//   void ThreadClock::ReleaseStore(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = clock[i];
//   }
//
//   void ThreadClock::acq_rel(SyncClock *dst) {
//     acquire(dst);
//     release(dst);
//   }
//
// Conformance to this model is extensively verified in tsan_clock_test.cpp.
// However, the implementation is significantly more complex. The complexity
// allows to implement important classes of use cases in O(1) instead of O(N).
//
// The use cases are:
// 1. Singleton/once atomic that has a single release-store operation followed
//    by zillions of acquire-loads (the acquire-load is O(1)).
// 2. Thread-local mutex (both lock and unlock can be O(1)).
// 3. Leaf mutex (unlock is O(1)).
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
// 5. An atomic with a single writer (writes can be O(1)).
// The implementation dynamically adopts to workload. So if an atomic is in
// read-only phase, these reads will be O(1); if it later switches to read/write
// phase, the implementation will correctly handle that by switching to O(N).
//
// Thread-safety note: all const operations on SyncClock's are conducted under
// a shared lock; all non-const operations on SyncClock's are conducted under
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
//   the remaining bits hold "acquired" flag (the actual value is thread's
//   reused counter);
//   if acquried == thr->reused_, then the respective thread has already
//   acquired this clock (except possibly for dirty elements).
// dirty_ - holds up to two indeces in the vector clock that other threads
//   need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
//   release-store operation by the thread with release_store_tid_ index.
// release_store_reused_ - reuse count of release_store_tid_.

// We don't have ThreadState in these methods, so this is an ugly hack that
// works only in C++.
#if !SANITIZER_GO
# define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
#else
# define CPP_STAT_INC(typ) (void)0
#endif

namespace __tsan {

static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
  return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
}

// Drop reference to the first level block idx.
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  atomic_uint32_t *ref = ref_ptr(cb);
  u32 v = atomic_load(ref, memory_order_acquire);
  for (;;) {
    CHECK_GT(v, 0);
    if (v == 1)
      break;
    if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
      return;
  }
  // First level block owns second level blocks, so them as well.
  for (uptr i = 0; i < blocks; i++)
    ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
  ctx->clock_alloc.Free(c, idx);
}

ThreadClock::ThreadClock(unsigned tid, unsigned reused)
    : tid_(tid)
    , reused_(reused + 1)  // 0 has special meaning
    , cached_idx_()
    , cached_size_()
    , cached_blocks_() {
  CHECK_LT(tid, kMaxTidInClock);
  CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
  nclk_ = tid_ + 1;
  last_acquire_ = 0;
  internal_memset(clk_, 0, sizeof(clk_));
}

void ThreadClock::ResetCached(ClockCache *c) {
  if (cached_idx_) {
    UnrefClockBlock(c, cached_idx_, cached_blocks_);
    cached_idx_ = 0;
    cached_size_ = 0;
    cached_blocks_ = 0;
  }
}

void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(src->size_, kMaxTid);
  CPP_STAT_INC(StatClockAcquire);

  // Check if it's empty -> no need to do anything.
  const uptr nclk = src->size_;
  if (nclk == 0) {
    CPP_STAT_INC(StatClockAcquireEmpty);
    return;
  }

  bool acquired = false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty dirty = src->dirty_[i];
    unsigned tid = dirty.tid;
    if (tid != kInvalidTid) {
      if (clk_[tid] < dirty.epoch) {
        clk_[tid] = dirty.epoch;
        acquired = true;
      }
    }
  }

  // Check if we've already acquired src after the last release operation on src
  if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
    // O(N) acquire.
    CPP_STAT_INC(StatClockAcquireFull);
    nclk_ = max(nclk_, nclk);
    u64 *dst_pos = &clk_[0];
    for (ClockElem &src_elem : *src) {
      u64 epoch = src_elem.epoch;
      if (*dst_pos < epoch) {
        *dst_pos = epoch;
        acquired = true;
      }
      dst_pos++;
    }

    // Remember that this thread has acquired this clock.
    if (nclk > tid_)
      src->elem(tid_).reused = reused_;
  }

  if (acquired) {
    CPP_STAT_INC(StatClockAcquiredSomething);
    last_acquire_ = clk_[tid_];
    ResetCached(c);
  }
}

void ThreadClock::release(ClockCache *c, SyncClock *dst) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);

  if (dst->size_ == 0) {
    // ReleaseStore will correctly set release_store_tid_,
    // which can be important for future operations.
    ReleaseStore(c, dst);
    return;
  }

