aboutsummaryrefslogtreecommitdiffstats
path: root/lib/sanitizer_common/sanitizer_common.h
blob: 87b8f02b5b730158f61569fb5d9b8dfceb898ec5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
//===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between run-time libraries of sanitizers.
//
// It declares common functions and classes that are used in both runtimes.
// Implementation of some functions are provided in sanitizer_common, while
// others must be defined by run-time library itself.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_COMMON_H
#define SANITIZER_COMMON_H

#include "sanitizer_flags.h"
#include "sanitizer_interface_internal.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_list.h"
#include "sanitizer_mutex.h"

#if defined(_MSC_VER) && !defined(__clang__)
extern "C" void _ReadWriteBarrier();
#pragma intrinsic(_ReadWriteBarrier)
#endif

namespace __sanitizer {

struct AddressInfo;
struct BufferedStackTrace;
struct SignalContext;
struct StackTrace;

// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;

const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;

const uptr kMaxPathLength = 4096;

const uptr kMaxThreadStackSize = 1 << 30;  // 1Gb

static const uptr kErrorMessageBufferSize = 1 << 16;

// Denotes fake PC values that come from JIT/JAVA/etc.
// For such PC values __tsan_symbolize_external_ex() will be called.
const u64 kExternalPCBit = 1ULL << 60;

extern const char *SanitizerToolName;  // Can be changed by the tool.

extern atomic_uint32_t current_verbosity;
INLINE void SetVerbosity(int verbosity) {
  atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
}
INLINE int Verbosity() {
  return atomic_load(&current_verbosity, memory_order_relaxed);
}

#if SANITIZER_ANDROID
INLINE uptr GetPageSize() {
// Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
  return 4096;
}
INLINE uptr GetPageSizeCached() {
  return 4096;
}
#else
uptr GetPageSize();
extern uptr PageSizeCached;
INLINE uptr GetPageSizeCached() {
  if (!PageSizeCached)
    PageSizeCached = GetPageSize();
  return PageSizeCached;
}
#endif
uptr GetMmapGranularity();
uptr GetMaxVirtualAddress();
uptr GetMaxUserVirtualAddress();
// Threads
tid_t GetTid();
int TgKill(pid_t pid, tid_t tid, int sig);
uptr GetThreadSelf();
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
                                uptr *stack_bottom);
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
                          uptr *tls_addr, uptr *tls_size);

// Memory management
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
  return MmapOrDie(size, mem_type, /*raw_report*/ true);
}
void UnmapOrDie(void *addr, uptr size);
// Behaves just like MmapOrDie, but tolerates out of memory condition, in that
// case returns nullptr.
void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
     WARN_UNUSED_RESULT;
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
                             const char *name = nullptr) WARN_UNUSED_RESULT;
void *MmapNoReserveOrDie(uptr size, const char *mem_type);
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
// Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
// that case returns nullptr.
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
                                 const char *name = nullptr);
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
void *MmapNoAccess(uptr size);
// Map aligned chunk of address space; size and alignment are powers of two.
// Dies on all but out of memory errors, in the latter case returns nullptr.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
                                   const char *mem_type);
// Disallow access to a memory range.  Use MmapFixedNoAccess to allocate an
// unaccessible memory.
bool MprotectNoAccess(uptr addr, uptr size);
bool MprotectReadOnly(uptr addr, uptr size);

void MprotectMallocZones(void *addr, int prot);

// Find an available address space.
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
                              uptr *largest_gap_found, uptr *max_occupied_addr);

// Used to check if we can map shadow memory to a fixed location.
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
// Releases memory pages entirely within the [beg, end] address range. Noop if
// the provided range does not contain at least one entire page.
void ReleaseMemoryPagesToOS(uptr beg, uptr end);
void IncreaseTotalMmap(uptr size);
void DecreaseTotalMmap(uptr size);
uptr GetRSS();
void SetShadowRegionHugePageMode(uptr addr, uptr length);
bool DontDumpShadowMemory(uptr addr, uptr length);
// Check if the built VMA size matches the runtime one.
void CheckVMASize();
void RunMallocHooks(const void *ptr, uptr size);
void RunFreeHooks(const void *ptr);

class ReservedAddressRange {
 public:
  uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
  uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
  uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
  void Unmap(uptr addr, uptr size);
  void *base() const { return base_; }
  uptr size() const { return size_; }

 private:
  void* base_;
  uptr size_;
  const char* name_;
  uptr os_handle_;
};

typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
                               /*out*/uptr *stats, uptr stats_size);

