aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/NewGVN.cpp
blob: 9d018563618ea9244dac6de79cc04e10ee7a642a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the new LLVM's Global Value Numbering pass.
/// GVN partitions values computed by a function into congruence classes.
/// Values ending up in the same congruence class are guaranteed to be the same
/// for every execution of the program. In that respect, congruency is a
/// compile-time approximation of equivalence of values at runtime.
/// The algorithm implemented here uses a sparse formulation and it's based
/// on the ideas described in the paper:
/// "A Sparse Algorithm for Predicated Global Value Numbering" from
/// Karthik Gargi.
///
/// A brief overview of the algorithm: The algorithm is essentially the same as
/// the standard RPO value numbering algorithm (a good reference is the paper
/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
/// The RPO algorithm proceeds, on every iteration, to process every reachable
/// block and every instruction in that block.  This is because the standard RPO
/// algorithm does not track what things have the same value number, it only
/// tracks what the value number of a given operation is (the mapping is
/// operation -> value number).  Thus, when a value number of an operation
/// changes, it must reprocess everything to ensure all uses of a value number
/// get updated properly.  In constrast, the sparse algorithm we use *also*
/// tracks what operations have a given value number (IE it also tracks the
/// reverse mapping from value number -> operations with that value number), so
/// that it only needs to reprocess the instructions that are affected when
/// something's value number changes.  The vast majority of complexity and code
/// in this file is devoted to tracking what value numbers could change for what
/// instructions when various things happen.  The rest of the algorithm is
/// devoted to performing symbolic evaluation, forward propagation, and
/// simplification of operations based on the value numbers deduced so far
///
/// In order to make the GVN mostly-complete, we use a technique derived from
/// "Detection of Redundant Expressions: A Complete and Polynomial-time
/// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
/// based GVN algorithms is related to their inability to detect equivalence
/// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
/// We resolve this issue by generating the equivalent "phi of ops" form for
/// each op of phis we see, in a way that only takes polynomial time to resolve.
///
/// We also do not perform elimination by using any published algorithm.  All
/// published algorithms are O(Instructions). Instead, we use a technique that
/// is O(number of operations with the same value number), enabling us to skip
/// trying to eliminate things that have unique value numbers.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include "llvm/Transforms/Utils/VNCoercion.h"
#include <numeric>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
using namespace llvm::GVNExpression;
using namespace llvm::VNCoercion;
#define DEBUG_TYPE "newgvn"

STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
STATISTIC(NumGVNMaxIterations,
          "Maximum Number of iterations it took to converge GVN");
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
          "Number of avoided sorted leader changes");
STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
STATISTIC(NumGVNPHIOfOpsEliminations,
          "Number of things eliminated using PHI of ops");
DEBUG_COUNTER(VNCounter, "newgvn-vn",
              "Controls which instructions are value numbered")
DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
              "Controls which instructions we create phi of ops for")
// Currently store defining access refinement is too slow due to basicaa being
// egregiously slow.  This flag lets us keep it working while we work on this
// issue.
static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
                                           cl::init(false), cl::Hidden);

//===----------------------------------------------------------------------===//
//                                GVN Pass
//===----------------------------------------------------------------------===//

// Anchor methods.
namespace llvm {
namespace GVNExpression {
Expression::~Expression() = default;
BasicExpression::~BasicExpression() = default;
CallExpression::~CallExpression() = default;
LoadExpression::~LoadExpression() = default;
StoreExpression::~StoreExpression() = default;
AggregateValueExpression::~AggregateValueExpression() = default;
PHIExpression::~PHIExpression() = default;
}
}

// Tarjan's SCC finding algorithm with Nuutila's improvements
// SCCIterator is actually fairly complex for the simple thing we want.
// It also wants to hand us SCC's that are unrelated to the phi node we ask
// about, and have us process them there or risk redoing work.
// Graph traits over a filter iterator also doesn't work that well here.
// This SCC finder is specialized to walk use-def chains, and only follows
// instructions,
// not generic values (arguments, etc).
struct TarjanSCC {

  TarjanSCC() : Components(1) {}

  void Start(const Instruction *Start) {
    if (Root.lookup(Start) == 0)
      FindSCC(Start);
  }

  const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
    unsigned ComponentID = ValueToComponent.lookup(V);

    assert(ComponentID > 0 &&
           "Asking for a component for a value we never processed");
    return Components[ComponentID];
  }

private:
  void FindSCC(const Instruction *I) {
    Root[I] = ++DFSNum;
    // Store the DFS Number we had before it possibly gets incremented.
    unsigned int OurDFS = DFSNum;
    for (auto &Op : I->operands()) {
      if (auto *InstOp = dyn_cast<Instruction>(Op)) {
        if (Root.lookup(Op) == 0)
          FindSCC(InstOp);
        if (!InComponent.count(Op))
          Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
      }
    }
    // See if we really were the root of a component, by seeing if we still have
    // our DFSNumber.  If we do, we are the root of the component, and we have
    // completed a component. If we do not, we are not the root of a component,
    // and belong on the component stack.
    if (Root.lookup(I) == OurDFS) {
      unsigned ComponentID = Components.size();
      Components.resize(Components.size() + 1);
      auto &Component = Components.back();
      Component.insert(I);
      DEBUG(dbgs() << "Component root is " << *I << "\n");
      InComponent.insert(I);
      ValueToComponent[I] = ComponentID;
      // Pop a component off the stack and label it.
      while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
        auto *Member = Stack.back();
        DEBUG(dbgs() << "Component member is " << *Member << "\n");
        Component.insert(Member);
        InComponent.insert(Member);
        ValueToComponent[Member] = ComponentID;
        Stack.pop_back();
      }
    } else {
      // Part of a component, push to stack
      Stack.push_back(I);
    }
  }
  unsigned int DFSNum = 1;
  SmallPtrSet<const Value *, 8> InComponent;
  DenseMap<const Value *, unsigned int> Root;
  SmallVector<const Value *, 8> Stack;
  // Store the components as vector of ptr sets, because we need the topo order
  // of SCC's, but not individual member order
  SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
  DenseMap<const Value *, unsigned> ValueToComponent;
};
// Congruence classes represent the set of expressions/instructions
// that are all the same *during some scope in the function*.
// That is, because of the way we perform equality propagation, and
// because of memory value numbering, it is not correct to assume
// you can willy-nilly replace any member with any other at any
// point in the function.
//
// For any Value in the Member set, it is valid to replace any dominated member
// with that Value.
//
// Every congruence class has a leader, and the leader is used to symbolize
// instructions in a canonical way (IE every operand of an instruction that is a
// member of the same congruence class will always be replaced with leader
// during symbolization).  To simplify symbolization, we keep the leader as a
// constant if class can be proved to be a constant value.  Otherwise, the
// leader is the member of the value set with the smallest DFS number.  Each
// congruence class also has a defining expression, though the expression may be
// null.  If it exists, it can be used for forward propagation and reassociation
// of values.

// For memory, we also track a representative MemoryAccess, and a set of memory
// members for MemoryPhis (which have no real instructions). Note that for
// memory, it seems tempting to try to split the memory members into a
// MemoryCongruenceClass or something.  Unfortunately, this does not work
// easily.  The value numbering of a given memory expression depends on the
// leader of the memory congruence class, and the leader of memory congruence
// class depends on the value numbering of a given memory expression.  This
// leads to wasted propagation, and in some cases, missed optimization.  For
// example: If we had value numbered two stores together before, but now do not,
// we move them to a new value congruence class.  This in turn will move at one
// of the memorydefs to a new memory congruence class.  Which in turn, affects
// the value numbering of the stores we just value numbered (because the memory
// congruence class is part of the value number).  So while theoretically
// possible to split them up, it turns out to be *incredibly* complicated to get
// it to work right, because of the interdependency.  While structurally
// slightly messier, it is algorithmically much simpler and faster to do what we
// do here, and track them both at once in the same class.
// Note: The default iterators for this class iterate over values
class CongruenceClass {
public:
  using MemberType = Value;
  using MemberSet = SmallPtrSet<MemberType *, 4>;
  using MemoryMemberType = MemoryPhi;
  using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;

  explicit CongruenceClass(unsigned ID) : ID(ID) {}
  CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
      : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
  unsigned getID() const { return ID; }
  // True if this class has no members left.  This is mainly used for assertion
  // purposes, and for skipping empty classes.
  bool isDead() const {
    // If it's both dead from a value perspective, and dead from a memory
    // perspective, it's really dead.
    return empty() && memory_empty();
  }
  // Leader functions
  Value *getLeader() const { return RepLeader; }
  void setLeader(Value *Leader) { RepLeader = Leader; }
  const std::pair<Value *, unsigned int> &getNextLeader() const {
    return NextLeader;
  }
  void resetNextLeader() { NextLeader = {nullptr, ~0}; }

  void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
    if (LeaderPair.second < NextLeader.second)
      NextLeader = LeaderPair;
  }

  Value *getStoredValue() const { return RepStoredValue; }
  void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
  const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
  void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }

  // Forward propagation info
  const Expression *getDefiningExpr() const { return DefiningExpr; }

  // Value member set
  bool empty() const { return Members.empty(); }
  unsigned size() const { return Members.size(); }
  MemberSet::const_iterator begin() const { return Members.begin(); }
  MemberSet::const_iterator end() const { return Members.end(); }
  void insert(MemberType *M) { Members.insert(M); }
  void erase(MemberType *M) { Members.erase(M); }
  void swap(MemberSet &Other) { Members.swap(Other); }

  // Memory member set
  bool memory_empty() const { return MemoryMembers.empty(); }
  unsigned memory_size() const { return MemoryMembers.size(); }
  MemoryMemberSet::const_iterator memory_begin() const {
    return MemoryMembers.begin();
  }
  MemoryMemberSet::const_iterator memory_end() const {
    return MemoryMembers.end();
  }
  iterator_range<MemoryMemberSet::const_iterator> memory() const {
    return make_range(memory_begin(), memory_end());
  }
  void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
  void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }

  // Store count
  unsigned getStoreCount() const { return StoreCount; }
  void incStoreCount() { ++StoreCount; }
  void decStoreCount() {
    assert(StoreCount != 0 && "Store count went negative");
    --StoreCount;
  }

  // True if this class has no memory members.
  bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }

  // Return true if two congruence classes are equivalent to each other.  This
  // means
  // that every field but the ID number and the dead field are equivalent.
  bool isEquivalentTo(const CongruenceClass *Other) const {
    if (!Other)
      return false;
    if (this == Other)
      return true;

    if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
        std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
                 Other->RepMemoryAccess))
      return false;
    if (DefiningExpr != Other->DefiningExpr)
      if (!DefiningExpr || !Other->DefiningExpr ||
          *DefiningExpr != *Other->DefiningExpr)
        return false;
    // We need some ordered set
    std::set<Value *> AMembers(Members.begin(), Members.end());
    std::set<Value *> BMembers(Members.begin(), Members.end());
    return AMembers == BMembers;
  }

private:
  unsigned ID;
  // Representative leader.
  Value *RepLeader = nullptr;
  // The most dominating leader after our current leader, because the member set
  // is not sorted and is expensive to keep sorted all the time.
  std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
  // If this is represented by a store, the value of the store.
  Value *RepStoredValue = nullptr;
  // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
  // access.
  const MemoryAccess *RepMemoryAccess = nullptr;
  // Defining Expression.
  const Expression *DefiningExpr = nullptr;
  // Actual members of this class.
  MemberSet Members;
  // This is the set of MemoryPhis that exist in the class. MemoryDefs and
  // MemoryUses have real instructions representing them, so we only need to
  // track MemoryPhis here.
  MemoryMemberSet MemoryMembers;
  // Number of stores in this congruence class.
  // This is used so we can detect store equivalence changes properly.
  int StoreCount = 0;
};

namespace llvm {
struct ExactEqualsExpression {
  const Expression &E;
  explicit ExactEqualsExpression(const Expression &E) : E(E) {}
  hash_code getComputedHash() const { return E.getComputedHash(); }
  bool operator==(const Expression &Other) const {
    return E.exactlyEquals(Other);
  }
};

template <> struct DenseMapInfo<const Expression *> {
  static const Expression *getEmptyKey() {
    auto Val = static_cast<uintptr_t>(-1);
    Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
    return reinterpret_cast<const Expression *>(Val);
  }
  static const Expression *getTombstoneKey() {
    auto Val = static_cast<uintptr_t>(~1U);
    Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
    return reinterpret_cast<const Expression *>(Val);
  }
  static unsigned getHashValue(const Expression *E) {
    return E->getComputedHash();
  }
  static unsigned getHashValue(const ExactEqualsExpression &E) {
    return E.getComputedHash();
  }
  static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
    if (RHS == getTombstoneKey() || RHS == getEmptyKey())
      return false;
    return LHS == *RHS;
  }

  static bool isEqual(const Expression *LHS, const Expression *RHS) {
    if (LHS == RHS)
      return true;
    if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
        LHS == getEmptyKey() || RHS == getEmptyKey())
      return false;
    // Compare hashes before equality.  This is *not* what the hashtable does,
    // since it is computing it modulo the number of buckets, whereas we are
    // using the full hash keyspace.  Since the hashes are precomputed, this
    // check is *much* faster than equality.
    if (LHS->getComputedHash() != RHS->getComputedHash())
      return false;
    return *LHS == *RHS;
  }
};
} // end namespace llvm

namespace {
class NewGVN {
  Function &F;
  DominatorTree *DT;
  const TargetLibraryInfo *TLI;
  AliasAnalysis *AA;
  MemorySSA *MSSA;
  MemorySSAWalker *MSSAWalker;
  const DataLayout &DL;
  std::unique_ptr<PredicateInfo> PredInfo;

  // These are the only two things the create* functions should have
  // side-effects on due to allocating memory.
  mutable BumpPtrAllocator ExpressionAllocator;
  mutable ArrayRecycler<Value *> ArgRecycler;
  mutable TarjanSCC SCCFinder;
  const SimplifyQuery SQ;

  // Number of function arguments, used by ranking
  unsigned int NumFuncArgs;

  // RPOOrdering of basic blocks
  DenseMap<const DomTreeNode *, unsigned> RPOOrdering;

  // Congruence class info.

  // This class is called INITIAL in the paper. It is the class everything
  // startsout in, and represents any value. Being an optimistic analysis,
  // anything in the TOP class has the value TOP, which is indeterminate and
  // equivalent to everything.
  CongruenceClass *TOPClass;
  std::vector<CongruenceClass *> CongruenceClasses;
  unsigned NextCongruenceNum;

  // Value Mappings.
  DenseMap<Value *, CongruenceClass *> ValueToClass;
  DenseMap<Value *, const Expression *> ValueToExpression;
  // Value PHI handling, used to make equivalence between phi(op, op) and
  // op(phi, phi).
  // These mappings just store various data that would normally be part of the
  // IR.
  DenseSet<const Instruction *> PHINodeUses;
  // Map a temporary instruction we created to a parent block.
  DenseMap<const Value *, BasicBlock *> TempToBlock;
  // Map between the temporary phis we created and the real instructions they
  // are known equivalent to.
  DenseMap<const Value *, PHINode *> RealToTemp;
  // In order to know when we should re-process instructions that have
  // phi-of-ops, we track the set of expressions that they needed as
  // leaders. When we discover new leaders for those expressions, we process the
  // associated phi-of-op instructions again in case they have changed.  The
  // other way they may change is if they had leaders, and those leaders
  // disappear.  However, at the point they have leaders, there are uses of the
  // relevant operands in the created phi node, and so they will get reprocessed
  // through the normal user marking we perform.
  mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
  DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
      ExpressionToPhiOfOps;
  // Map from basic block to the temporary operations we created
  DenseMap<const BasicBlock *, SmallVector<PHINode *, 8>> PHIOfOpsPHIs;
  // Map from temporary operation to MemoryAccess.
  DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
  // Set of all temporary instructions we created.
  DenseSet<Instruction *> AllTempInstructions;

  // Mapping from predicate info we used to the instructions we used it with.
  // In order to correctly ensure propagation, we must keep track of what
  // comparisons we used, so that when the values of the comparisons change, we
  // propagate the information to the places we used the comparison.
  mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
      PredicateToUsers;
  // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
  // stores, we no longer can rely solely on the def-use chains of MemorySSA.
  mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
      MemoryToUsers;

  // A table storing which memorydefs/phis represent a memory state provably
  // equivalent to another memory state.
  // We could use the congruence class machinery, but the MemoryAccess's are
  // abstract memory states, so they can only ever be equivalent to each other,
  // and not to constants, etc.
  DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;

  // We could, if we wanted, build MemoryPhiExpressions and
  // MemoryVariableExpressions, etc, and value number them the same way we value
  // number phi expressions.  For the moment, this seems like overkill.  They
  // can only exist in one of three states: they can be TOP (equal to
  // everything), Equivalent to something else, or unique.  Because we do not
  // create expressions for them, we need to simulate leader change not just
  // when they change class, but when they change state.  Note: We can do the
  // same thing for phis, and avoid having phi expressions if we wanted, We
  // should eventually unify in one direction or the other, so this is a little
  // bit of an experiment in which turns out easier to maintain.
  enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
  DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;

  enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
  mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
  // Expression to class mapping.
  using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
  ExpressionClassMap ExpressionToClass;

  // We have a single expression that represents currently DeadExpressions.
  // For dead expressions we can prove will stay dead, we mark them with
  // DFS number zero.  However, it's possible in the case of phi nodes
  // for us to assume/prove all arguments are dead during fixpointing.
  // We use DeadExpression for that case.
  DeadExpression *SingletonDeadExpression = nullptr;

  // Which values have changed as a result of leader changes.
  SmallPtrSet<Value *, 8> LeaderChanges;

  // Reachability info.
  using BlockEdge = BasicBlockEdge;
  DenseSet<BlockEdge> ReachableEdges;
  SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;

  // This is a bitvector because, on larger functions, we may have
  // thousands of touched instructions at once (entire blocks,
  // instructions with hundreds of uses, etc).  Even with optimization
  // for when we mark whole blocks as touched, when this was a
  // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
  // the time in GVN just managing this list.  The bitvector, on the
  // other hand, efficiently supports test/set/clear of both
  // individual and ranges, as well as "find next element" This
  // enables us to use it as a worklist with essentially 0 cost.
  BitVector TouchedInstructions;

  DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;

#ifndef NDEBUG
  // Debugging for how many times each block and instruction got processed.
  DenseMap<const Value *, unsigned> ProcessedCount;
#endif

  // DFS info.
  // This contains a mapping from Instructions to DFS numbers.
  // The numbering starts at 1. An instruction with DFS number zero
  // means that the instruction is dead.
  DenseMap<const Value *, unsigned> InstrDFS;

  // This contains the mapping DFS numbers to instructions.
  SmallVector<Value *, 32> DFSToInstr;

  // Deletion info.
  SmallPtrSet<Instruction *, 8> InstructionsToErase;

public:
  NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
         TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
         const DataLayout &DL)
      : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
        PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
  }
  bool runGVN();

private:
  // Expression handling.
  const Expression *createExpression(Instruction *) const;
  const Expression *createBinaryExpression(unsigned, Type *, Value *,
                                           Value *) const;
  PHIExpression *createPHIExpression(Instruction *, bool &HasBackEdge,
                                     bool &OriginalOpsConstant) const;
  const DeadExpression *createDeadExpression() const;
  const VariableExpression *createVariableExpression(Value *) const;
  const ConstantExpression *createConstantExpression(Constant *) const;
  const Expression *createVariableOrConstant(Value *V) const;
  const UnknownExpression *createUnknownExpression(Instruction *) const;
  const StoreExpression *createStoreExpression(StoreInst *,
                                               const MemoryAccess *) const;
  LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
                                       const MemoryAccess *) const;
  const CallExpression *createCallExpression(CallInst *,
                                             const MemoryAccess *) const;
  const AggregateValueExpression *
  createAggregateValueExpression(Instruction *) const;
  bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;

  // Congruence class handling.
  CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
    auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
    CongruenceClasses.emplace_back(result);
    return result;
  }

  CongruenceClass *createMemoryClass(MemoryAccess *MA) {
    auto *CC = createCongruenceClass(nullptr, nullptr);
    CC->setMemoryLeader(MA);
    return CC;
  }
  CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
    auto *CC = getMemoryClass(MA);
    if (CC->getMemoryLeader() != MA)
      CC = createMemoryClass(MA);
    return CC;
  }

  CongruenceClass *createSingletonCongruenceClass(Value *Member) {
    CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
    CClass->insert(Member);
    ValueToClass[Member] = CClass;
    return CClass;
  }
  void initializeCongruenceClasses(Function &F);
  const Expression *makePossiblePhiOfOps(Instruction *,
                                         SmallPtrSetImpl<Value *> &);
  void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);

  // Value number an Instruction or MemoryPhi.
  void valueNumberMemoryPhi(MemoryPhi *);
  void valueNumberInstruction(Instruction *);