  CPP_STAT_INC(StatClockRelease);
  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  // Check if we had not acquired anything from other threads
  // since the last release on dst. If so, we need to update
  // only dst->elem(tid_).
  if (dst->elem(tid_).epoch > last_acquire_) {
    UpdateCurrentThread(c, dst);
    if (dst->release_store_tid_ != tid_ ||
        dst->release_store_reused_ != reused_)
      dst->release_store_tid_ = kInvalidTid;
    return;
  }

  // O(N) release.
  CPP_STAT_INC(StatClockReleaseFull);
  dst->Unshare(c);
  // First, remember whether we've acquired dst.
  bool acquired = IsAlreadyAcquired(dst);
  if (acquired)
    CPP_STAT_INC(StatClockReleaseAcquired);
  // Update dst->clk_.
  dst->FlushDirty();
  uptr i = 0;
  for (ClockElem &ce : *dst) {
    ce.epoch = max(ce.epoch, clk_[i]);
    ce.reused = 0;
    i++;
  }
  // Clear 'acquired' flag in the remaining elements.
  if (nclk_ < dst->size_)
    CPP_STAT_INC(StatClockReleaseClearTail);
  for (uptr i = nclk_; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  dst->release_store_tid_ = kInvalidTid;
  dst->release_store_reused_ = 0;
  // If we've acquired dst, remember this fact,
  // so that we don't need to acquire it on next acquire.
  if (acquired)
    dst->elem(tid_).reused = reused_;
}

void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);
  CPP_STAT_INC(StatClockStore);

  if (dst->size_ == 0 && cached_idx_ != 0) {
    // Reuse the cached clock.
    // Note: we could reuse/cache the cached clock in more cases:
    // we could update the existing clock and cache it, or replace it with the
    // currently cached clock and release the old one. And for a shared
    // existing clock, we could replace it with the currently cached;
    // or unshare, update and cache. But, for simplicity, we currnetly reuse
    // cached clock only when the target clock is empty.
    dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
    dst->tab_idx_ = cached_idx_;
    dst->size_ = cached_size_;
    dst->blocks_ = cached_blocks_;
    CHECK_EQ(dst->dirty_[0].tid, kInvalidTid);
    // The cached clock is shared (immutable),
    // so this is where we store the current clock.
    dst->dirty_[0].tid = tid_;
    dst->dirty_[0].epoch = clk_[tid_];
    dst->release_store_tid_ = tid_;
    dst->release_store_reused_ = reused_;
    // Rememeber that we don't need to acquire it in future.
    dst->elem(tid_).reused = reused_;
    // Grab a reference.
    atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
    return;
  }

  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  if (dst->release_store_tid_ == tid_ &&
      dst->release_store_reused_ == reused_ &&
      dst->elem(tid_).epoch > last_acquire_) {
    CPP_STAT_INC(StatClockStoreFast);
    UpdateCurrentThread(c, dst);
    return;
  }

  // O(N) release-store.
  CPP_STAT_INC(StatClockStoreFull);
  dst->Unshare(c);
  // Note: dst can be larger than this ThreadClock.
  // This is fine since clk_ beyond size is all zeros.
  uptr i = 0;
  for (ClockElem &ce : *dst) {
    ce.epoch = clk_[i];
    ce.reused = 0;
    i++;
  }
  for (uptr i = 0; i < kDirtyTids; i++)
    dst->dirty_[i].tid = kInvalidTid;
  dst->release_store_tid_ = tid_;
  dst->release_store_reused_ = reused_;
  // Rememeber that we don't need to acquire it in future.
  dst->elem(tid_).reused = reused_;

  // If the resulting clock is cachable, cache it for future release operations.
  // The clock is always cachable if we released to an empty sync object.
  if (cached_idx_ == 0 && dst->Cachable()) {
    // Grab a reference to the ClockBlock.
    atomic_uint32_t *ref = ref_ptr(dst->tab_);
    if (atomic_load(ref, memory_order_acquire) == 1)
      atomic_store_relaxed(ref, 2);
    else
      atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
    cached_idx_ = dst->tab_idx_;
    cached_size_ = dst->size_;
    cached_blocks_ = dst->blocks_;
  }
}

void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
  CPP_STAT_INC(StatClockAcquireRelease);
  acquire(c, dst);
  ReleaseStore(c, dst);
}

// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
  // Update the threads time, but preserve 'acquired' flag.
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty *dirty = &dst->dirty_[i];
    const unsigned tid = dirty->tid;
    if (tid == tid_ || tid == kInvalidTid) {
      CPP_STAT_INC(StatClockReleaseFast);
      dirty->tid = tid_;
      dirty->epoch = clk_[tid_];
      return;
    }
  }
  // Reset all 'acquired' flags, O(N).
  // We are going to touch dst elements, so we need to unshare it.
  dst->Unshare(c);
  CPP_STAT_INC(StatClockReleaseSlow);
  dst->elem(tid_).epoch = clk_[tid_];
  for (uptr i = 0; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  dst->FlushDirty();
}

// Checks whether the current thread has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
  if (src->elem(tid_).reused != reused_)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty dirty = src->dirty_[i];
    if (dirty.tid != kInvalidTid) {
      if (clk_[dirty.tid] < dirty.epoch)
        return false;
    }
  }
  return true;
}

// Sets a single element in the vector clock.
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
  DCHECK_LT(tid, kMaxTid);
  DCHECK_GE(v, clk_[tid]);
  clk_[tid] = v;
  if (nclk_ <= tid)
    nclk_ = tid + 1;
  last_acquire_ = clk_[tid_];
  ResetCached(c);
}

void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < nclk_; i++)
    printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
  printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
}

SyncClock::SyncClock() {
  ResetImpl();
}

SyncClock::~SyncClock() {
  // Reset must be called before dtor.
  CHECK_EQ(size_, 0);
  CHECK_EQ(blocks_, 0);
  CHECK_EQ(tab_, 0);
  CHECK_EQ(tab_idx_, 0);
}

void SyncClock::Reset(ClockCache *c) {
  if (size_)
    UnrefClockBlock(c, tab_idx_, blocks_);
  ResetImpl();
}

void SyncClock::ResetImpl() {
  tab_ = 0;
  tab_idx_ = 0;
  size_ = 0;
  blocks_ = 0;
  release_store_tid_ = kInvalidTid;
  release_store_reused_ = 0;
  for (uptr i = 0; i < kDirtyTids; i++)
    dirty_[i].tid = kInvalidTid;
}

void SyncClock::Resize(ClockCache *c, uptr nclk) {
  CPP_STAT_INC(StatClockReleaseResize);
  Unshare(c);
  if (nclk <= capacity()) {
    // Memory is already allocated, just increase the size.
    size_ = nclk;
    return;
  }
  if (size_ == 0) {
    // Grow from 0 to one-level table.
    CHECK_EQ(size_, 0);
    CHECK_EQ(blocks_, 0);
    CHECK_EQ(tab_, 0);
    CHECK_EQ(tab_idx_, 0);
    tab_idx_ = ctx->clock_alloc.Alloc(c);
    tab_ = ctx->clock_alloc.Map(tab_idx_);
    internal_memset(tab_, 0, sizeof(*tab_));
    atomic_store_relaxed(ref_ptr(tab_), 1);
    size_ = 1;
  } else if (size_ > blocks_ * ClockBlock::kClockCount) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
    uptr top = size_ - blocks_ * ClockBlock::kClockCount;
    CHECK_LT(top, ClockBlock::kClockCount);
    const uptr move = top * sizeof(tab_->clock[0]);
    internal_memcpy(&new_cb->clock[0], tab_->clock, move);
    internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
    internal_memset(tab_->clock, 0, move);
    append_block(idx);
  }
  // At this point we have first level table allocated and all clock elements
  // are evacuated from it to a second level block.
  // Add second level tables as necessary.
  while (nclk > capacity()) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    internal_memset(cb, 0, sizeof(*cb));
    append_block(idx);
  }
  size_ = nclk;
}