// Parse the contents of /proc/self/smaps and generate a memory profile.
// |cb| is a tool-specific callback that fills the |stats| array containing
// |stats_size| elements.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);

// Simple low-level (mmap-based) allocator for internal use. Doesn't have
// constructor, so all instances of LowLevelAllocator should be
// linker initialized.
class LowLevelAllocator {
 public:
  // Requires an external lock.
  void *Allocate(uptr size);
 private:
  char *allocated_end_;
  char *allocated_current_;
};
// Set the min alignment of LowLevelAllocator to at least alignment.
void SetLowLevelAllocateMinAlignment(uptr alignment);
typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
// Allows to register tool-specific callbacks for LowLevelAllocator.
// Passing NULL removes the callback.
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);

// IO
void CatastrophicErrorWrite(const char *buffer, uptr length);
void RawWrite(const char *buffer);
bool ColorizeReports();
void RemoveANSIEscapeSequencesFromString(char *buffer);
void Printf(const char *format, ...);
void Report(const char *format, ...);
void SetPrintfAndReportCallback(void (*callback)(const char *));
#define VReport(level, ...)                                              \
  do {                                                                   \
    if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
  } while (0)
#define VPrintf(level, ...)                                              \
  do {                                                                   \
    if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
  } while (0)

// Lock sanitizer error reporting and protects against nested errors.
class ScopedErrorReportLock {
 public:
  ScopedErrorReportLock();
  ~ScopedErrorReportLock();

  static void CheckLocked();
};

extern uptr stoptheworld_tracer_pid;
extern uptr stoptheworld_tracer_ppid;

bool IsAccessibleMemoryRange(uptr beg, uptr size);

// Error report formatting.
const char *StripPathPrefix(const char *filepath,
                            const char *strip_file_prefix);
// Strip the directories from the module name.
const char *StripModuleName(const char *module);

// OS
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
const char *GetProcessName();
void UpdateProcessName();
void CacheBinaryName();
void DisableCoreDumperIfNecessary();
void DumpProcessMap();
void PrintModuleMap();
const char *GetEnv(const char *name);
bool SetEnv(const char *name, const char *value);

u32 GetUid();
void ReExec();
void CheckASLR();
void CheckMPROTECT();
char **GetArgv();
char **GetEnviron();
void PrintCmdline();
bool StackSizeIsUnlimited();
void SetStackSizeLimitInBytes(uptr limit);
bool AddressSpaceIsUnlimited();
void SetAddressSpaceUnlimited();
void AdjustStackSize(void *attr);
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
void SetSandboxingCallback(void (*f)());

void InitializeCoverage(bool enabled, const char *coverage_dir);

void InitTlsSize();
uptr GetTlsSize();

// Other
void SleepForSeconds(int seconds);
void SleepForMillis(int millis);
u64 NanoTime();
u64 MonotonicNanoTime();
int Atexit(void (*function)(void));
bool TemplateMatch(const char *templ, const char *str);

// Exit
void NORETURN Abort();
void NORETURN Die();
void NORETURN
CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
                                      const char *mmap_type, error_t err,
                                      bool raw_report = false);

// Specific tools may override behavior of "Die" and "CheckFailed" functions
// to do tool-specific job.
typedef void (*DieCallbackType)(void);

// It's possible to add several callbacks that would be run when "Die" is
// called. The callbacks will be run in the opposite order. The tools are
// strongly recommended to setup all callbacks during initialization, when there
// is only a single thread.
bool AddDieCallback(DieCallbackType callback);
bool RemoveDieCallback(DieCallbackType callback);

void SetUserDieCallback(DieCallbackType callback);

typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
                                       u64, u64);
void SetCheckFailedCallback(CheckFailedCallbackType callback);

