aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/LoopUtils.cpp
blob: fe106e33bca1f0581b9e35ae5ae09a9ecbabf117 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-utils"

bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
                                        SmallPtrSetImpl<Instruction *> &Set) {
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
    if (!Set.count(dyn_cast<Instruction>(*Use)))
      return false;
  return true;
}

bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
  switch (Kind) {
  default:
    break;
  case RK_IntegerAdd:
  case RK_IntegerMult:
  case RK_IntegerOr:
  case RK_IntegerAnd:
  case RK_IntegerXor:
  case RK_IntegerMinMax:
    return true;
  }
  return false;
}

bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
  return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
}

bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
  switch (Kind) {
  default:
    break;
  case RK_IntegerAdd:
  case RK_IntegerMult:
  case RK_FloatAdd:
  case RK_FloatMult:
    return true;
  }
  return false;
}

Instruction *
RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
                                     SmallPtrSetImpl<Instruction *> &Visited,
                                     SmallPtrSetImpl<Instruction *> &CI) {
  if (!Phi->hasOneUse())
    return Phi;

  const APInt *M = nullptr;
  Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());

  // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
  // with a new integer type of the corresponding bit width.
  if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
    int32_t Bits = (*M + 1).exactLogBase2();
    if (Bits > 0) {
      RT = IntegerType::get(Phi->getContext(), Bits);
      Visited.insert(Phi);
      CI.insert(J);
      return J;
    }
  }
  return Phi;
}

bool RecurrenceDescriptor::getSourceExtensionKind(
    Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
    SmallPtrSetImpl<Instruction *> &Visited,
    SmallPtrSetImpl<Instruction *> &CI) {

  SmallVector<Instruction *, 8> Worklist;
  bool FoundOneOperand = false;
  unsigned DstSize = RT->getPrimitiveSizeInBits();
  Worklist.push_back(Exit);

  // Traverse the instructions in the reduction expression, beginning with the
  // exit value.
  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val();
    for (Use &U : I->operands()) {

      // Terminate the traversal if the operand is not an instruction, or we
      // reach the starting value.
      Instruction *J = dyn_cast<Instruction>(U.get());
      if (!J || J == Start)
        continue;

      // Otherwise, investigate the operation if it is also in the expression.
      if (Visited.count(J)) {
        Worklist.push_back(J);
        continue;
      }

      // If the operand is not in Visited, it is not a reduction operation, but
      // it does feed into one. Make sure it is either a single-use sign- or
      // zero-extend instruction.
      CastInst *Cast = dyn_cast<CastInst>(J);
      bool IsSExtInst = isa<SExtInst>(J);
      if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
        return false;

      // Ensure the source type of the extend is no larger than the reduction
      // type. It is not necessary for the types to be identical.
      unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
      if (SrcSize > DstSize)
        return false;

      // Furthermore, ensure that all such extends are of the same kind.
      if (FoundOneOperand) {
        if (IsSigned != IsSExtInst)
          return false;
      } else {
        FoundOneOperand = true;
        IsSigned = IsSExtInst;
      }

      // Lastly, if the source type of the extend matches the reduction type,
      // add the extend to CI so that we can avoid accounting for it in the
      // cost model.
      if (SrcSize == DstSize)
        CI.insert(Cast);
    }
  }
  return true;
}

bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
                                           Loop *TheLoop, bool HasFunNoNaNAttr,
                                           RecurrenceDescriptor &RedDes) {
  if (Phi->getNumIncomingValues() != 2)
    return false;

  // Reduction variables are only found in the loop header block.
  if (Phi->getParent() != TheLoop->getHeader())
    return false;

  // Obtain the reduction start value from the value that comes from the loop
  // preheader.
  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());

  // ExitInstruction is the single value which is used outside the loop.
  // We only allow for a single reduction value to be used outside the loop.
  // This includes users of the reduction, variables (which form a cycle
  // which ends in the phi node).
  Instruction *ExitInstruction = nullptr;
  // Indicates that we found a reduction operation in our scan.
  bool FoundReduxOp = false;

  // We start with the PHI node and scan for all of the users of this
  // instruction. All users must be instructions that can be used as reduction
  // variables (such as ADD). We must have a single out-of-block user. The cycle
  // must include the original PHI.
  bool FoundStartPHI = false;

  // To recognize min/max patterns formed by a icmp select sequence, we store
  // the number of instruction we saw from the recognized min/max pattern,
  //  to make sure we only see exactly the two instructions.
  unsigned NumCmpSelectPatternInst = 0;
  InstDesc ReduxDesc(false, nullptr);

  // Data used for determining if the recurrence has been type-promoted.
  Type *RecurrenceType = Phi->getType();
  SmallPtrSet<Instruction *, 4> CastInsts;
  Instruction *Start = Phi;
  bool IsSigned = false;

  SmallPtrSet<Instruction *, 8> VisitedInsts;
  SmallVector<Instruction *, 8> Worklist;

  // Return early if the recurrence kind does not match the type of Phi. If the
  // recurrence kind is arithmetic, we attempt to look through AND operations
  // resulting from the type promotion performed by InstCombine.  Vector
  // operations are not limited to the legal integer widths, so we may be able
  // to evaluate the reduction in the narrower width.
  if (RecurrenceType->isFloatingPointTy()) {
    if (!isFloatingPointRecurrenceKind(Kind))
      return false;
  } else {
    if (!isIntegerRecurrenceKind(Kind))
      return false;
    if (isArithmeticRecurrenceKind(Kind))
      Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
  }