// Flushes all dirty elements into the main clock array.
void SyncClock::FlushDirty() {
  for (unsigned i = 0; i < kDirtyTids; i++) {
    Dirty *dirty = &dirty_[i];
    if (dirty->tid != kInvalidTid) {
      CHECK_LT(dirty->tid, size_);
      elem(dirty->tid).epoch = dirty->epoch;
      dirty->tid = kInvalidTid;
    }
  }
}

bool SyncClock::IsShared() const {
  if (size_ == 0)
    return false;
  atomic_uint32_t *ref = ref_ptr(tab_);
  u32 v = atomic_load(ref, memory_order_acquire);
  CHECK_GT(v, 0);
  return v > 1;
}

// Unshares the current clock if it's shared.
// Shared clocks are immutable, so they need to be unshared before any updates.
// Note: this does not apply to dirty entries as they are not shared.
void SyncClock::Unshare(ClockCache *c) {
  if (!IsShared())
    return;
  // First, copy current state into old.
  SyncClock old;
  old.tab_ = tab_;
  old.tab_idx_ = tab_idx_;
  old.size_ = size_;
  old.blocks_ = blocks_;
  old.release_store_tid_ = release_store_tid_;
  old.release_store_reused_ = release_store_reused_;
  for (unsigned i = 0; i < kDirtyTids; i++)
    old.dirty_[i] = dirty_[i];
  // Then, clear current object.
  ResetImpl();
  // Allocate brand new clock in the current object.
  Resize(c, old.size_);
  // Now copy state back into this object.
  Iter old_iter(&old);
  for (ClockElem &ce : *this) {
    ce = *old_iter;
    ++old_iter;
  }
  release_store_tid_ = old.release_store_tid_;
  release_store_reused_ = old.release_store_reused_;
  for (unsigned i = 0; i < kDirtyTids; i++)
    dirty_[i] = old.dirty_[i];
  // Drop reference to old and delete if necessary.
  old.Reset(c);
}

// Can we cache this clock for future release operations?
ALWAYS_INLINE bool SyncClock::Cachable() const {
  if (size_ == 0)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    if (dirty_[i].tid != kInvalidTid)
      return false;
  }
  return atomic_load_relaxed(ref_ptr(tab_)) == 1;
}

// elem linearizes the two-level structure into linear array.
// Note: this is used only for one time accesses, vector operations use
// the iterator as it is much faster.
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
  DCHECK_LT(tid, size_);
  const uptr block = tid / ClockBlock::kClockCount;
  DCHECK_LE(block, blocks_);
  tid %= ClockBlock::kClockCount;
  if (block == blocks_)
    return tab_->clock[tid];
  u32 idx = get_block(block);
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  return cb->clock[tid];
}

ALWAYS_INLINE uptr SyncClock::capacity() const {
  if (size_ == 0)
    return 0;
  uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
  // How many clock elements we can fit into the first level block.
  // +1 for ref counter.
  uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
  return blocks_ * ClockBlock::kClockCount + top;
}

ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
  DCHECK(size_);
  DCHECK_LT(bi, blocks_);
  return tab_->table[ClockBlock::kBlockIdx - bi];
}

ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
  uptr bi = blocks_++;
  CHECK_EQ(get_block(bi), 0);
  tab_->table[ClockBlock::kBlockIdx - bi] = idx;
}

// Used only by tests.
u64 SyncClock::get(unsigned tid) const {
  for (unsigned i = 0; i < kDirtyTids; i++) {
    Dirty dirty = dirty_[i];
    if (dirty.tid == tid)
      return dirty.epoch;
  }
  return elem(tid).epoch;
}

// Used only by Iter test.
u64 SyncClock::get_clean(unsigned tid) const {
  return elem(tid).epoch;
}

void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
  printf("] reused=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
  printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
      release_store_tid_, release_store_reused_,
      dirty_[0].tid, dirty_[0].epoch,
      dirty_[1].tid, dirty_[1].epoch);
}

void SyncClock::Iter::Next() {
  // Finished with the current block, move on to the next one.
  block_++;
  if (block_ < parent_->blocks_) {
    // Iterate over the next second level block.
    u32 idx = parent_->get_block(block_);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    pos_ = &cb->clock[0];
    end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
        ClockBlock::kClockCount);
    return;
  }
  if (block_ == parent_->blocks_ &&
      parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
    // Iterate over elements in the first level block.
    pos_ = &parent_->tab_->clock[0];
    end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
        ClockBlock::kClockCount);
    return;
  }
  parent_ = nullptr;  // denotes end
}
}  // namespace __tsan