// Callback will be called if soft_rss_limit_mb is given and the limit is
// exceeded (exceeded==true) or if rss went down below the limit
// (exceeded==false).
// The callback should be registered once at the tool init time.
void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));

// Functions related to signal handling.
typedef void (*SignalHandlerType)(int, void *, void *);
HandleSignalMode GetHandleSignalMode(int signum);
void InstallDeadlySignalHandlers(SignalHandlerType handler);

// Signal reporting.
// Each sanitizer uses slightly different implementation of stack unwinding.
typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
                                              const void *callback_context,
                                              BufferedStackTrace *stack);
// Print deadly signal report and die.
void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
                        UnwindSignalStackCallbackType unwind,
                        const void *unwind_context);

// Part of HandleDeadlySignal, exposed for asan.
void StartReportDeadlySignal();
// Part of HandleDeadlySignal, exposed for asan.
void ReportDeadlySignal(const SignalContext &sig, u32 tid,
                        UnwindSignalStackCallbackType unwind,
                        const void *unwind_context);

// Alternative signal stack (POSIX-only).
void SetAlternateSignalStack();
void UnsetAlternateSignalStack();

// We don't want a summary too long.
const int kMaxSummaryLength = 1024;
// Construct a one-line string:
//   SUMMARY: SanitizerToolName: error_message
// and pass it to __sanitizer_report_error_summary.
// If alt_tool_name is provided, it's used in place of SanitizerToolName.
void ReportErrorSummary(const char *error_message,
                        const char *alt_tool_name = nullptr);
// Same as above, but construct error_message as:
//   error_type file:line[:column][ function]
void ReportErrorSummary(const char *error_type, const AddressInfo &info,
                        const char *alt_tool_name = nullptr);
// Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
void ReportErrorSummary(const char *error_type, const StackTrace *trace,
                        const char *alt_tool_name = nullptr);

void ReportMmapWriteExec(int prot);

// Math
#if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
#if defined(_WIN64)
unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
#endif
}
#endif

INLINE uptr MostSignificantSetBitIndex(uptr x) {
  CHECK_NE(x, 0U);
  unsigned long up;
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
  up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
# else
  up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
# endif
#elif defined(_WIN64)
  _BitScanReverse64(&up, x);
#else
  _BitScanReverse(&up, x);
#endif
  return up;
}

INLINE uptr LeastSignificantSetBitIndex(uptr x) {
  CHECK_NE(x, 0U);
  unsigned long up;
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
  up = __builtin_ctzll(x);
# else
  up = __builtin_ctzl(x);
# endif
#elif defined(_WIN64)
  _BitScanForward64(&up, x);
#else
  _BitScanForward(&up, x);
#endif
  return up;
}

INLINE bool IsPowerOfTwo(uptr x) {
  return (x & (x - 1)) == 0;
}

INLINE uptr RoundUpToPowerOfTwo(uptr size) {
  CHECK(size);
  if (IsPowerOfTwo(size)) return size;

  uptr up = MostSignificantSetBitIndex(size);
  CHECK_LT(size, (1ULL << (up + 1)));
  CHECK_GT(size, (1ULL << up));
  return 1ULL << (up + 1);
}

INLINE uptr RoundUpTo(uptr size, uptr boundary) {
  RAW_CHECK(IsPowerOfTwo(boundary));
  return (size + boundary - 1) & ~(boundary - 1);
}

INLINE uptr RoundDownTo(uptr x, uptr boundary) {
  return x & ~(boundary - 1);
}

INLINE bool IsAligned(uptr a, uptr alignment) {
  return (a & (alignment - 1)) == 0;
}

INLINE uptr Log2(uptr x) {
  CHECK(IsPowerOfTwo(x));
  return LeastSignificantSetBitIndex(x);
}

// Don't use std::min, std::max or std::swap, to minimize dependency
// on libstdc++.
template<class T> T Min(T a, T b) { return a < b ? a : b; }
template<class T> T Max(T a, T b) { return a > b ? a : b; }
template<class T> void Swap(T& a, T& b) {
  T tmp = a;
  a = b;
  b = tmp;
}