  // Symbolic evaluation.
  const Expression *checkSimplificationResults(Expression *, Instruction *,
                                               Value *) const;
  const Expression *performSymbolicEvaluation(Value *,
                                              SmallPtrSetImpl<Value *> &) const;
  const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
                                                Instruction *,
                                                MemoryAccess *) const;
  const Expression *performSymbolicLoadEvaluation(Instruction *) const;
  const Expression *performSymbolicStoreEvaluation(Instruction *) const;
  const Expression *performSymbolicCallEvaluation(Instruction *) const;
  const Expression *performSymbolicPHIEvaluation(Instruction *) const;
  const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
  const Expression *performSymbolicCmpEvaluation(Instruction *) const;
  const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;

  // Congruence finding.
  bool someEquivalentDominates(const Instruction *, const Instruction *) const;
  Value *lookupOperandLeader(Value *) const;
  void performCongruenceFinding(Instruction *, const Expression *);
  void moveValueToNewCongruenceClass(Instruction *, const Expression *,
                                     CongruenceClass *, CongruenceClass *);
  void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
                                      CongruenceClass *, CongruenceClass *);
  Value *getNextValueLeader(CongruenceClass *) const;
  const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
  bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
  CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
  const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
  bool isMemoryAccessTOP(const MemoryAccess *) const;

  // Ranking
  unsigned int getRank(const Value *) const;
  bool shouldSwapOperands(const Value *, const Value *) const;

  // Reachability handling.
  void updateReachableEdge(BasicBlock *, BasicBlock *);
  void processOutgoingEdges(TerminatorInst *, BasicBlock *);
  Value *findConditionEquivalence(Value *) const;

  // Elimination.
  struct ValueDFS;
  void convertClassToDFSOrdered(const CongruenceClass &,
                                SmallVectorImpl<ValueDFS> &,
                                DenseMap<const Value *, unsigned int> &,
                                SmallPtrSetImpl<Instruction *> &) const;
  void convertClassToLoadsAndStores(const CongruenceClass &,
                                    SmallVectorImpl<ValueDFS> &) const;

  bool eliminateInstructions(Function &);
  void replaceInstruction(Instruction *, Value *);
  void markInstructionForDeletion(Instruction *);
  void deleteInstructionsInBlock(BasicBlock *);
  Value *findPhiOfOpsLeader(const Expression *E, const BasicBlock *BB) const;

  // New instruction creation.
  void handleNewInstruction(Instruction *){};

  // Various instruction touch utilities
  template <typename Map, typename KeyType, typename Func>
  void for_each_found(Map &, const KeyType &, Func);
  template <typename Map, typename KeyType>
  void touchAndErase(Map &, const KeyType &);
  void markUsersTouched(Value *);
  void markMemoryUsersTouched(const MemoryAccess *);
  void markMemoryDefTouched(const MemoryAccess *);
  void markPredicateUsersTouched(Instruction *);
  void markValueLeaderChangeTouched(CongruenceClass *CC);
  void markMemoryLeaderChangeTouched(CongruenceClass *CC);
  void markPhiOfOpsChanged(const Expression *E);
  void addPredicateUsers(const PredicateBase *, Instruction *) const;
  void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
  void addAdditionalUsers(Value *To, Value *User) const;

  // Main loop of value numbering
  void iterateTouchedInstructions();

  // Utilities.
  void cleanupTables();
  std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
  void updateProcessedCount(const Value *V);
  void verifyMemoryCongruency() const;
  void verifyIterationSettled(Function &F);
  void verifyStoreExpressions() const;
  bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
                              const MemoryAccess *, const MemoryAccess *) const;
  BasicBlock *getBlockForValue(Value *V) const;
  void deleteExpression(const Expression *E) const;
  MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
  MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
  MemoryPhi *getMemoryAccess(const BasicBlock *) const;
  template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
  unsigned InstrToDFSNum(const Value *V) const {
    assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
    return InstrDFS.lookup(V);
  }

  unsigned InstrToDFSNum(const MemoryAccess *MA) const {
    return MemoryToDFSNum(MA);
  }
  Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
  // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
  // This deliberately takes a value so it can be used with Use's, which will
  // auto-convert to Value's but not to MemoryAccess's.
  unsigned MemoryToDFSNum(const Value *MA) const {
    assert(isa<MemoryAccess>(MA) &&
           "This should not be used with instructions");
    return isa<MemoryUseOrDef>(MA)
               ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
               : InstrDFS.lookup(MA);
  }
  bool isCycleFree(const Instruction *) const;
  bool isBackedge(BasicBlock *From, BasicBlock *To) const;
  // Debug counter info.  When verifying, we have to reset the value numbering
  // debug counter to the same state it started in to get the same results.
  std::pair<int, int> StartingVNCounter;
};
} // end anonymous namespace

template <typename T>
static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
  if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
    return false;
  return LHS.MemoryExpression::equals(RHS);
}

bool LoadExpression::equals(const Expression &Other) const {
  return equalsLoadStoreHelper(*this, Other);
}

bool StoreExpression::equals(const Expression &Other) const {
  if (!equalsLoadStoreHelper(*this, Other))
    return false;
  // Make sure that store vs store includes the value operand.
  if (const auto *S = dyn_cast<StoreExpression>(&Other))
    if (getStoredValue() != S->getStoredValue())
      return false;
  return true;
}

// Determine if the edge From->To is a backedge
bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
  if (From == To)
    return true;
  auto *FromDTN = DT->getNode(From);
  auto *ToDTN = DT->getNode(To);
  return RPOOrdering.lookup(FromDTN) >= RPOOrdering.lookup(ToDTN);
}

#ifndef NDEBUG
static std::string getBlockName(const BasicBlock *B) {
  return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
}
#endif

// Get a MemoryAccess for an instruction, fake or real.
MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
  auto *Result = MSSA->getMemoryAccess(I);
  return Result ? Result : TempToMemory.lookup(I);
}

// Get a MemoryPhi for a basic block. These are all real.
MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
  return MSSA->getMemoryAccess(BB);
}

// Get the basic block from an instruction/memory value.
BasicBlock *NewGVN::getBlockForValue(Value *V) const {
  if (auto *I = dyn_cast<Instruction>(V)) {
    auto *Parent = I->getParent();
    if (Parent)
      return Parent;
    Parent = TempToBlock.lookup(V);
    assert(Parent && "Every fake instruction should have a block");
    return Parent;
  }

  auto *MP = dyn_cast<MemoryPhi>(V);
  assert(MP && "Should have been an instruction or a MemoryPhi");
  return MP->getBlock();
}

// Delete a definitely dead expression, so it can be reused by the expression
// allocator.  Some of these are not in creation functions, so we have to accept
// const versions.
void NewGVN::deleteExpression(const Expression *E) const {
  assert(isa<BasicExpression>(E));
  auto *BE = cast<BasicExpression>(E);
  const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
  ExpressionAllocator.Deallocate(E);
}
PHIExpression *NewGVN::createPHIExpression(Instruction *I, bool &HasBackedge,
                                           bool &OriginalOpsConstant) const {
  BasicBlock *PHIBlock = getBlockForValue(I);
  auto *PN = cast<PHINode>(I);
  auto *E =
      new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);

  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  E->setType(I->getType());
  E->setOpcode(I->getOpcode());

  // NewGVN assumes the operands of a PHI node are in a consistent order across
  // PHIs. LLVM doesn't seem to always guarantee this. While we need to fix
  // this in LLVM at some point we don't want GVN to find wrong congruences.
  // Therefore, here we sort uses in predecessor order.
  // We're sorting the values by pointer. In theory this might be cause of
  // non-determinism, but here we don't rely on the ordering for anything
  // significant, e.g. we don't create new instructions based on it so we're
  // fine.
  SmallVector<const Use *, 4> PHIOperands;
  for (const Use &U : PN->operands())
    PHIOperands.push_back(&U);
  std::sort(PHIOperands.begin(), PHIOperands.end(),
            [&](const Use *U1, const Use *U2) {
              return PN->getIncomingBlock(*U1) < PN->getIncomingBlock(*U2);
            });

  // Filter out unreachable phi operands.
  auto Filtered = make_filter_range(PHIOperands, [&](const Use *U) {
    if (*U == PN)
      return false;
    if (!ReachableEdges.count({PN->getIncomingBlock(*U), PHIBlock}))
      return false;
    // Things in TOPClass are equivalent to everything.
    if (ValueToClass.lookup(*U) == TOPClass)
      return false;
    return lookupOperandLeader(*U) != PN;
  });
  std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
                 [&](const Use *U) -> Value * {
                   auto *BB = PN->getIncomingBlock(*U);
                   HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
                   OriginalOpsConstant =
                       OriginalOpsConstant && isa<Constant>(*U);
                   return lookupOperandLeader(*U);
                 });
  return E;
}

// Set basic expression info (Arguments, type, opcode) for Expression
// E from Instruction I in block B.
bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
  bool AllConstant = true;
  if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
    E->setType(GEP->getSourceElementType());
  else
    E->setType(I->getType());
  E->setOpcode(I->getOpcode());
  E->allocateOperands(ArgRecycler, ExpressionAllocator);

  // Transform the operand array into an operand leader array, and keep track of
  // whether all members are constant.
  std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
    auto Operand = lookupOperandLeader(O);
    AllConstant = AllConstant && isa<Constant>(Operand);
    return Operand;
  });

  return AllConstant;
}

const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
                                                 Value *Arg1,
                                                 Value *Arg2) const {
  auto *E = new (ExpressionAllocator) BasicExpression(2);

  E->setType(T);
  E->setOpcode(Opcode);
  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  if (Instruction::isCommutative(Opcode)) {
    // Ensure that commutative instructions that only differ by a permutation
    // of their operands get the same value number by sorting the operand value
    // numbers.  Since all commutative instructions have two operands it is more
    // efficient to sort by hand rather than using, say, std::sort.
    if (shouldSwapOperands(Arg1, Arg2))
      std::swap(Arg1, Arg2);
  }
  E->op_push_back(lookupOperandLeader(Arg1));
  E->op_push_back(lookupOperandLeader(Arg2));

  Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
  if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
    return SimplifiedE;
  return E;
}

// Take a Value returned by simplification of Expression E/Instruction
// I, and see if it resulted in a simpler expression. If so, return
// that expression.
// TODO: Once finished, this should not take an Instruction, we only
// use it for printing.
const Expression *NewGVN::checkSimplificationResults(Expression *E,
                                                     Instruction *I,
                                                     Value *V) const {
  if (!V)
    return nullptr;
  if (auto *C = dyn_cast<Constant>(V)) {
    if (I)
      DEBUG(dbgs() << "Simplified " << *I << " to "
                   << " constant " << *C << "\n");
    NumGVNOpsSimplified++;
    assert(isa<BasicExpression>(E) &&
           "We should always have had a basic expression here");
    deleteExpression(E);
    return createConstantExpression(C);
  } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
    if (I)
      DEBUG(dbgs() << "Simplified " << *I << " to "
                   << " variable " << *V << "\n");
    deleteExpression(E);
    return createVariableExpression(V);
  }