  Worklist.push_back(Start);
  VisitedInsts.insert(Start);

  // A value in the reduction can be used:
  //  - By the reduction:
  //      - Reduction operation:
  //        - One use of reduction value (safe).
  //        - Multiple use of reduction value (not safe).
  //      - PHI:
  //        - All uses of the PHI must be the reduction (safe).
  //        - Otherwise, not safe.
  //  - By instructions outside of the loop (safe).
  //      * One value may have several outside users, but all outside
  //        uses must be of the same value.
  //  - By an instruction that is not part of the reduction (not safe).
  //    This is either:
  //      * An instruction type other than PHI or the reduction operation.
  //      * A PHI in the header other than the initial PHI.
  while (!Worklist.empty()) {
    Instruction *Cur = Worklist.back();
    Worklist.pop_back();

    // No Users.
    // If the instruction has no users then this is a broken chain and can't be
    // a reduction variable.
    if (Cur->use_empty())
      return false;

    bool IsAPhi = isa<PHINode>(Cur);

    // A header PHI use other than the original PHI.
    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
      return false;

    // Reductions of instructions such as Div, and Sub is only possible if the
    // LHS is the reduction variable.
    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
      return false;

    // Any reduction instruction must be of one of the allowed kinds. We ignore
    // the starting value (the Phi or an AND instruction if the Phi has been
    // type-promoted).
    if (Cur != Start) {
      ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
      if (!ReduxDesc.isRecurrence())
        return false;
    }

    // A reduction operation must only have one use of the reduction value.
    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
        hasMultipleUsesOf(Cur, VisitedInsts))
      return false;

    // All inputs to a PHI node must be a reduction value.
    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
      return false;

    if (Kind == RK_IntegerMinMax &&
        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
      ++NumCmpSelectPatternInst;
    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
      ++NumCmpSelectPatternInst;

    // Check  whether we found a reduction operator.
    FoundReduxOp |= !IsAPhi && Cur != Start;

    // Process users of current instruction. Push non-PHI nodes after PHI nodes
    // onto the stack. This way we are going to have seen all inputs to PHI
    // nodes once we get to them.
    SmallVector<Instruction *, 8> NonPHIs;
    SmallVector<Instruction *, 8> PHIs;
    for (User *U : Cur->users()) {
      Instruction *UI = cast<Instruction>(U);

      // Check if we found the exit user.
      BasicBlock *Parent = UI->getParent();
      if (!TheLoop->contains(Parent)) {
        // If we already know this instruction is used externally, move on to
        // the next user.
        if (ExitInstruction == Cur)
          continue;

        // Exit if you find multiple values used outside or if the header phi
        // node is being used. In this case the user uses the value of the
        // previous iteration, in which case we would loose "VF-1" iterations of
        // the reduction operation if we vectorize.
        if (ExitInstruction != nullptr || Cur == Phi)
          return false;

        // The instruction used by an outside user must be the last instruction
        // before we feed back to the reduction phi. Otherwise, we loose VF-1
        // operations on the value.
        if (!is_contained(Phi->operands(), Cur))
          return false;

        ExitInstruction = Cur;
        continue;
      }

      // Process instructions only once (termination). Each reduction cycle
      // value must only be used once, except by phi nodes and min/max
      // reductions which are represented as a cmp followed by a select.
      InstDesc IgnoredVal(false, nullptr);
      if (VisitedInsts.insert(UI).second) {
        if (isa<PHINode>(UI))
          PHIs.push_back(UI);
        else
          NonPHIs.push_back(UI);
      } else if (!isa<PHINode>(UI) &&
                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
                   !isa<SelectInst>(UI)) ||
                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
        return false;

      // Remember that we completed the cycle.
      if (UI == Phi)
        FoundStartPHI = true;
    }
    Worklist.append(PHIs.begin(), PHIs.end());
    Worklist.append(NonPHIs.begin(), NonPHIs.end());
  }

  // This means we have seen one but not the other instruction of the
  // pattern or more than just a select and cmp.
  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
      NumCmpSelectPatternInst != 2)
    return false;

  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
    return false;

  // If we think Phi may have been type-promoted, we also need to ensure that
  // all source operands of the reduction are either SExtInsts or ZEstInsts. If
  // so, we will be able to evaluate the reduction in the narrower bit width.
  if (Start != Phi)
    if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
                                IsSigned, VisitedInsts, CastInsts))
      return false;

  // We found a reduction var if we have reached the original phi node and we
  // only have a single instruction with out-of-loop users.

  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
  // is saved as part of the RecurrenceDescriptor.

  // Save the description of this reduction variable.
  RecurrenceDescriptor RD(
      RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
      ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
  RedDes = RD;

  return true;
}

/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {

  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
         "Expect a select instruction");
  Instruction *Cmp = nullptr;
  SelectInst *Select = nullptr;

  // We must handle the select(cmp()) as a single instruction. Advance to the
  // select.
  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
      return InstDesc(false, I);
    return InstDesc(Select, Prev.getMinMaxKind());
  }

  // Only handle single use cases for now.
  if (!(Select = dyn_cast<SelectInst>(I)))
    return InstDesc(false, I);
  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
    return InstDesc(false, I);
  if (!Cmp->hasOneUse())
    return InstDesc(false, I);

  Value *CmpLeft;
  Value *CmpRight;