// Char handling
INLINE bool IsSpace(int c) {
  return (c == ' ') || (c == '\n') || (c == '\t') ||
         (c == '\f') || (c == '\r') || (c == '\v');
}
INLINE bool IsDigit(int c) {
  return (c >= '0') && (c <= '9');
}
INLINE int ToLower(int c) {
  return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
}

// A low-level vector based on mmap. May incur a significant memory overhead for
// small vectors.
// WARNING: The current implementation supports only POD types.
template<typename T>
class InternalMmapVectorNoCtor {
 public:
  void Initialize(uptr initial_capacity) {
    capacity_bytes_ = 0;
    size_ = 0;
    data_ = 0;
    reserve(initial_capacity);
  }
  void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
  T &operator[](uptr i) {
    CHECK_LT(i, size_);
    return data_[i];
  }
  const T &operator[](uptr i) const {
    CHECK_LT(i, size_);
    return data_[i];
  }
  void push_back(const T &element) {
    CHECK_LE(size_, capacity());
    if (size_ == capacity()) {
      uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
      Realloc(new_capacity);
    }
    internal_memcpy(&data_[size_++], &element, sizeof(T));
  }
  T &back() {
    CHECK_GT(size_, 0);
    return data_[size_ - 1];
  }
  void pop_back() {
    CHECK_GT(size_, 0);
    size_--;
  }
  uptr size() const {
    return size_;
  }
  const T *data() const {
    return data_;
  }
  T *data() {
    return data_;
  }
  uptr capacity() const { return capacity_bytes_ / sizeof(T); }
  void reserve(uptr new_size) {
    // Never downsize internal buffer.
    if (new_size > capacity())
      Realloc(new_size);
  }
  void resize(uptr new_size) {
    if (new_size > size_) {
      reserve(new_size);
      internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
    }
    size_ = new_size;
  }

  void clear() { size_ = 0; }
  bool empty() const { return size() == 0; }

  const T *begin() const {
    return data();
  }
  T *begin() {
    return data();
  }
  const T *end() const {
    return data() + size();
  }
  T *end() {
    return data() + size();
  }

  void swap(InternalMmapVectorNoCtor &other) {
    Swap(data_, other.data_);
    Swap(capacity_bytes_, other.capacity_bytes_);
    Swap(size_, other.size_);
  }

 private:
  void Realloc(uptr new_capacity) {
    CHECK_GT(new_capacity, 0);
    CHECK_LE(size_, new_capacity);
    uptr new_capacity_bytes =
        RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
    T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
    internal_memcpy(new_data, data_, size_ * sizeof(T));
    UnmapOrDie(data_, capacity_bytes_);
    data_ = new_data;
    capacity_bytes_ = new_capacity_bytes;
  }

  T *data_;
  uptr capacity_bytes_;
  uptr size_;
};

template <typename T>
bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
                const InternalMmapVectorNoCtor<T> &rhs) {
  if (lhs.size() != rhs.size()) return false;
  return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
}

template <typename T>
bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
                const InternalMmapVectorNoCtor<T> &rhs) {
  return !(lhs == rhs);
}

template<typename T>
class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
 public:
  InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(1); }
  explicit InternalMmapVector(uptr cnt) {
    InternalMmapVectorNoCtor<T>::Initialize(cnt);
    this->resize(cnt);
  }
  ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
  // Disallow copies and moves.
  InternalMmapVector(const InternalMmapVector &) = delete;
  InternalMmapVector &operator=(const InternalMmapVector &) = delete;
  InternalMmapVector(InternalMmapVector &&) = delete;
  InternalMmapVector &operator=(InternalMmapVector &&) = delete;
};

class InternalScopedString : public InternalMmapVector<char> {
 public:
  explicit InternalScopedString(uptr max_length)
      : InternalMmapVector<char>(max_length), length_(0) {
    (*this)[0] = '\0';
  }
  uptr length() { return length_; }
  void clear() {
    (*this)[0] = '\0';
    length_ = 0;
  }
  void append(const char *format, ...);

 private:
  uptr length_;
};

template <class T>
struct CompareLess {
  bool operator()(const T &a, const T &b) const { return a < b; }
};