  CongruenceClass *CC = ValueToClass.lookup(V);
  if (CC && CC->getDefiningExpr()) {
    // If we simplified to something else, we need to communicate
    // that we're users of the value we simplified to.
    if (I != V) {
      // Don't add temporary instructions to the user lists.
      if (!AllTempInstructions.count(I))
        addAdditionalUsers(V, I);
    }

    if (I)
      DEBUG(dbgs() << "Simplified " << *I << " to "
                   << " expression " << *CC->getDefiningExpr() << "\n");
    NumGVNOpsSimplified++;
    deleteExpression(E);
    return CC->getDefiningExpr();
  }
  return nullptr;
}

const Expression *NewGVN::createExpression(Instruction *I) const {
  auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());

  bool AllConstant = setBasicExpressionInfo(I, E);

  if (I->isCommutative()) {
    // Ensure that commutative instructions that only differ by a permutation
    // of their operands get the same value number by sorting the operand value
    // numbers.  Since all commutative instructions have two operands it is more
    // efficient to sort by hand rather than using, say, std::sort.
    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
      E->swapOperands(0, 1);
  }

  // Perform simplificaiton
  // TODO: Right now we only check to see if we get a constant result.
  // We may get a less than constant, but still better, result for
  // some operations.
  // IE
  //  add 0, x -> x
  //  and x, x -> x
  // We should handle this by simply rewriting the expression.
  if (auto *CI = dyn_cast<CmpInst>(I)) {
    // Sort the operand value numbers so x<y and y>x get the same value
    // number.
    CmpInst::Predicate Predicate = CI->getPredicate();
    if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
      E->swapOperands(0, 1);
      Predicate = CmpInst::getSwappedPredicate(Predicate);
    }
    E->setOpcode((CI->getOpcode() << 8) | Predicate);
    // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
    assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
           "Wrong types on cmp instruction");
    assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
            E->getOperand(1)->getType() == I->getOperand(1)->getType()));
    Value *V =
        SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (isa<SelectInst>(I)) {
    if (isa<Constant>(E->getOperand(0)) ||
        E->getOperand(0) == E->getOperand(1)) {
      assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
             E->getOperand(2)->getType() == I->getOperand(2)->getType());
      Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
                                    E->getOperand(2), SQ);
      if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
        return SimplifiedE;
    }
  } else if (I->isBinaryOp()) {
    Value *V =
        SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
    Value *V =
        SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (isa<GetElementPtrInst>(I)) {
    Value *V = SimplifyGEPInst(
        E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
      return SimplifiedE;
  } else if (AllConstant) {
    // We don't bother trying to simplify unless all of the operands
    // were constant.
    // TODO: There are a lot of Simplify*'s we could call here, if we
    // wanted to.  The original motivating case for this code was a
    // zext i1 false to i8, which we don't have an interface to
    // simplify (IE there is no SimplifyZExt).

    SmallVector<Constant *, 8> C;
    for (Value *Arg : E->operands())
      C.emplace_back(cast<Constant>(Arg));

    if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
      if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
        return SimplifiedE;
  }
  return E;
}

const AggregateValueExpression *
NewGVN::createAggregateValueExpression(Instruction *I) const {
  if (auto *II = dyn_cast<InsertValueInst>(I)) {
    auto *E = new (ExpressionAllocator)
        AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
    setBasicExpressionInfo(I, E);
    E->allocateIntOperands(ExpressionAllocator);
    std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
    return E;
  } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
    auto *E = new (ExpressionAllocator)
        AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
    setBasicExpressionInfo(EI, E);
    E->allocateIntOperands(ExpressionAllocator);
    std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
    return E;
  }
  llvm_unreachable("Unhandled type of aggregate value operation");
}

const DeadExpression *NewGVN::createDeadExpression() const {
  // DeadExpression has no arguments and all DeadExpression's are the same,
  // so we only need one of them.
  return SingletonDeadExpression;
}

const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
  auto *E = new (ExpressionAllocator) VariableExpression(V);
  E->setOpcode(V->getValueID());
  return E;
}

const Expression *NewGVN::createVariableOrConstant(Value *V) const {
  if (auto *C = dyn_cast<Constant>(V))
    return createConstantExpression(C);
  return createVariableExpression(V);
}

const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
  auto *E = new (ExpressionAllocator) ConstantExpression(C);
  E->setOpcode(C->getValueID());
  return E;
}

const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
  auto *E = new (ExpressionAllocator) UnknownExpression(I);
  E->setOpcode(I->getOpcode());
  return E;
}

const CallExpression *
NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
  // FIXME: Add operand bundles for calls.
  auto *E =
      new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
  setBasicExpressionInfo(CI, E);
  return E;
}

// Return true if some equivalent of instruction Inst dominates instruction U.
bool NewGVN::someEquivalentDominates(const Instruction *Inst,
                                     const Instruction *U) const {
  auto *CC = ValueToClass.lookup(Inst);
  // This must be an instruction because we are only called from phi nodes
  // in the case that the value it needs to check against is an instruction.

  // The most likely candiates for dominance are the leader and the next leader.
  // The leader or nextleader will dominate in all cases where there is an
  // equivalent that is higher up in the dom tree.
  // We can't *only* check them, however, because the
  // dominator tree could have an infinite number of non-dominating siblings
  // with instructions that are in the right congruence class.
  //       A
  // B C D E F G
  // |
  // H
  // Instruction U could be in H,  with equivalents in every other sibling.
  // Depending on the rpo order picked, the leader could be the equivalent in
  // any of these siblings.
  if (!CC)
    return false;
  if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
    return true;
  if (CC->getNextLeader().first &&
      DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
    return true;
  return llvm::any_of(*CC, [&](const Value *Member) {
    return Member != CC->getLeader() &&
           DT->dominates(cast<Instruction>(Member), U);
  });
}

// See if we have a congruence class and leader for this operand, and if so,
// return it. Otherwise, return the operand itself.
Value *NewGVN::lookupOperandLeader(Value *V) const {
  CongruenceClass *CC = ValueToClass.lookup(V);
  if (CC) {
    // Everything in TOP is represented by undef, as it can be any value.
    // We do have to make sure we get the type right though, so we can't set the
    // RepLeader to undef.
    if (CC == TOPClass)
      return UndefValue::get(V->getType());
    return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
  }

  return V;
}

const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
  auto *CC = getMemoryClass(MA);
  assert(CC->getMemoryLeader() &&
         "Every MemoryAccess should be mapped to a congruence class with a "
         "representative memory access");
  return CC->getMemoryLeader();
}

// Return true if the MemoryAccess is really equivalent to everything. This is
// equivalent to the lattice value "TOP" in most lattices.  This is the initial
// state of all MemoryAccesses.
bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
  return getMemoryClass(MA) == TOPClass;
}

LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
                                             LoadInst *LI,
                                             const MemoryAccess *MA) const {
  auto *E =
      new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  E->setType(LoadType);

  // Give store and loads same opcode so they value number together.
  E->setOpcode(0);
  E->op_push_back(PointerOp);
  if (LI)
    E->setAlignment(LI->getAlignment());

  // TODO: Value number heap versions. We may be able to discover
  // things alias analysis can't on it's own (IE that a store and a
  // load have the same value, and thus, it isn't clobbering the load).
  return E;
}

const StoreExpression *
NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
  auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
  auto *E = new (ExpressionAllocator)
      StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
  E->allocateOperands(ArgRecycler, ExpressionAllocator);
  E->setType(SI->getValueOperand()->getType());

  // Give store and loads same opcode so they value number together.
  E->setOpcode(0);
  E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));

  // TODO: Value number heap versions. We may be able to discover
  // things alias analysis can't on it's own (IE that a store and a
  // load have the same value, and thus, it isn't clobbering the load).
  return E;
}

const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
  // Unlike loads, we never try to eliminate stores, so we do not check if they
  // are simple and avoid value numbering them.
  auto *SI = cast<StoreInst>(I);
  auto *StoreAccess = getMemoryAccess(SI);
  // Get the expression, if any, for the RHS of the MemoryDef.
  const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
  if (EnableStoreRefinement)
    StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
  // If we bypassed the use-def chains, make sure we add a use.
  if (StoreRHS != StoreAccess->getDefiningAccess())
    addMemoryUsers(StoreRHS, StoreAccess);
  StoreRHS = lookupMemoryLeader(StoreRHS);
  // If we are defined by ourselves, use the live on entry def.
  if (StoreRHS == StoreAccess)
    StoreRHS = MSSA->getLiveOnEntryDef();

  if (SI->isSimple()) {
    // See if we are defined by a previous store expression, it already has a
    // value, and it's the same value as our current store. FIXME: Right now, we
    // only do this for simple stores, we should expand to cover memcpys, etc.
    const auto *LastStore = createStoreExpression(SI, StoreRHS);
    const auto *LastCC = ExpressionToClass.lookup(LastStore);
    // We really want to check whether the expression we matched was a store. No
    // easy way to do that. However, we can check that the class we found has a
    // store, which, assuming the value numbering state is not corrupt, is
    // sufficient, because we must also be equivalent to that store's expression
    // for it to be in the same class as the load.
    if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
      return LastStore;
    // Also check if our value operand is defined by a load of the same memory
    // location, and the memory state is the same as it was then (otherwise, it
    // could have been overwritten later. See test32 in
    // transforms/DeadStoreElimination/simple.ll).
    if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
      if ((lookupOperandLeader(LI->getPointerOperand()) ==
           LastStore->getOperand(0)) &&
          (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
           StoreRHS))
        return LastStore;
    deleteExpression(LastStore);
  }

  // If the store is not equivalent to anything, value number it as a store that
  // produces a unique memory state (instead of using it's MemoryUse, we use
  // it's MemoryDef).
  return createStoreExpression(SI, StoreAccess);
}

// See if we can extract the value of a loaded pointer from a load, a store, or
// a memory instruction.
const Expression *
NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
                                    LoadInst *LI, Instruction *DepInst,
                                    MemoryAccess *DefiningAccess) const {
  assert((!LI || LI->isSimple()) && "Not a simple load");
  if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
    // Can't forward from non-atomic to atomic without violating memory model.
    // Also don't need to coerce if they are the same type, we will just
    // propogate..
    if (LI->isAtomic() > DepSI->isAtomic() ||
        LoadType == DepSI->getValueOperand()->getType())
      return nullptr;
    int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
    if (Offset >= 0) {
      if (auto *C = dyn_cast<Constant>(
              lookupOperandLeader(DepSI->getValueOperand()))) {
        DEBUG(dbgs() << "Coercing load from store " << *DepSI << " to constant "
                     << *C << "\n");
        return createConstantExpression(
            getConstantStoreValueForLoad(C, Offset, LoadType, DL));
      }
    }