  // Look for a min/max pattern.
  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_UIntMin);
  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_UIntMax);
  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_SIntMax);
  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_SIntMin);
  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMin);
  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMax);
  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMin);
  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMax);

  return InstDesc(false, I);
}

RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
                                        InstDesc &Prev, bool HasFunNoNaNAttr) {
  bool FP = I->getType()->isFloatingPointTy();
  Instruction *UAI = Prev.getUnsafeAlgebraInst();
  if (!UAI && FP && !I->isFast())
    UAI = I; // Found an unsafe (unvectorizable) algebra instruction.

  switch (I->getOpcode()) {
  default:
    return InstDesc(false, I);
  case Instruction::PHI:
    return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
  case Instruction::Sub:
  case Instruction::Add:
    return InstDesc(Kind == RK_IntegerAdd, I);
  case Instruction::Mul:
    return InstDesc(Kind == RK_IntegerMult, I);
  case Instruction::And:
    return InstDesc(Kind == RK_IntegerAnd, I);
  case Instruction::Or:
    return InstDesc(Kind == RK_IntegerOr, I);
  case Instruction::Xor:
    return InstDesc(Kind == RK_IntegerXor, I);
  case Instruction::FMul:
    return InstDesc(Kind == RK_FloatMult, I, UAI);
  case Instruction::FSub:
  case Instruction::FAdd:
    return InstDesc(Kind == RK_FloatAdd, I, UAI);
  case Instruction::FCmp:
  case Instruction::ICmp:
  case Instruction::Select:
    if (Kind != RK_IntegerMinMax &&
        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
      return InstDesc(false, I);
    return isMinMaxSelectCmpPattern(I, Prev);
  }
}

bool RecurrenceDescriptor::hasMultipleUsesOf(
    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
  unsigned NumUses = 0;
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
       ++Use) {
    if (Insts.count(dyn_cast<Instruction>(*Use)))
      ++NumUses;
    if (NumUses > 1)
      return true;
  }

  return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
                                          RecurrenceDescriptor &RedDes) {

  BasicBlock *Header = TheLoop->getHeader();
  Function &F = *Header->getParent();
  bool HasFunNoNaNAttr =
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";

  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
                      RedDes)) {
    DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
    return true;
  }
  // Not a reduction of known type.
  return false;
}

bool RecurrenceDescriptor::isFirstOrderRecurrence(
    PHINode *Phi, Loop *TheLoop,
    DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {

  // Ensure the phi node is in the loop header and has two incoming values.
  if (Phi->getParent() != TheLoop->getHeader() ||
      Phi->getNumIncomingValues() != 2)
    return false;

  // Ensure the loop has a preheader and a single latch block. The loop
  // vectorizer will need the latch to set up the next iteration of the loop.
  auto *Preheader = TheLoop->getLoopPreheader();
  auto *Latch = TheLoop->getLoopLatch();
  if (!Preheader || !Latch)
    return false;

  // Ensure the phi node's incoming blocks are the loop preheader and latch.
  if (Phi->getBasicBlockIndex(Preheader) < 0 ||
      Phi->getBasicBlockIndex(Latch) < 0)
    return false;

  // Get the previous value. The previous value comes from the latch edge while
  // the initial value comes form the preheader edge.
  auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
  if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
      SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
    return false;

  // Ensure every user of the phi node is dominated by the previous value.
  // The dominance requirement ensures the loop vectorizer will not need to
  // vectorize the initial value prior to the first iteration of the loop.
  // TODO: Consider extending this sinking to handle other kinds of instructions
  // and expressions, beyond sinking a single cast past Previous.
  if (Phi->hasOneUse()) {
    auto *I = Phi->user_back();
    if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
        DT->dominates(Previous, I->user_back())) {
      if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
        SinkAfter[I] = Previous;
      return true;
    }
  }

  for (User *U : Phi->users())
    if (auto *I = dyn_cast<Instruction>(U)) {
      if (!DT->dominates(Previous, I))
        return false;
    }

  return true;
}

/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
                                                      Type *Tp) {
  switch (K) {
  case RK_IntegerXor:
  case RK_IntegerAdd:
  case RK_IntegerOr:
    // Adding, Xoring, Oring zero to a number does not change it.
    return ConstantInt::get(Tp, 0);
  case RK_IntegerMult:
    // Multiplying a number by 1 does not change it.
    return ConstantInt::get(Tp, 1);
  case RK_IntegerAnd:
    // AND-ing a number with an all-1 value does not change it.
    return ConstantInt::get(Tp, -1, true);
  case RK_FloatMult:
    // Multiplying a number by 1 does not change it.
    return ConstantFP::get(Tp, 1.0L);
  case RK_FloatAdd:
    // Adding zero to a number does not change it.
    return ConstantFP::get(Tp, 0.0L);
  default:
    llvm_unreachable("Unknown recurrence kind");
  }
}

/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
  switch (Kind) {
  case RK_IntegerAdd:
    return Instruction::Add;
  case RK_IntegerMult:
    return Instruction::Mul;
  case RK_IntegerOr:
    return Instruction::Or;
  case RK_IntegerAnd:
    return Instruction::And;
  case RK_IntegerXor:
    return Instruction::Xor;
  case RK_FloatMult:
    return Instruction::FMul;
  case RK_FloatAdd:
    return Instruction::FAdd;
  case RK_IntegerMinMax:
    return Instruction::ICmp;
  case RK_FloatMinMax:
    return Instruction::FCmp;
  default:
    llvm_unreachable("Unknown recurrence operation");
  }
}

Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
                                            MinMaxRecurrenceKind RK,
                                            Value *Left, Value *Right) {
  CmpInst::Predicate P = CmpInst::ICMP_NE;
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case MRK_UIntMin:
    P = CmpInst::ICMP_ULT;
    break;
  case MRK_UIntMax:
    P = CmpInst::ICMP_UGT;
    break;
  case MRK_SIntMin:
    P = CmpInst::ICMP_SLT;
    break;
  case MRK_SIntMax:
    P = CmpInst::ICMP_SGT;
    break;
  case MRK_FloatMin:
    P = CmpInst::FCMP_OLT;
    break;
  case MRK_FloatMax:
    P = CmpInst::FCMP_OGT;
    break;
  }

  // We only match FP sequences that are 'fast', so we can unconditionally
  // set it on any generated instructions.
  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
  FastMathFlags FMF;
  FMF.setFast();
  Builder.setFastMathFlags(FMF);

  Value *Cmp;
  if (RK == MRK_FloatMin || RK == MRK_FloatMax)
    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
  else
    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");

  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
                                         const SCEV *Step, BinaryOperator *BOp,
                                         SmallVectorImpl<Instruction *> *Casts)
  : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
  assert(IK != IK_NoInduction && "Not an induction");

  // Start value type should match the induction kind and the value
  // itself should not be null.
  assert(StartValue && "StartValue is null");
  assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
         "StartValue is not a pointer for pointer induction");
  assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
         "StartValue is not an integer for integer induction");

  // Check the Step Value. It should be non-zero integer value.
  assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
         "Step value is zero");

  assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
         "Step value should be constant for pointer induction");
  assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
         "StepValue is not an integer");

  assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
         "StepValue is not FP for FpInduction");
  assert((IK != IK_FpInduction || (InductionBinOp &&
          (InductionBinOp->getOpcode() == Instruction::FAdd ||
           InductionBinOp->getOpcode() == Instruction::FSub))) &&
         "Binary opcode should be specified for FP induction");

  if (Casts) {
    for (auto &Inst : *Casts) {
      RedundantCasts.push_back(Inst);
    }
  }
}

int InductionDescriptor::getConsecutiveDirection() const {
  ConstantInt *ConstStep = getConstIntStepValue();
  if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
    return ConstStep->getSExtValue();
  return 0;
}

ConstantInt *InductionDescriptor::getConstIntStepValue() const {
  if (isa<SCEVConstant>(Step))
    return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
  return nullptr;
}

Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
                                      ScalarEvolution *SE,
                                      const DataLayout& DL) const {

  SCEVExpander Exp(*SE, DL, "induction");
  assert(Index->getType() == Step->getType() &&
         "Index type does not match StepValue type");
  switch (IK) {
  case IK_IntInduction: {
    assert(Index->getType() == StartValue->getType() &&
           "Index type does not match StartValue type");

    // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
    // and calculate (Start + Index * Step) for all cases, without
    // special handling for "isOne" and "isMinusOne".
    // But in the real life the result code getting worse. We mix SCEV
    // expressions and ADD/SUB operations and receive redundant
    // intermediate values being calculated in different ways and
    // Instcombine is unable to reduce them all.

    if (getConstIntStepValue() &&
        getConstIntStepValue()->isMinusOne())
      return B.CreateSub(StartValue, Index);
    if (getConstIntStepValue() &&
        getConstIntStepValue()->isOne())
      return B.CreateAdd(StartValue, Index);
    const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
                                   SE->getMulExpr(Step, SE->getSCEV(Index)));
    return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
  }
  case IK_PtrInduction: {
    assert(isa<SCEVConstant>(Step) &&
           "Expected constant step for pointer induction");
    const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
    Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
    return B.CreateGEP(nullptr, StartValue, Index);
  }
  case IK_FpInduction: {
    assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
    assert(InductionBinOp &&
           (InductionBinOp->getOpcode() == Instruction::FAdd ||
            InductionBinOp->getOpcode() == Instruction::FSub) &&
           "Original bin op should be defined for FP induction");

    Value *StepValue = cast<SCEVUnknown>(Step)->getValue();

    // Floating point operations had to be 'fast' to enable the induction.
    FastMathFlags Flags;
    Flags.setFast();

    Value *MulExp = B.CreateFMul(StepValue, Index);
    if (isa<Instruction>(MulExp))
      // We have to check, the MulExp may be a constant.
      cast<Instruction>(MulExp)->setFastMathFlags(Flags);

    Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
                               MulExp, "induction");
    if (isa<Instruction>(BOp))
      cast<Instruction>(BOp)->setFastMathFlags(Flags);

    return BOp;
  }
  case IK_NoInduction:
    return nullptr;
  }
  llvm_unreachable("invalid enum");
}

bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                           ScalarEvolution *SE,
                                           InductionDescriptor &D) {

  // Here we only handle FP induction variables.
  assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");

  if (TheLoop->getHeader() != Phi->getParent())
    return false;

  // The loop may have multiple entrances or multiple exits; we can analyze
  // this phi if it has a unique entry value and a unique backedge value.
  if (Phi->getNumIncomingValues() != 2)
    return false;
  Value *BEValue = nullptr, *StartValue = nullptr;
  if (TheLoop->contains(Phi->getIncomingBlock(0))) {
    BEValue = Phi->getIncomingValue(0);
    StartValue = Phi->getIncomingValue(1);
  } else {
    assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
           "Unexpected Phi node in the loop");
    BEValue = Phi->getIncomingValue(1);
    StartValue = Phi->getIncomingValue(0);
  }

  BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
  if (!BOp)
    return false;