// HeapSort for arrays and InternalMmapVector.
template <class T, class Compare = CompareLess<T>>
void Sort(T *v, uptr size, Compare comp = {}) {
  if (size < 2)
    return;
  // Stage 1: insert elements to the heap.
  for (uptr i = 1; i < size; i++) {
    uptr j, p;
    for (j = i; j > 0; j = p) {
      p = (j - 1) / 2;
      if (comp(v[p], v[j]))
        Swap(v[j], v[p]);
      else
        break;
    }
  }
  // Stage 2: swap largest element with the last one,
  // and sink the new top.
  for (uptr i = size - 1; i > 0; i--) {
    Swap(v[0], v[i]);
    uptr j, max_ind;
    for (j = 0; j < i; j = max_ind) {
      uptr left = 2 * j + 1;
      uptr right = 2 * j + 2;
      max_ind = j;
      if (left < i && comp(v[max_ind], v[left]))
        max_ind = left;
      if (right < i && comp(v[max_ind], v[right]))
        max_ind = right;
      if (max_ind != j)
        Swap(v[j], v[max_ind]);
      else
        break;
    }
  }
}

// Works like std::lower_bound: finds the first element that is not less
// than the val.
template <class Container, class Value, class Compare>
uptr InternalLowerBound(const Container &v, uptr first, uptr last,
                        const Value &val, Compare comp) {
  while (last > first) {
    uptr mid = (first + last) / 2;
    if (comp(v[mid], val))
      first = mid + 1;
    else
      last = mid;
  }
  return first;
}

enum ModuleArch {
  kModuleArchUnknown,
  kModuleArchI386,
  kModuleArchX86_64,
  kModuleArchX86_64H,
  kModuleArchARMV6,
  kModuleArchARMV7,
  kModuleArchARMV7S,
  kModuleArchARMV7K,
  kModuleArchARM64
};

// Opens the file 'file_name" and reads up to 'max_len' bytes.
// The resulting buffer is mmaped and stored in '*buff'.
// Returns true if file was successfully opened and read.
bool ReadFileToVector(const char *file_name,
                      InternalMmapVectorNoCtor<char> *buff,
                      uptr max_len = 1 << 26, error_t *errno_p = nullptr);

// Opens the file 'file_name" and reads up to 'max_len' bytes.
// This function is less I/O efficient than ReadFileToVector as it may reread
// file multiple times to avoid mmap during read attempts. It's used to read
// procmap, so short reads with mmap in between can produce inconsistent result.
// The resulting buffer is mmaped and stored in '*buff'.
// The size of the mmaped region is stored in '*buff_size'.
// The total number of read bytes is stored in '*read_len'.
// Returns true if file was successfully opened and read.
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
                      uptr *read_len, uptr max_len = 1 << 26,
                      error_t *errno_p = nullptr);

// When adding a new architecture, don't forget to also update
// script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
inline const char *ModuleArchToString(ModuleArch arch) {
  switch (arch) {
    case kModuleArchUnknown:
      return "";
    case kModuleArchI386:
      return "i386";
    case kModuleArchX86_64:
      return "x86_64";
    case kModuleArchX86_64H:
      return "x86_64h";
    case kModuleArchARMV6:
      return "armv6";
    case kModuleArchARMV7:
      return "armv7";
    case kModuleArchARMV7S:
      return "armv7s";
    case kModuleArchARMV7K:
      return "armv7k";
    case kModuleArchARM64:
      return "arm64";
  }
  CHECK(0 && "Invalid module arch");
  return "";
}

const uptr kModuleUUIDSize = 16;
const uptr kMaxSegName = 16;