  } else if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
    // Can't forward from non-atomic to atomic without violating memory model.
    if (LI->isAtomic() > DepLI->isAtomic())
      return nullptr;
    int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
    if (Offset >= 0) {
      // We can coerce a constant load into a load
      if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
        if (auto *PossibleConstant =
                getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
          DEBUG(dbgs() << "Coercing load from load " << *LI << " to constant "
                       << *PossibleConstant << "\n");
          return createConstantExpression(PossibleConstant);
        }
    }

  } else if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
    int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
    if (Offset >= 0) {
      if (auto *PossibleConstant =
              getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
        DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
                     << " to constant " << *PossibleConstant << "\n");
        return createConstantExpression(PossibleConstant);
      }
    }
  }

  // All of the below are only true if the loaded pointer is produced
  // by the dependent instruction.
  if (LoadPtr != lookupOperandLeader(DepInst) &&
      !AA->isMustAlias(LoadPtr, DepInst))
    return nullptr;
  // If this load really doesn't depend on anything, then we must be loading an
  // undef value.  This can happen when loading for a fresh allocation with no
  // intervening stores, for example.  Note that this is only true in the case
  // that the result of the allocation is pointer equal to the load ptr.
  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
    return createConstantExpression(UndefValue::get(LoadType));
  }
  // If this load occurs either right after a lifetime begin,
  // then the loaded value is undefined.
  else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
      return createConstantExpression(UndefValue::get(LoadType));
  }
  // If this load follows a calloc (which zero initializes memory),
  // then the loaded value is zero
  else if (isCallocLikeFn(DepInst, TLI)) {
    return createConstantExpression(Constant::getNullValue(LoadType));
  }

  return nullptr;
}

const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
  auto *LI = cast<LoadInst>(I);

  // We can eliminate in favor of non-simple loads, but we won't be able to
  // eliminate the loads themselves.
  if (!LI->isSimple())
    return nullptr;

  Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
  // Load of undef is undef.
  if (isa<UndefValue>(LoadAddressLeader))
    return createConstantExpression(UndefValue::get(LI->getType()));
  MemoryAccess *OriginalAccess = getMemoryAccess(I);
  MemoryAccess *DefiningAccess =
      MSSAWalker->getClobberingMemoryAccess(OriginalAccess);

  if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
    if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
      Instruction *DefiningInst = MD->getMemoryInst();
      // If the defining instruction is not reachable, replace with undef.
      if (!ReachableBlocks.count(DefiningInst->getParent()))
        return createConstantExpression(UndefValue::get(LI->getType()));
      // This will handle stores and memory insts.  We only do if it the
      // defining access has a different type, or it is a pointer produced by
      // certain memory operations that cause the memory to have a fixed value
      // (IE things like calloc).
      if (const auto *CoercionResult =
              performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
                                          DefiningInst, DefiningAccess))
        return CoercionResult;
    }
  }

  const Expression *E = createLoadExpression(LI->getType(), LoadAddressLeader,
                                             LI, DefiningAccess);
  return E;
}

const Expression *
NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
  auto *PI = PredInfo->getPredicateInfoFor(I);
  if (!PI)
    return nullptr;

  DEBUG(dbgs() << "Found predicate info from instruction !\n");

  auto *PWC = dyn_cast<PredicateWithCondition>(PI);
  if (!PWC)
    return nullptr;

  auto *CopyOf = I->getOperand(0);
  auto *Cond = PWC->Condition;

  // If this a copy of the condition, it must be either true or false depending
  // on the predicate info type and edge
  if (CopyOf == Cond) {
    // We should not need to add predicate users because the predicate info is
    // already a use of this operand.
    if (isa<PredicateAssume>(PI))
      return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
    if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
      if (PBranch->TrueEdge)
        return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
      return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
    }
    if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
      return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
  }

  // Not a copy of the condition, so see what the predicates tell us about this
  // value.  First, though, we check to make sure the value is actually a copy
  // of one of the condition operands. It's possible, in certain cases, for it
  // to be a copy of a predicateinfo copy. In particular, if two branch
  // operations use the same condition, and one branch dominates the other, we
  // will end up with a copy of a copy.  This is currently a small deficiency in
  // predicateinfo.  What will end up happening here is that we will value
  // number both copies the same anyway.

  // Everything below relies on the condition being a comparison.
  auto *Cmp = dyn_cast<CmpInst>(Cond);
  if (!Cmp)
    return nullptr;

  if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
    DEBUG(dbgs() << "Copy is not of any condition operands!\n");
    return nullptr;
  }
  Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
  Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
  bool SwappedOps = false;
  // Sort the ops
  if (shouldSwapOperands(FirstOp, SecondOp)) {
    std::swap(FirstOp, SecondOp);
    SwappedOps = true;
  }
  CmpInst::Predicate Predicate =
      SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();

  if (isa<PredicateAssume>(PI)) {
    // If the comparison is true when the operands are equal, then we know the
    // operands are equal, because assumes must always be true.
    if (CmpInst::isTrueWhenEqual(Predicate)) {
      addPredicateUsers(PI, I);
      addAdditionalUsers(Cmp->getOperand(0), I);
      return createVariableOrConstant(FirstOp);
    }
  }
  if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
    // If we are *not* a copy of the comparison, we may equal to the other
    // operand when the predicate implies something about equality of
    // operations.  In particular, if the comparison is true/false when the
    // operands are equal, and we are on the right edge, we know this operation
    // is equal to something.
    if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
        (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
      addPredicateUsers(PI, I);
      addAdditionalUsers(Cmp->getOperand(0), I);
      return createVariableOrConstant(FirstOp);
    }
    // Handle the special case of floating point.
    if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
         (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
        isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
      addPredicateUsers(PI, I);
      addAdditionalUsers(Cmp->getOperand(0), I);
      return createConstantExpression(cast<Constant>(FirstOp));
    }
  }
  return nullptr;
}

// Evaluate read only and pure calls, and create an expression result.
const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
  auto *CI = cast<CallInst>(I);
  if (auto *II = dyn_cast<IntrinsicInst>(I)) {
    // Instrinsics with the returned attribute are copies of arguments.
    if (auto *ReturnedValue = II->getReturnedArgOperand()) {
      if (II->getIntrinsicID() == Intrinsic::ssa_copy)
        if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
          return Result;
      return createVariableOrConstant(ReturnedValue);
    }
  }
  if (AA->doesNotAccessMemory(CI)) {
    return createCallExpression(CI, TOPClass->getMemoryLeader());
  } else if (AA->onlyReadsMemory(CI)) {
    MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
    return createCallExpression(CI, DefiningAccess);
  }
  return nullptr;
}

// Retrieve the memory class for a given MemoryAccess.
CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {

  auto *Result = MemoryAccessToClass.lookup(MA);
  assert(Result && "Should have found memory class");
  return Result;
}

// Update the MemoryAccess equivalence table to say that From is equal to To,
// and return true if this is different from what already existed in the table.
bool NewGVN::setMemoryClass(const MemoryAccess *From,
                            CongruenceClass *NewClass) {
  assert(NewClass &&
         "Every MemoryAccess should be getting mapped to a non-null class");
  DEBUG(dbgs() << "Setting " << *From);
  DEBUG(dbgs() << " equivalent to congruence class ");
  DEBUG(dbgs() << NewClass->getID() << " with current MemoryAccess leader ");
  DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");

  auto LookupResult = MemoryAccessToClass.find(From);
  bool Changed = false;
  // If it's already in the table, see if the value changed.
  if (LookupResult != MemoryAccessToClass.end()) {
    auto *OldClass = LookupResult->second;
    if (OldClass != NewClass) {
      // If this is a phi, we have to handle memory member updates.
      if (auto *MP = dyn_cast<MemoryPhi>(From)) {
        OldClass->memory_erase(MP);
        NewClass->memory_insert(MP);
        // This may have killed the class if it had no non-memory members
        if (OldClass->getMemoryLeader() == From) {
          if (OldClass->definesNoMemory()) {
            OldClass->setMemoryLeader(nullptr);
          } else {
            OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
            DEBUG(dbgs() << "Memory class leader change for class "
                         << OldClass->getID() << " to "
                         << *OldClass->getMemoryLeader()
                         << " due to removal of a memory member " << *From
                         << "\n");
            markMemoryLeaderChangeTouched(OldClass);
          }
        }
      }
      // It wasn't equivalent before, and now it is.
      LookupResult->second = NewClass;
      Changed = true;
    }
  }

  return Changed;
}

// Determine if a instruction is cycle-free.  That means the values in the
// instruction don't depend on any expressions that can change value as a result
// of the instruction.  For example, a non-cycle free instruction would be v =
// phi(0, v+1).
bool NewGVN::isCycleFree(const Instruction *I) const {
  // In order to compute cycle-freeness, we do SCC finding on the instruction,
  // and see what kind of SCC it ends up in.  If it is a singleton, it is
  // cycle-free.  If it is not in a singleton, it is only cycle free if the
  // other members are all phi nodes (as they do not compute anything, they are
  // copies).
  auto ICS = InstCycleState.lookup(I);
  if (ICS == ICS_Unknown) {
    SCCFinder.Start(I);
    auto &SCC = SCCFinder.getComponentFor(I);
    // It's cycle free if it's size 1 or or the SCC is *only* phi nodes.
    if (SCC.size() == 1)
      InstCycleState.insert({I, ICS_CycleFree});
    else {
      bool AllPhis =
          llvm::all_of(SCC, [](const Value *V) { return isa<PHINode>(V); });
      ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
      for (auto *Member : SCC)
        if (auto *MemberPhi = dyn_cast<PHINode>(Member))
          InstCycleState.insert({MemberPhi, ICS});
    }
  }
  if (ICS == ICS_Cycle)
    return false;
  return true;
}

// Evaluate PHI nodes symbolically, and create an expression result.
const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) const {
  // True if one of the incoming phi edges is a backedge.
  bool HasBackedge = false;
  // All constant tracks the state of whether all the *original* phi operands
  // This is really shorthand for "this phi cannot cycle due to forward
  // change in value of the phi is guaranteed not to later change the value of
  // the phi. IE it can't be v = phi(undef, v+1)
  bool AllConstant = true;
  auto *E =
      cast<PHIExpression>(createPHIExpression(I, HasBackedge, AllConstant));
  // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
  // See if all arguments are the same.
  // We track if any were undef because they need special handling.
  bool HasUndef = false;
  auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
    if (isa<UndefValue>(Arg)) {
      HasUndef = true;
      return false;
    }
    return true;
  });
  // If we are left with no operands, it's dead.
  if (Filtered.begin() == Filtered.end()) {
    // If it has undef at this point, it means there are no-non-undef arguments,
    // and thus, the value of the phi node must be undef.
    if (HasUndef) {
      DEBUG(dbgs() << "PHI Node " << *I
                   << " has no non-undef arguments, valuing it as undef\n");
      return createConstantExpression(UndefValue::get(I->getType()));
    }

    DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
    deleteExpression(E);
    return createDeadExpression();
  }
  unsigned NumOps = 0;
  Value *AllSameValue = *(Filtered.begin());
  ++Filtered.begin();
  // Can't use std::equal here, sadly, because filter.begin moves.
  if (llvm::all_of(Filtered, [&](Value *Arg) {
        ++NumOps;
        return Arg == AllSameValue;
      })) {
    // In LLVM's non-standard representation of phi nodes, it's possible to have
    // phi nodes with cycles (IE dependent on other phis that are .... dependent
    // on the original phi node), especially in weird CFG's where some arguments
    // are unreachable, or uninitialized along certain paths.  This can cause
    // infinite loops during evaluation. We work around this by not trying to
    // really evaluate them independently, but instead using a variable
    // expression to say if one is equivalent to the other.
    // We also special case undef, so that if we have an undef, we can't use the
    // common value unless it dominates the phi block.
    if (HasUndef) {
      // If we have undef and at least one other value, this is really a
      // multivalued phi, and we need to know if it's cycle free in order to
      // evaluate whether we can ignore the undef.  The other parts of this are
      // just shortcuts.  If there is no backedge, or all operands are
      // constants, or all operands are ignored but the undef, it also must be
      // cycle free.
      if (!AllConstant && HasBackedge && NumOps > 0 &&
          !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
        return E;

      // Only have to check for instructions
      if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
        if (!someEquivalentDominates(AllSameInst, I))
          return E;
    }
    // Can't simplify to something that comes later in the iteration.
    // Otherwise, when and if it changes congruence class, we will never catch
    // up. We will always be a class behind it.
    if (isa<Instruction>(AllSameValue) &&
        InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
      return E;
    NumGVNPhisAllSame++;
    DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
                 << "\n");
    deleteExpression(E);
    return createVariableOrConstant(AllSameValue);
  }
  return E;
}

const Expression *
NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
  if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
    auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
      unsigned Opcode = 0;
      // EI might be an extract from one of our recognised intrinsics. If it
      // is we'll synthesize a semantically equivalent expression instead on
      // an extract value expression.
      switch (II->getIntrinsicID()) {
      case Intrinsic::sadd_with_overflow:
      case Intrinsic::uadd_with_overflow:
        Opcode = Instruction::Add;
        break;
      case Intrinsic::ssub_with_overflow:
      case Intrinsic::usub_with_overflow:
        Opcode = Instruction::Sub;
        break;
      case Intrinsic::smul_with_overflow:
      case Intrinsic::umul_with_overflow:
        Opcode = Instruction::Mul;
        break;
      default:
        break;
      }

      if (Opcode != 0) {
        // Intrinsic recognized. Grab its args to finish building the
        // expression.
        assert(II->getNumArgOperands() == 2 &&
               "Expect two args for recognised intrinsics.");
        return createBinaryExpression(
            Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
      }
    }
  }

  return createAggregateValueExpression(I);
}
const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
  auto *CI = dyn_cast<CmpInst>(I);
  // See if our operands are equal to those of a previous predicate, and if so,
  // if it implies true or false.
  auto Op0 = lookupOperandLeader(CI->getOperand(0));
  auto Op1 = lookupOperandLeader(CI->getOperand(1));
  auto OurPredicate = CI->getPredicate();
  if (shouldSwapOperands(Op0, Op1)) {
    std::swap(Op0, Op1);
    OurPredicate = CI->getSwappedPredicate();
  }

  // Avoid processing the same info twice
  const PredicateBase *LastPredInfo = nullptr;
  // See if we know something about the comparison itself, like it is the target
  // of an assume.
  auto *CmpPI = PredInfo->getPredicateInfoFor(I);
  if (dyn_cast_or_null<PredicateAssume>(CmpPI))
    return createConstantExpression(ConstantInt::getTrue(CI->getType()));

  if (Op0 == Op1) {
    // This condition does not depend on predicates, no need to add users
    if (CI->isTrueWhenEqual())
      return createConstantExpression(ConstantInt::getTrue(CI->getType()));
    else if (CI->isFalseWhenEqual())
      return createConstantExpression(ConstantInt::getFalse(CI->getType()));
  }

  // NOTE: Because we are comparing both operands here and below, and using
  // previous comparisons, we rely on fact that predicateinfo knows to mark
  // comparisons that use renamed operands as users of the earlier comparisons.
  // It is *not* enough to just mark predicateinfo renamed operands as users of
  // the earlier comparisons, because the *other* operand may have changed in a
  // previous iteration.
  // Example:
  // icmp slt %a, %b
  // %b.0 = ssa.copy(%b)
  // false branch:
  // icmp slt %c, %b.0

  // %c and %a may start out equal, and thus, the code below will say the second
  // %icmp is false.  c may become equal to something else, and in that case the
  // %second icmp *must* be reexamined, but would not if only the renamed
  // %operands are considered users of the icmp.

  // *Currently* we only check one level of comparisons back, and only mark one
  // level back as touched when changes appen .  If you modify this code to look
  // back farther through comparisons, you *must* mark the appropriate
  // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
  // we know something just from the operands themselves

  // See if our operands have predicate info, so that we may be able to derive
  // something from a previous comparison.
  for (const auto &Op : CI->operands()) {
    auto *PI = PredInfo->getPredicateInfoFor(Op);
    if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
      if (PI == LastPredInfo)
        continue;
      LastPredInfo = PI;

      // TODO: Along the false edge, we may know more things too, like icmp of
      // same operands is false.
      // TODO: We only handle actual comparison conditions below, not and/or.
      auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
      if (!BranchCond)
        continue;
      auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
      auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
      auto BranchPredicate = BranchCond->getPredicate();
      if (shouldSwapOperands(BranchOp0, BranchOp1)) {
        std::swap(BranchOp0, BranchOp1);
        BranchPredicate = BranchCond->getSwappedPredicate();
      }
      if (BranchOp0 == Op0 && BranchOp1 == Op1) {
        if (PBranch->TrueEdge) {
          // If we know the previous predicate is true and we are in the true
          // edge then we may be implied true or false.
          if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
                                                  OurPredicate)) {
            addPredicateUsers(PI, I);
            return createConstantExpression(
                ConstantInt::getTrue(CI->getType()));
          }

          if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
                                                   OurPredicate)) {
            addPredicateUsers(PI, I);
            return createConstantExpression(
                ConstantInt::getFalse(CI->getType()));
          }

        } else {
          // Just handle the ne and eq cases, where if we have the same
          // operands, we may know something.
          if (BranchPredicate == OurPredicate) {
            addPredicateUsers(PI, I);
            // Same predicate, same ops,we know it was false, so this is false.
            return createConstantExpression(
                ConstantInt::getFalse(CI->getType()));
          } else if (BranchPredicate ==
                     CmpInst::getInversePredicate(OurPredicate)) {
            addPredicateUsers(PI, I);
            // Inverse predicate, we know the other was false, so this is true.
            return createConstantExpression(
                ConstantInt::getTrue(CI->getType()));
          }
        }
      }
    }
  }
  // Create expression will take care of simplifyCmpInst
  return createExpression(I);
}

// Return true if V is a value that will always be available (IE can
// be placed anywhere) in the function.  We don't do globals here
// because they are often worse to put in place.
// TODO: Separate cost from availability
static bool alwaysAvailable(Value *V) {
  return isa<Constant>(V) || isa<Argument>(V);
}

// Substitute and symbolize the value before value numbering.
const Expression *
NewGVN::performSymbolicEvaluation(Value *V,
                                  SmallPtrSetImpl<Value *> &Visited) const {
  const Expression *E = nullptr;
  if (auto *C = dyn_cast<Constant>(V))
    E = createConstantExpression(C);
  else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
    E = createVariableExpression(V);
  } else {
    // TODO: memory intrinsics.
    // TODO: Some day, we should do the forward propagation and reassociation
    // parts of the algorithm.
    auto *I = cast<Instruction>(V);
    switch (I->getOpcode()) {
    case Instruction::ExtractValue:
    case Instruction::InsertValue:
      E = performSymbolicAggrValueEvaluation(I);
      break;
    case Instruction::PHI:
      E = performSymbolicPHIEvaluation(I);
      break;
    case Instruction::Call:
      E = performSymbolicCallEvaluation(I);
      break;
    case Instruction::Store:
      E = performSymbolicStoreEvaluation(I);
      break;
    case Instruction::Load:
      E = performSymbolicLoadEvaluation(I);
      break;
    case Instruction::BitCast: {
      E = createExpression(I);
    } break;
    case Instruction::ICmp:
    case Instruction::FCmp: {
      E = performSymbolicCmpEvaluation(I);
    } break;
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::Select:
    case Instruction::ExtractElement:
    case Instruction::InsertElement:
    case Instruction::ShuffleVector:
    case Instruction::GetElementPtr:
      E = createExpression(I);
      break;
    default:
      return nullptr;
    }
  }
  return E;
}

// Look up a container in a map, and then call a function for each thing in the
// found container.
template <typename Map, typename KeyType, typename Func>
void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
  const auto Result = M.find_as(Key);
  if (Result != M.end())
    for (typename Map::mapped_type::value_type Mapped : Result->second)
      F(Mapped);
}

// Look up a container of values/instructions in a map, and touch all the
// instructions in the container.  Then erase value from the map.
template <typename Map, typename KeyType>
void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
  const auto Result = M.find_as(Key);
  if (Result != M.end()) {
    for (const typename Map::mapped_type::value_type Mapped : Result->second)
      TouchedInstructions.set(InstrToDFSNum(Mapped));
    M.erase(Result);
  }
}

void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
  if (isa<Instruction>(To))
    AdditionalUsers[To].insert(User);
}

void NewGVN::markUsersTouched(Value *V) {
  // Now mark the users as touched.
  for (auto *User : V->users()) {
    assert(isa<Instruction>(User) && "Use of value not within an instruction?");
    TouchedInstructions.set(InstrToDFSNum(User));
  }
  touchAndErase(AdditionalUsers, V);
}

void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
  DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
  MemoryToUsers[To].insert(U);
}

void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
  TouchedInstructions.set(MemoryToDFSNum(MA));
}

void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
  if (isa<MemoryUse>(MA))
    return;
  for (auto U : MA->users())
    TouchedInstructions.set(MemoryToDFSNum(U));
  touchAndErase(MemoryToUsers, MA);
}