  Value *Addend = nullptr;
  if (BOp->getOpcode() == Instruction::FAdd) {
    if (BOp->getOperand(0) == Phi)
      Addend = BOp->getOperand(1);
    else if (BOp->getOperand(1) == Phi)
      Addend = BOp->getOperand(0);
  } else if (BOp->getOpcode() == Instruction::FSub)
    if (BOp->getOperand(0) == Phi)
      Addend = BOp->getOperand(1);

  if (!Addend)
    return false;

  // The addend should be loop invariant
  if (auto *I = dyn_cast<Instruction>(Addend))
    if (TheLoop->contains(I))
      return false;

  // FP Step has unknown SCEV
  const SCEV *Step = SE->getUnknown(Addend);
  D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
  return true;
}

/// This function is called when we suspect that the update-chain of a phi node
/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 
/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 
/// predicate P under which the SCEV expression for the phi can be the 
/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 
/// cast instructions that are involved in the update-chain of this induction. 
/// A caller that adds the required runtime predicate can be free to drop these 
/// cast instructions, and compute the phi using \p AR (instead of some scev 
/// expression with casts).
///
/// For example, without a predicate the scev expression can take the following
/// form:
///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
///
/// It corresponds to the following IR sequence:
/// %for.body:
///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
///   %casted_phi = "ExtTrunc i64 %x"
///   %add = add i64 %casted_phi, %step
///
/// where %x is given in \p PN,
/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
/// several forms, for example, such as:
///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
/// or:
///   ExtTrunc2:    %t = shl %x, m
///                 %casted_phi = ashr %t, m
///
/// If we are able to find such sequence, we return the instructions
/// we found, namely %casted_phi and the instructions on its use-def chain up
/// to the phi (not including the phi).
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
                                    const SCEVUnknown *PhiScev,
                                    const SCEVAddRecExpr *AR,
                                    SmallVectorImpl<Instruction *> &CastInsts) {

  assert(CastInsts.empty() && "CastInsts is expected to be empty.");
  auto *PN = cast<PHINode>(PhiScev->getValue());
  assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
  const Loop *L = AR->getLoop();

  // Find any cast instructions that participate in the def-use chain of 
  // PhiScev in the loop.
  // FORNOW/TODO: We currently expect the def-use chain to include only
  // two-operand instructions, where one of the operands is an invariant.
  // createAddRecFromPHIWithCasts() currently does not support anything more
  // involved than that, so we keep the search simple. This can be
  // extended/generalized as needed.

  auto getDef = [&](const Value *Val) -> Value * {
    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
    if (!BinOp)
      return nullptr;
    Value *Op0 = BinOp->getOperand(0);
    Value *Op1 = BinOp->getOperand(1);
    Value *Def = nullptr;
    if (L->isLoopInvariant(Op0))
      Def = Op1;
    else if (L->isLoopInvariant(Op1))
      Def = Op0;
    return Def;
  };

  // Look for the instruction that defines the induction via the
  // loop backedge.
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return false;
  Value *Val = PN->getIncomingValueForBlock(Latch);
  if (!Val)
    return false;

  // Follow the def-use chain until the induction phi is reached.
  // If on the way we encounter a Value that has the same SCEV Expr as the
  // phi node, we can consider the instructions we visit from that point
  // as part of the cast-sequence that can be ignored.
  bool InCastSequence = false;
  auto *Inst = dyn_cast<Instruction>(Val);
  while (Val != PN) {
    // If we encountered a phi node other than PN, or if we left the loop,
    // we bail out.
    if (!Inst || !L->contains(Inst)) {
      return false;
    }
    auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
    if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
      InCastSequence = true;
    if (InCastSequence) {
      // Only the last instruction in the cast sequence is expected to have
      // uses outside the induction def-use chain.
      if (!CastInsts.empty())
        if (!Inst->hasOneUse())
          return false;
      CastInsts.push_back(Inst);
    }
    Val = getDef(Val);
    if (!Val)
      return false;
    Inst = dyn_cast<Instruction>(Val);
  }

  return InCastSequence;
}

bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                         PredicatedScalarEvolution &PSE,
                                         InductionDescriptor &D,
                                         bool Assume) {
  Type *PhiTy = Phi->getType();

  // Handle integer and pointer inductions variables.
  // Now we handle also FP induction but not trying to make a
  // recurrent expression from the PHI node in-place.

  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
      !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
    return false;

  if (PhiTy->isFloatingPointTy())
    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);

  const SCEV *PhiScev = PSE.getSCEV(Phi);
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  // We need this expression to be an AddRecExpr.
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Phi);

  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  // Record any Cast instructions that participate in the induction update
  const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
  // If we started from an UnknownSCEV, and managed to build an addRecurrence
  // only after enabling Assume with PSCEV, this means we may have encountered
  // cast instructions that required adding a runtime check in order to
  // guarantee the correctness of the AddRecurence respresentation of the
  // induction.
  if (PhiScev != AR && SymbolicPhi) {
    SmallVector<Instruction *, 2> Casts;
    if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
      return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
  }

  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}

bool InductionDescriptor::isInductionPHI(
    PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
    InductionDescriptor &D, const SCEV *Expr,
    SmallVectorImpl<Instruction *> *CastsToIgnore) {
  Type *PhiTy = Phi->getType();
  // We only handle integer and pointer inductions variables.
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    return false;

  // Check that the PHI is consecutive.
  const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  if (AR->getLoop() != TheLoop) {
    // FIXME: We should treat this as a uniform. Unfortunately, we
    // don't currently know how to handled uniform PHIs.
    DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
    return false;
  }