// Represents a binary loaded into virtual memory (e.g. this can be an
// executable or a shared object).
class LoadedModule {
 public:
  LoadedModule()
      : full_name_(nullptr),
        base_address_(0),
        max_executable_address_(0),
        arch_(kModuleArchUnknown),
        instrumented_(false) {
    internal_memset(uuid_, 0, kModuleUUIDSize);
    ranges_.clear();
  }
  void set(const char *module_name, uptr base_address);
  void set(const char *module_name, uptr base_address, ModuleArch arch,
           u8 uuid[kModuleUUIDSize], bool instrumented);
  void clear();
  void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
                       const char *name = nullptr);
  bool containsAddress(uptr address) const;

  const char *full_name() const { return full_name_; }
  uptr base_address() const { return base_address_; }
  uptr max_executable_address() const { return max_executable_address_; }
  ModuleArch arch() const { return arch_; }
  const u8 *uuid() const { return uuid_; }
  bool instrumented() const { return instrumented_; }

  struct AddressRange {
    AddressRange *next;
    uptr beg;
    uptr end;
    bool executable;
    bool writable;
    char name[kMaxSegName];

    AddressRange(uptr beg, uptr end, bool executable, bool writable,
                 const char *name)
        : next(nullptr),
          beg(beg),
          end(end),
          executable(executable),
          writable(writable) {
      internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
    }
  };

  const IntrusiveList<AddressRange> &ranges() const { return ranges_; }

 private:
  char *full_name_;  // Owned.
  uptr base_address_;
  uptr max_executable_address_;
  ModuleArch arch_;
  u8 uuid_[kModuleUUIDSize];
  bool instrumented_;
  IntrusiveList<AddressRange> ranges_;
};

// List of LoadedModules. OS-dependent implementation is responsible for
// filling this information.
class ListOfModules {
 public:
  ListOfModules() : initialized(false) {}
  ~ListOfModules() { clear(); }
  void init();
  void fallbackInit();  // Uses fallback init if available, otherwise clears
  const LoadedModule *begin() const { return modules_.begin(); }
  LoadedModule *begin() { return modules_.begin(); }
  const LoadedModule *end() const { return modules_.end(); }
  LoadedModule *end() { return modules_.end(); }
  uptr size() const { return modules_.size(); }
  const LoadedModule &operator[](uptr i) const {
    CHECK_LT(i, modules_.size());
    return modules_[i];
  }

 private:
  void clear() {
    for (auto &module : modules_) module.clear();
    modules_.clear();
  }
  void clearOrInit() {
    initialized ? clear() : modules_.Initialize(kInitialCapacity);
    initialized = true;
  }

  InternalMmapVectorNoCtor<LoadedModule> modules_;
  // We rarely have more than 16K loaded modules.
  static const uptr kInitialCapacity = 1 << 14;
  bool initialized;
};

// Callback type for iterating over a set of memory ranges.
typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);

enum AndroidApiLevel {
  ANDROID_NOT_ANDROID = 0,
  ANDROID_KITKAT = 19,
  ANDROID_LOLLIPOP_MR1 = 22,
  ANDROID_POST_LOLLIPOP = 23
};

void WriteToSyslog(const char *buffer);

#if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
#define SANITIZER_WIN_TRACE 1
#else
#define SANITIZER_WIN_TRACE 0
#endif

#if SANITIZER_MAC || SANITIZER_WIN_TRACE
void LogFullErrorReport(const char *buffer);
#else
INLINE void LogFullErrorReport(const char *buffer) {}
#endif

#if SANITIZER_LINUX || SANITIZER_MAC
void WriteOneLineToSyslog(const char *s);
void LogMessageOnPrintf(const char *str);
#else
INLINE void WriteOneLineToSyslog(const char *s) {}
INLINE void LogMessageOnPrintf(const char *str) {}
#endif

#if SANITIZER_LINUX || SANITIZER_WIN_TRACE
// Initialize Android logging. Any writes before this are silently lost.
void AndroidLogInit();
void SetAbortMessage(const char *);
#else
INLINE void AndroidLogInit() {}
// FIXME: MacOS implementation could use CRSetCrashLogMessage.
INLINE void SetAbortMessage(const char *) {}
#endif

#if SANITIZER_ANDROID
void SanitizerInitializeUnwinder();
AndroidApiLevel AndroidGetApiLevel();
#else
INLINE void AndroidLogWrite(const char *buffer_unused) {}
INLINE void SanitizerInitializeUnwinder() {}
INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
#endif