// Add I to the set of users of a given predicate.
void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
  // Don't add temporary instructions to the user lists.
  if (AllTempInstructions.count(I))
    return;

  if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
    PredicateToUsers[PBranch->Condition].insert(I);
  else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
    PredicateToUsers[PAssume->Condition].insert(I);
}

// Touch all the predicates that depend on this instruction.
void NewGVN::markPredicateUsersTouched(Instruction *I) {
  touchAndErase(PredicateToUsers, I);
}

// Mark users affected by a memory leader change.
void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
  for (auto M : CC->memory())
    markMemoryDefTouched(M);
}

// Touch the instructions that need to be updated after a congruence class has a
// leader change, and mark changed values.
void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
  for (auto M : *CC) {
    if (auto *I = dyn_cast<Instruction>(M))
      TouchedInstructions.set(InstrToDFSNum(I));
    LeaderChanges.insert(M);
  }
}

// Give a range of things that have instruction DFS numbers, this will return
// the member of the range with the smallest dfs number.
template <class T, class Range>
T *NewGVN::getMinDFSOfRange(const Range &R) const {
  std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
  for (const auto X : R) {
    auto DFSNum = InstrToDFSNum(X);
    if (DFSNum < MinDFS.second)
      MinDFS = {X, DFSNum};
  }
  return MinDFS.first;
}

// This function returns the MemoryAccess that should be the next leader of
// congruence class CC, under the assumption that the current leader is going to
// disappear.
const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
  // TODO: If this ends up to slow, we can maintain a next memory leader like we
  // do for regular leaders.
  // Make sure there will be a leader to find
  assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
  if (CC->getStoreCount() > 0) {
    if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
      return getMemoryAccess(NL);
    // Find the store with the minimum DFS number.
    auto *V = getMinDFSOfRange<Value>(make_filter_range(
        *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
    return getMemoryAccess(cast<StoreInst>(V));
  }
  assert(CC->getStoreCount() == 0);

  // Given our assertion, hitting this part must mean
  // !OldClass->memory_empty()
  if (CC->memory_size() == 1)
    return *CC->memory_begin();
  return getMinDFSOfRange<const MemoryPhi>(CC->memory());
}

// This function returns the next value leader of a congruence class, under the
// assumption that the current leader is going away.  This should end up being
// the next most dominating member.
Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
  // We don't need to sort members if there is only 1, and we don't care about
  // sorting the TOP class because everything either gets out of it or is
  // unreachable.

  if (CC->size() == 1 || CC == TOPClass) {
    return *(CC->begin());
  } else if (CC->getNextLeader().first) {
    ++NumGVNAvoidedSortedLeaderChanges;
    return CC->getNextLeader().first;
  } else {
    ++NumGVNSortedLeaderChanges;
    // NOTE: If this ends up to slow, we can maintain a dual structure for
    // member testing/insertion, or keep things mostly sorted, and sort only
    // here, or use SparseBitVector or ....
    return getMinDFSOfRange<Value>(*CC);
  }
}

// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
// the memory members, etc for the move.
//
// The invariants of this function are:
//
// - I must be moving to NewClass from OldClass
// - The StoreCount of OldClass and NewClass is expected to have been updated
//   for I already if it is is a store.
// - The OldClass memory leader has not been updated yet if I was the leader.
void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
                                            MemoryAccess *InstMA,
                                            CongruenceClass *OldClass,
                                            CongruenceClass *NewClass) {
  // If the leader is I, and we had a represenative MemoryAccess, it should
  // be the MemoryAccess of OldClass.
  assert((!InstMA || !OldClass->getMemoryLeader() ||
          OldClass->getLeader() != I ||
          MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
              MemoryAccessToClass.lookup(InstMA)) &&
         "Representative MemoryAccess mismatch");
  // First, see what happens to the new class
  if (!NewClass->getMemoryLeader()) {
    // Should be a new class, or a store becoming a leader of a new class.
    assert(NewClass->size() == 1 ||
           (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
    NewClass->setMemoryLeader(InstMA);
    // Mark it touched if we didn't just create a singleton
    DEBUG(dbgs() << "Memory class leader change for class " << NewClass->getID()
                 << " due to new memory instruction becoming leader\n");
    markMemoryLeaderChangeTouched(NewClass);
  }
  setMemoryClass(InstMA, NewClass);
  // Now, fixup the old class if necessary
  if (OldClass->getMemoryLeader() == InstMA) {
    if (!OldClass->definesNoMemory()) {
      OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
      DEBUG(dbgs() << "Memory class leader change for class "
                   << OldClass->getID() << " to "
                   << *OldClass->getMemoryLeader()
                   << " due to removal of old leader " << *InstMA << "\n");
      markMemoryLeaderChangeTouched(OldClass);
    } else
      OldClass->setMemoryLeader(nullptr);
  }
}

// Move a value, currently in OldClass, to be part of NewClass
// Update OldClass and NewClass for the move (including changing leaders, etc).
void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
                                           CongruenceClass *OldClass,
                                           CongruenceClass *NewClass) {
  if (I == OldClass->getNextLeader().first)
    OldClass->resetNextLeader();

  OldClass->erase(I);
  NewClass->insert(I);

  if (NewClass->getLeader() != I)
    NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
  // Handle our special casing of stores.
  if (auto *SI = dyn_cast<StoreInst>(I)) {
    OldClass->decStoreCount();
    // Okay, so when do we want to make a store a leader of a class?
    // If we have a store defined by an earlier load, we want the earlier load
    // to lead the class.
    // If we have a store defined by something else, we want the store to lead
    // the class so everything else gets the "something else" as a value.
    // If we have a store as the single member of the class, we want the store
    // as the leader
    if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
      // If it's a store expression we are using, it means we are not equivalent
      // to something earlier.
      if (auto *SE = dyn_cast<StoreExpression>(E)) {
        NewClass->setStoredValue(SE->getStoredValue());
        markValueLeaderChangeTouched(NewClass);
        // Shift the new class leader to be the store
        DEBUG(dbgs() << "Changing leader of congruence class "
                     << NewClass->getID() << " from " << *NewClass->getLeader()
                     << " to  " << *SI << " because store joined class\n");
        // If we changed the leader, we have to mark it changed because we don't
        // know what it will do to symbolic evaluation.
        NewClass->setLeader(SI);
      }
      // We rely on the code below handling the MemoryAccess change.
    }
    NewClass->incStoreCount();
  }
  // True if there is no memory instructions left in a class that had memory
  // instructions before.

  // If it's not a memory use, set the MemoryAccess equivalence
  auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
  if (InstMA)
    moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
  ValueToClass[I] = NewClass;
  // See if we destroyed the class or need to swap leaders.
  if (OldClass->empty() && OldClass != TOPClass) {
    if (OldClass->getDefiningExpr()) {
      DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
                   << " from table\n");
      // We erase it as an exact expression to make sure we don't just erase an
      // equivalent one.
      auto Iter = ExpressionToClass.find_as(
          ExactEqualsExpression(*OldClass->getDefiningExpr()));
      if (Iter != ExpressionToClass.end())
        ExpressionToClass.erase(Iter);
#ifdef EXPENSIVE_CHECKS
      assert(
          (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
          "We erased the expression we just inserted, which should not happen");
#endif
    }
  } else if (OldClass->getLeader() == I) {
    // When the leader changes, the value numbering of
    // everything may change due to symbolization changes, so we need to
    // reprocess.
    DEBUG(dbgs() << "Value class leader change for class " << OldClass->getID()
                 << "\n");
    ++NumGVNLeaderChanges;
    // Destroy the stored value if there are no more stores to represent it.
    // Note that this is basically clean up for the expression removal that
    // happens below.  If we remove stores from a class, we may leave it as a
    // class of equivalent memory phis.
    if (OldClass->getStoreCount() == 0) {
      if (OldClass->getStoredValue())
        OldClass->setStoredValue(nullptr);
    }
    OldClass->setLeader(getNextValueLeader(OldClass));
    OldClass->resetNextLeader();
    markValueLeaderChangeTouched(OldClass);
  }
}

// For a given expression, mark the phi of ops instructions that could have
// changed as a result.
void NewGVN::markPhiOfOpsChanged(const Expression *E) {
  touchAndErase(ExpressionToPhiOfOps, ExactEqualsExpression(*E));
}

// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
  // This is guaranteed to return something, since it will at least find
  // TOP.

  CongruenceClass *IClass = ValueToClass.lookup(I);
  assert(IClass && "Should have found a IClass");
  // Dead classes should have been eliminated from the mapping.
  assert(!IClass->isDead() && "Found a dead class");

  CongruenceClass *EClass = nullptr;
  if (const auto *VE = dyn_cast<VariableExpression>(E)) {
    EClass = ValueToClass.lookup(VE->getVariableValue());
  } else if (isa<DeadExpression>(E)) {
    EClass = TOPClass;
  }
  if (!EClass) {
    auto lookupResult = ExpressionToClass.insert({E, nullptr});

    // If it's not in the value table, create a new congruence class.
    if (lookupResult.second) {
      CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
      auto place = lookupResult.first;
      place->second = NewClass;

      // Constants and variables should always be made the leader.
      if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
        NewClass->setLeader(CE->getConstantValue());
      } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
        StoreInst *SI = SE->getStoreInst();
        NewClass->setLeader(SI);
        NewClass->setStoredValue(SE->getStoredValue());
        // The RepMemoryAccess field will be filled in properly by the
        // moveValueToNewCongruenceClass call.
      } else {
        NewClass->setLeader(I);
      }
      assert(!isa<VariableExpression>(E) &&
             "VariableExpression should have been handled already");