  Value *StartValue =
    Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
  const SCEV *Step = AR->getStepRecurrence(*SE);
  // Calculate the pointer stride and check if it is consecutive.
  // The stride may be a constant or a loop invariant integer value.
  const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
  if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
    return false;

  if (PhiTy->isIntegerTy()) {
    D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
                            CastsToIgnore);
    return true;
  }

  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
  // Pointer induction should be a constant.
  if (!ConstStep)
    return false;

  ConstantInt *CV = ConstStep->getValue();
  Type *PointerElementType = PhiTy->getPointerElementType();
  // The pointer stride cannot be determined if the pointer element type is not
  // sized.
  if (!PointerElementType->isSized())
    return false;

  const DataLayout &DL = Phi->getModule()->getDataLayout();
  int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
  if (!Size)
    return false;

  int64_t CVSize = CV->getSExtValue();
  if (CVSize % Size)
    return false;
  auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
                                    true /* signed */);
  D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
  return true;
}

bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   bool PreserveLCSSA) {
  bool Changed = false;

  // We re-use a vector for the in-loop predecesosrs.
  SmallVector<BasicBlock *, 4> InLoopPredecessors;

  auto RewriteExit = [&](BasicBlock *BB) {
    assert(InLoopPredecessors.empty() &&
           "Must start with an empty predecessors list!");
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });

    // See if there are any non-loop predecessors of this exit block and
    // keep track of the in-loop predecessors.
    bool IsDedicatedExit = true;
    for (auto *PredBB : predecessors(BB))
      if (L->contains(PredBB)) {
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from an indirectbr.
          return false;

        InLoopPredecessors.push_back(PredBB);
      } else {
        IsDedicatedExit = false;
      }

    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");

    // Nothing to do if this is already a dedicated exit.
    if (IsDedicatedExit)
      return false;

    auto *NewExitBB = SplitBlockPredecessors(
        BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);

    if (!NewExitBB)
      DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
                   << *L << "\n");
    else
      DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
                   << NewExitBB->getName() << "\n");
    return true;
  };

  // Walk the exit blocks directly rather than building up a data structure for
  // them, but only visit each one once.
  SmallPtrSet<BasicBlock *, 4> Visited;
  for (auto *BB : L->blocks())
    for (auto *SuccBB : successors(BB)) {
      // We're looking for exit blocks so skip in-loop successors.
      if (L->contains(SuccBB))
        continue;

      // Visit each exit block exactly once.
      if (!Visited.insert(SuccBB).second)
        continue;

      Changed |= RewriteExit(SuccBB);
    }

  return Changed;
}

/// \brief Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
  SmallVector<Instruction *, 8> UsedOutside;

  for (auto *Block : L->getBlocks())
    // FIXME: I believe that this could use copy_if if the Inst reference could
    // be adapted into a pointer.
    for (auto &Inst : *Block) {
      auto Users = Inst.users();
      if (any_of(Users, [&](User *U) {
            auto *Use = cast<Instruction>(U);
            return !L->contains(Use->getParent());
          }))
        UsedOutside.push_back(&Inst);
    }

  return UsedOutside;
}

void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
  // By definition, all loop passes need the LoopInfo analysis and the
  // Dominator tree it depends on. Because they all participate in the loop
  // pass manager, they must also preserve these.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addPreserved<LoopInfoWrapperPass>();

  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
  // here because users shouldn't directly get them from this header.
  extern char &LoopSimplifyID;
  extern char &LCSSAID;
  AU.addRequiredID(LoopSimplifyID);
  AU.addPreservedID(LoopSimplifyID);
  AU.addRequiredID(LCSSAID);
  AU.addPreservedID(LCSSAID);
  // This is used in the LPPassManager to perform LCSSA verification on passes
  // which preserve lcssa form
  AU.addRequired<LCSSAVerificationPass>();
  AU.addPreserved<LCSSAVerificationPass>();

  // Loop passes are designed to run inside of a loop pass manager which means
  // that any function analyses they require must be required by the first loop
  // pass in the manager (so that it is computed before the loop pass manager
  // runs) and preserved by all loop pasess in the manager. To make this
  // reasonably robust, the set needed for most loop passes is maintained here.
  // If your loop pass requires an analysis not listed here, you will need to
  // carefully audit the loop pass manager nesting structure that results.
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addPreserved<SCEVAAWrapperPass>();
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
}

/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
}

/// \brief Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
                                                            StringRef Name) {
  MDNode *LoopID = TheLoop->getLoopID();
  // Return none if LoopID is false.
  if (!LoopID)
    return None;

  // First operand should refer to the loop id itself.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  // Iterate over LoopID operands and look for MDString Metadata
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD)
      continue;
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;
    // Return true if MDString holds expected MetaData.
    if (Name.equals(S->getString()))
      switch (MD->getNumOperands()) {
      case 1:
        return nullptr;
      case 2:
        return &MD->getOperand(1);
      default:
        llvm_unreachable("loop metadata has 0 or 1 operand");
      }
  }
  return None;
}

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
  SmallVector<DomTreeNode *, 16> Worklist;
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
    // Only include subregions in the top level loop.
    BasicBlock *BB = DTN->getBlock();
    if (CurLoop->contains(BB))
      Worklist.push_back(DTN);
  };