INLINE uptr GetPthreadDestructorIterations() {
#if SANITIZER_ANDROID
  return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
#elif SANITIZER_POSIX
  return 4;
#else
// Unused on Windows.
  return 0;
#endif
}

void *internal_start_thread(void(*func)(void*), void *arg);
void internal_join_thread(void *th);
void MaybeStartBackgroudThread();

// Make the compiler think that something is going on there.
// Use this inside a loop that looks like memset/memcpy/etc to prevent the
// compiler from recognising it and turning it into an actual call to
// memset/memcpy/etc.
static inline void SanitizerBreakOptimization(void *arg) {
#if defined(_MSC_VER) && !defined(__clang__)
  _ReadWriteBarrier();
#else
  __asm__ __volatile__("" : : "r" (arg) : "memory");
#endif
}

struct SignalContext {
  void *siginfo;
  void *context;
  uptr addr;
  uptr pc;
  uptr sp;
  uptr bp;
  bool is_memory_access;
  enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;

  // In some cases the kernel cannot provide the true faulting address; `addr`
  // will be zero then.  This field allows to distinguish between these cases
  // and dereferences of null.
  bool is_true_faulting_addr;

  // VS2013 doesn't implement unrestricted unions, so we need a trivial default
  // constructor
  SignalContext() = default;

  // Creates signal context in a platform-specific manner.
  // SignalContext is going to keep pointers to siginfo and context without
  // owning them.
  SignalContext(void *siginfo, void *context)
      : siginfo(siginfo),
        context(context),
        addr(GetAddress()),
        is_memory_access(IsMemoryAccess()),
        write_flag(GetWriteFlag()),
        is_true_faulting_addr(IsTrueFaultingAddress()) {
    InitPcSpBp();
  }

  static void DumpAllRegisters(void *context);

  // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
  int GetType() const;

  // String description of the signal.
  const char *Describe() const;

  // Returns true if signal is stack overflow.
  bool IsStackOverflow() const;

 private:
  // Platform specific initialization.
  void InitPcSpBp();
  uptr GetAddress() const;
  WriteFlag GetWriteFlag() const;
  bool IsMemoryAccess() const;
  bool IsTrueFaultingAddress() const;
};

void InitializePlatformEarly();
void MaybeReexec();

template <typename Fn>
class RunOnDestruction {
 public:
  explicit RunOnDestruction(Fn fn) : fn_(fn) {}
  ~RunOnDestruction() { fn_(); }

 private:
  Fn fn_;
};

// A simple scope guard. Usage:
// auto cleanup = at_scope_exit([]{ do_cleanup; });
template <typename Fn>
RunOnDestruction<Fn> at_scope_exit(Fn fn) {
  return RunOnDestruction<Fn>(fn);
}

// Linux on 64-bit s390 had a nasty bug that crashes the whole machine
// if a process uses virtual memory over 4TB (as many sanitizers like
// to do).  This function will abort the process if running on a kernel
// that looks vulnerable.
#if SANITIZER_LINUX && SANITIZER_S390_64
void AvoidCVE_2016_2143();
#else
INLINE void AvoidCVE_2016_2143() {}
#endif

struct StackDepotStats {
  uptr n_uniq_ids;
  uptr allocated;
};

// The default value for allocator_release_to_os_interval_ms common flag to
// indicate that sanitizer allocator should not attempt to release memory to OS.
const s32 kReleaseToOSIntervalNever = -1;

void CheckNoDeepBind(const char *filename, int flag);

// Returns the requested amount of random data (up to 256 bytes) that can then
// be used to seed a PRNG. Defaults to blocking like the underlying syscall.
bool GetRandom(void *buffer, uptr length, bool blocking = true);

// Returns the number of logical processors on the system.
u32 GetNumberOfCPUs();
extern u32 NumberOfCPUsCached;
INLINE u32 GetNumberOfCPUsCached() {
  if (!NumberOfCPUsCached)
    NumberOfCPUsCached = GetNumberOfCPUs();
  return NumberOfCPUsCached;
}

}  // namespace __sanitizer

inline void *operator new(__sanitizer::operator_new_size_type size,
                          __sanitizer::LowLevelAllocator &alloc) {  // NOLINT
  return alloc.Allocate(size);
}

#endif  // SANITIZER_COMMON_H