  AddRegionToWorklist(N);

  for (size_t I = 0; I < Worklist.size(); I++)
    for (DomTreeNode *Child : Worklist[I]->getChildren())
      AddRegionToWorklist(Child);

  return Worklist;
}

void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
                          ScalarEvolution *SE = nullptr,
                          LoopInfo *LI = nullptr) {
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  if (SE)
    SE->forgetLoop(L);

  auto *ExitBlock = L->getUniqueExitBlock();
  assert(ExitBlock && "Should have a unique exit block!");
  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");

  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
  assert(OldBr && "Preheader must end with a branch");
  assert(OldBr->isUnconditional() && "Preheader must have a single successor");
  // Connect the preheader to the exit block. Keep the old edge to the header
  // around to perform the dominator tree update in two separate steps
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
  // preheader -> header.
  //
  //
  // 0.  Preheader          1.  Preheader           2.  Preheader
  //        |                    |   |                   |
  //        V                    |   V                   |
  //      Header <--\            | Header <--\           | Header <--\
  //       |  |     |            |  |  |     |           |  |  |     |
  //       |  V     |            |  |  V     |           |  |  V     |
  //       | Body --/            |  | Body --/           |  | Body --/
  //       V                     V  V                    V  V
  //      Exit                   Exit                    Exit
  //
  // By doing this is two separate steps we can perform the dominator tree
  // update without using the batch update API.
  //
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  IRBuilder<> Builder(OldBr);
  Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
  // Remove the old branch. The conditional branch becomes a new terminator.
  OldBr->eraseFromParent();

  // Rewrite phis in the exit block to get their inputs from the Preheader
  // instead of the exiting block.
  BasicBlock::iterator BI = ExitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    // Set the zero'th element of Phi to be from the preheader and remove all
    // other incoming values. Given the loop has dedicated exits, all other
    // incoming values must be from the exiting blocks.
    int PredIndex = 0;
    P->setIncomingBlock(PredIndex, Preheader);
    // Removes all incoming values from all other exiting blocks (including
    // duplicate values from an exiting block).
    // Nuke all entries except the zero'th entry which is the preheader entry.
    // NOTE! We need to remove Incoming Values in the reverse order as done
    // below, to keep the indices valid for deletion (removeIncomingValues
    // updates getNumIncomingValues and shifts all values down into the operand
    // being deleted).
    for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i)
      P->removeIncomingValue(e - i, false);

    assert((P->getNumIncomingValues() == 1 &&
            P->getIncomingBlock(PredIndex) == Preheader) &&
           "Should have exactly one value and that's from the preheader!");
    ++BI;
  }

  // Disconnect the loop body by branching directly to its exit.
  Builder.SetInsertPoint(Preheader->getTerminator());
  Builder.CreateBr(ExitBlock);
  // Remove the old branch.
  Preheader->getTerminator()->eraseFromParent();

  if (DT) {
    // Update the dominator tree by informing it about the new edge from the
    // preheader to the exit.
    DT->insertEdge(Preheader, ExitBlock);
    // Inform the dominator tree about the removed edge.
    DT->deleteEdge(Preheader, L->getHeader());
  }

  // Remove the block from the reference counting scheme, so that we can
  // delete it freely later.
  for (auto *Block : L->blocks())
    Block->dropAllReferences();

  if (LI) {
    // Erase the instructions and the blocks without having to worry
    // about ordering because we already dropped the references.
    // NOTE: This iteration is safe because erasing the block does not remove
    // its entry from the loop's block list.  We do that in the next section.
    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
         LpI != LpE; ++LpI)
      (*LpI)->eraseFromParent();

    // Finally, the blocks from loopinfo.  This has to happen late because
    // otherwise our loop iterators won't work.

    SmallPtrSet<BasicBlock *, 8> blocks;
    blocks.insert(L->block_begin(), L->block_end());
    for (BasicBlock *BB : blocks)
      LI->removeBlock(BB);

    // The last step is to update LoopInfo now that we've eliminated this loop.
    LI->erase(L);
  }
}

/// Returns true if the instruction in a loop is guaranteed to execute at least
/// once.
bool llvm::isGuaranteedToExecute(const Instruction &Inst,
                                 const DominatorTree *DT, const Loop *CurLoop,
                                 const LoopSafetyInfo *SafetyInfo) {
  // We have to check to make sure that the instruction dominates all
  // of the exit blocks.  If it doesn't, then there is a path out of the loop
  // which does not execute this instruction, so we can't hoist it.

  // If the instruction is in the header block for the loop (which is very
  // common), it is always guaranteed to dominate the exit blocks.  Since this
  // is a common case, and can save some work, check it now.
  if (Inst.getParent() == CurLoop->getHeader())
    // If there's a throw in the header block, we can't guarantee we'll reach
    // Inst.
    return !SafetyInfo->HeaderMayThrow;

  // Somewhere in this loop there is an instruction which may throw and make us
  // exit the loop.
  if (SafetyInfo->MayThrow)
    return false;

  // Get the exit blocks for the current loop.
  SmallVector<BasicBlock *, 8> ExitBlocks;
  CurLoop->getExitBlocks(ExitBlocks);

  // Verify that the block dominates each of the exit blocks of the loop.
  for (BasicBlock *ExitBlock : ExitBlocks)
    if (!DT->dominates(Inst.getParent(), ExitBlock))
      return false;

  // As a degenerate case, if the loop is statically infinite then we haven't
  // proven anything since there are no exit blocks.
  if (ExitBlocks.empty())
    return false;

  // FIXME: In general, we have to prove that the loop isn't an infinite loop.
  // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
  // just a special case of this.)
  return true;
}

Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
  // Only support loops with a unique exiting block, and a latch.
  if (!L->getExitingBlock())
    return None;

  // Get the branch weights for the the loop's backedge.
  BranchInst *LatchBR =
      dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2)
    return None;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  // To estimate the number of times the loop body was executed, we want to
  // know the number of times the backedge was taken, vs. the number of times
  // we exited the loop.
  uint64_t TrueVal, FalseVal;
  if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
    return None;

  if (!TrueVal || !FalseVal)
    return 0;

  // Divide the count of the backedge by the count of the edge exiting the loop,
  // rounding to nearest.
  if (LatchBR->getSuccessor(0) == L->getHeader())
    return (TrueVal + (FalseVal / 2)) / FalseVal;
  else
    return (FalseVal + (TrueVal / 2)) / TrueVal;
}

/// \brief Adds a 'fast' flag to floating point operations.
static Value *addFastMathFlag(Value *V) {
  if (isa<FPMathOperator>(V)) {
    FastMathFlags Flags;
    Flags.setFast();
    cast<Instruction>(V)->setFastMathFlags(Flags);
  }
  return V;
}

// Helper to generate a log2 shuffle reduction.
Value *
llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
                          ArrayRef<Value *> RedOps) {
  unsigned VF = Src->getType()->getVectorNumElements();
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
  // and vector ops, reducing the set of values being computed by half each
  // round.
  assert(isPowerOf2_32(VF) &&
         "Reduction emission only supported for pow2 vectors!");
  Value *TmpVec = Src;
  SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
  for (unsigned i = VF; i != 1; i >>= 1) {
    // Move the upper half of the vector to the lower half.
    for (unsigned j = 0; j != i / 2; ++j)
      ShuffleMask[j] = Builder.getInt32(i / 2 + j);

    // Fill the rest of the mask with undef.
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
              UndefValue::get(Builder.getInt32Ty()));

    Value *Shuf = Builder.CreateShuffleVector(
        TmpVec, UndefValue::get(TmpVec->getType()),
        ConstantVector::get(ShuffleMask), "rdx.shuf");

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      // Floating point operations had to be 'fast' to enable the reduction.
      TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
                                                   TmpVec, Shuf, "bin.rdx"));
    } else {
      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
             "Invalid min/max");
      TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
                                                    Shuf);
    }
    if (!RedOps.empty())
      propagateIRFlags(TmpVec, RedOps);
  }
  // The result is in the first element of the vector.
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}

/// Create a simple vector reduction specified by an opcode and some
/// flags (if generating min/max reductions).
Value *llvm::createSimpleTargetReduction(
    IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
    Value *Src, TargetTransformInfo::ReductionFlags Flags,
    ArrayRef<Value *> RedOps) {
  assert(isa<VectorType>(Src->getType()) && "Type must be a vector");

  Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
  std::function<Value*()> BuildFunc;
  using RD = RecurrenceDescriptor;
  RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
  // TODO: Support creating ordered reductions.
  FastMathFlags FMFFast;
  FMFFast.setFast();

  switch (Opcode) {
  case Instruction::Add:
    BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
    break;
  case Instruction::Mul:
    BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
    break;
  case Instruction::And:
    BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
    break;
  case Instruction::Or:
    BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
    break;
  case Instruction::Xor:
    BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
    break;
  case Instruction::FAdd:
    BuildFunc = [&]() {
      auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
      cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
      return Rdx;
    };
    break;
  case Instruction::FMul:
    BuildFunc = [&]() {
      auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
      cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
      return Rdx;
    };
    break;
  case Instruction::ICmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
      BuildFunc = [&]() {
        return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
      };
    } else {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
      BuildFunc = [&]() {
        return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
      };
    }
    break;
  case Instruction::FCmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = RD::MRK_FloatMax;
      BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
    } else {
      MinMaxKind = RD::MRK_FloatMin;
      BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
    }
    break;
  default:
    llvm_unreachable("Unhandled opcode");
    break;
  }
  if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
    return BuildFunc();
  return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
}

/// Create a vector reduction using a given recurrence descriptor.
Value *llvm::createTargetReduction(IRBuilder<> &B,
                                   const TargetTransformInfo *TTI,
                                   RecurrenceDescriptor &Desc, Value *Src,
                                   bool NoNaN) {
  // TODO: Support in-order reductions based on the recurrence descriptor.
  using RD = RecurrenceDescriptor;
  RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
  TargetTransformInfo::ReductionFlags Flags;
  Flags.NoNaN = NoNaN;
  switch (RecKind) {
  case RD::RK_FloatAdd:
    return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
  case RD::RK_FloatMult:
    return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
  case RD::RK_IntegerAdd:
    return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
  case RD::RK_IntegerMult:
    return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
  case RD::RK_IntegerAnd:
    return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
  case RD::RK_IntegerOr:
    return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
  case RD::RK_IntegerXor:
    return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
  case RD::RK_IntegerMinMax: {
    RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
    Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
    Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
    return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
  }
  case RD::RK_FloatMinMax: {
    Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
    return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
  }
  default:
    llvm_unreachable("Unhandled RecKind");
  }
}

void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
  auto *VecOp = dyn_cast<Instruction>(I);
  if (!VecOp)
    return;
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
                                            : dyn_cast<Instruction>(OpValue);
  if (!Intersection)
    return;
  const unsigned Opcode = Intersection->getOpcode();
  VecOp->copyIRFlags(Intersection);
  for (auto *V : VL) {
    auto *Instr = dyn_cast<Instruction>(V);
    if (!Instr)
      continue;
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
      VecOp->andIRFlags(V);
  }
}