      EClass = NewClass;
      DEBUG(dbgs() << "Created new congruence class for " << *I
                   << " using expression " << *E << " at " << NewClass->getID()
                   << " and leader " << *(NewClass->getLeader()));
      if (NewClass->getStoredValue())
        DEBUG(dbgs() << " and stored value " << *(NewClass->getStoredValue()));
      DEBUG(dbgs() << "\n");
    } else {
      EClass = lookupResult.first->second;
      if (isa<ConstantExpression>(E))
        assert((isa<Constant>(EClass->getLeader()) ||
                (EClass->getStoredValue() &&
                 isa<Constant>(EClass->getStoredValue()))) &&
               "Any class with a constant expression should have a "
               "constant leader");

      assert(EClass && "Somehow don't have an eclass");

      assert(!EClass->isDead() && "We accidentally looked up a dead class");
    }
  }
  bool ClassChanged = IClass != EClass;
  bool LeaderChanged = LeaderChanges.erase(I);
  if (ClassChanged || LeaderChanged) {
    DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " << *E
                 << "\n");
    if (ClassChanged) {
      moveValueToNewCongruenceClass(I, E, IClass, EClass);
      markPhiOfOpsChanged(E);
    }

    markUsersTouched(I);
    if (MemoryAccess *MA = getMemoryAccess(I))
      markMemoryUsersTouched(MA);
    if (auto *CI = dyn_cast<CmpInst>(I))
      markPredicateUsersTouched(CI);
  }
  // If we changed the class of the store, we want to ensure nothing finds the
  // old store expression.  In particular, loads do not compare against stored
  // value, so they will find old store expressions (and associated class
  // mappings) if we leave them in the table.
  if (ClassChanged && isa<StoreInst>(I)) {
    auto *OldE = ValueToExpression.lookup(I);
    // It could just be that the old class died. We don't want to erase it if we
    // just moved classes.
    if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
      // Erase this as an exact expression to ensure we don't erase expressions
      // equivalent to it.
      auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
      if (Iter != ExpressionToClass.end())
        ExpressionToClass.erase(Iter);
    }
  }
  ValueToExpression[I] = E;
}

// Process the fact that Edge (from, to) is reachable, including marking
// any newly reachable blocks and instructions for processing.
void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
  // Check if the Edge was reachable before.
  if (ReachableEdges.insert({From, To}).second) {
    // If this block wasn't reachable before, all instructions are touched.
    if (ReachableBlocks.insert(To).second) {
      DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
      const auto &InstRange = BlockInstRange.lookup(To);
      TouchedInstructions.set(InstRange.first, InstRange.second);
    } else {
      DEBUG(dbgs() << "Block " << getBlockName(To)
                   << " was reachable, but new edge {" << getBlockName(From)
                   << "," << getBlockName(To) << "} to it found\n");

      // We've made an edge reachable to an existing block, which may
      // impact predicates. Otherwise, only mark the phi nodes as touched, as
      // they are the only thing that depend on new edges. Anything using their
      // values will get propagated to if necessary.
      if (MemoryAccess *MemPhi = getMemoryAccess(To))
        TouchedInstructions.set(InstrToDFSNum(MemPhi));

      auto BI = To->begin();
      while (isa<PHINode>(BI)) {
        TouchedInstructions.set(InstrToDFSNum(&*BI));
        ++BI;
      }
      for_each_found(PHIOfOpsPHIs, To, [&](const PHINode *I) {
        TouchedInstructions.set(InstrToDFSNum(I));
      });
    }
  }
}

// Given a predicate condition (from a switch, cmp, or whatever) and a block,
// see if we know some constant value for it already.
Value *NewGVN::findConditionEquivalence(Value *Cond) const {
  auto Result = lookupOperandLeader(Cond);
  return isa<Constant>(Result) ? Result : nullptr;
}

// Process the outgoing edges of a block for reachability.
void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
  // Evaluate reachability of terminator instruction.
  BranchInst *BR;
  if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
    Value *Cond = BR->getCondition();
    Value *CondEvaluated = findConditionEquivalence(Cond);
    if (!CondEvaluated) {
      if (auto *I = dyn_cast<Instruction>(Cond)) {
        const Expression *E = createExpression(I);
        if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
          CondEvaluated = CE->getConstantValue();
        }
      } else if (isa<ConstantInt>(Cond)) {
        CondEvaluated = Cond;
      }
    }
    ConstantInt *CI;
    BasicBlock *TrueSucc = BR->getSuccessor(0);
    BasicBlock *FalseSucc = BR->getSuccessor(1);
    if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
      if (CI->isOne()) {
        DEBUG(dbgs() << "Condition for Terminator " << *TI
                     << " evaluated to true\n");
        updateReachableEdge(B, TrueSucc);
      } else if (CI->isZero()) {
        DEBUG(dbgs() << "Condition for Terminator " << *TI
                     << " evaluated to false\n");
        updateReachableEdge(B, FalseSucc);
      }
    } else {
      updateReachableEdge(B, TrueSucc);
      updateReachableEdge(B, FalseSucc);
    }
  } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
    // For switches, propagate the case values into the case
    // destinations.

    // Remember how many outgoing edges there are to every successor.
    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;

    Value *SwitchCond = SI->getCondition();
    Value *CondEvaluated = findConditionEquivalence(SwitchCond);
    // See if we were able to turn this switch statement into a constant.
    if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
      auto *CondVal = cast<ConstantInt>(CondEvaluated);
      // We should be able to get case value for this.
      auto Case = *SI->findCaseValue(CondVal);
      if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
        // We proved the value is outside of the range of the case.
        // We can't do anything other than mark the default dest as reachable,
        // and go home.
        updateReachableEdge(B, SI->getDefaultDest());
        return;
      }
      // Now get where it goes and mark it reachable.
      BasicBlock *TargetBlock = Case.getCaseSuccessor();
      updateReachableEdge(B, TargetBlock);
    } else {
      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
        BasicBlock *TargetBlock = SI->getSuccessor(i);
        ++SwitchEdges[TargetBlock];
        updateReachableEdge(B, TargetBlock);
      }
    }
  } else {
    // Otherwise this is either unconditional, or a type we have no
    // idea about. Just mark successors as reachable.
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
      BasicBlock *TargetBlock = TI->getSuccessor(i);
      updateReachableEdge(B, TargetBlock);
    }

    // This also may be a memory defining terminator, in which case, set it
    // equivalent only to itself.
    //
    auto *MA = getMemoryAccess(TI);
    if (MA && !isa<MemoryUse>(MA)) {
      auto *CC = ensureLeaderOfMemoryClass(MA);
      if (setMemoryClass(MA, CC))
        markMemoryUsersTouched(MA);
    }
  }
}

void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
                         Instruction *ExistingValue) {
  InstrDFS[Op] = InstrToDFSNum(ExistingValue);
  AllTempInstructions.insert(Op);
  PHIOfOpsPHIs[BB].push_back(Op);
  TempToBlock[Op] = BB;
  RealToTemp[ExistingValue] = Op;
}

static bool okayForPHIOfOps(const Instruction *I) {
  return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
         isa<LoadInst>(I);
}

// When we see an instruction that is an op of phis, generate the equivalent phi
// of ops form.
const Expression *
NewGVN::makePossiblePhiOfOps(Instruction *I,
                             SmallPtrSetImpl<Value *> &Visited) {
  if (!okayForPHIOfOps(I))
    return nullptr;

  if (!Visited.insert(I).second)
    return nullptr;
  // For now, we require the instruction be cycle free because we don't
  // *always* create a phi of ops for instructions that could be done as phi
  // of ops, we only do it if we think it is useful.  If we did do it all the
  // time, we could remove the cycle free check.
  if (!isCycleFree(I))
    return nullptr;

  unsigned IDFSNum = InstrToDFSNum(I);
  SmallPtrSet<const Value *, 8> ProcessedPHIs;
  // TODO: We don't do phi translation on memory accesses because it's
  // complicated. For a load, we'd need to be able to simulate a new memoryuse,
  // which we don't have a good way of doing ATM.
  auto *MemAccess = getMemoryAccess(I);
  // If the memory operation is defined by a memory operation this block that
  // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
  // can't help, as it would still be killed by that memory operation.
  if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
      MemAccess->getDefiningAccess()->getBlock() == I->getParent())
    return nullptr;

  // Convert op of phis to phi of ops
  for (auto &Op : I->operands()) {
    // TODO: We can't handle expressions that must be recursively translated
    // IE
    // a = phi (b, c)
    // f = use a
    // g = f + phi of something
    // To properly make a phi of ops for g, we'd have to properly translate and
    // use the instruction for f.  We should add this by splitting out the
    // instruction creation we do below.
    if (isa<Instruction>(Op) && PHINodeUses.count(cast<Instruction>(Op)))
      return nullptr;
    if (!isa<PHINode>(Op))
      continue;
    auto *OpPHI = cast<PHINode>(Op);
    // No point in doing this for one-operand phis.
    if (OpPHI->getNumOperands() == 1)
      continue;
    if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
      return nullptr;
    SmallVector<std::pair<Value *, BasicBlock *>, 4> Ops;
    auto *PHIBlock = getBlockForValue(OpPHI);
    for (auto PredBB : OpPHI->blocks()) {
      Value *FoundVal = nullptr;
      // We could just skip unreachable edges entirely but it's tricky to do
      // with rewriting existing phi nodes.
      if (ReachableEdges.count({PredBB, PHIBlock})) {
        // Clone the instruction, create an expression from it, and see if we
        // have a leader.
        Instruction *ValueOp = I->clone();
        if (MemAccess)
          TempToMemory.insert({ValueOp, MemAccess});

        for (auto &Op : ValueOp->operands()) {
          Op = Op->DoPHITranslation(PHIBlock, PredBB);
          // When this operand changes, it could change whether there is a
          // leader for us or not.
          addAdditionalUsers(Op, I);
        }
        // Make sure it's marked as a temporary instruction.
        AllTempInstructions.insert(ValueOp);
        // and make sure anything that tries to add it's DFS number is
        // redirected to the instruction we are making a phi of ops
        // for.
        InstrDFS.insert({ValueOp, IDFSNum});
        const Expression *E = performSymbolicEvaluation(ValueOp, Visited);
        InstrDFS.erase(ValueOp);
        AllTempInstructions.erase(ValueOp);
        ValueOp->deleteValue();
        if (MemAccess)
          TempToMemory.erase(ValueOp);
        if (!E)
          return nullptr;
        FoundVal = findPhiOfOpsLeader(E, PredBB);
        if (!FoundVal) {
          ExpressionToPhiOfOps[E].insert(I);
          return nullptr;
        }
        if (auto *SI = dyn_cast<StoreInst>(FoundVal))
          FoundVal = SI->getValueOperand();
      } else {
        DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
                     << getBlockName(PredBB)
                     << " because the block is unreachable\n");
        FoundVal = UndefValue::get(I->getType());
      }

      Ops.push_back({FoundVal, PredBB});
      DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
                   << getBlockName(PredBB) << "\n");
    }
    auto *ValuePHI = RealToTemp.lookup(I);
    bool NewPHI = false;
    if (!ValuePHI) {
      ValuePHI = PHINode::Create(I->getType(), OpPHI->getNumOperands());
      addPhiOfOps(ValuePHI, PHIBlock, I);
      NewPHI = true;
      NumGVNPHIOfOpsCreated++;
    }
    if (NewPHI) {
      for (auto PHIOp : Ops)
        ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
    } else {
      unsigned int i = 0;
      for (auto PHIOp : Ops) {
        ValuePHI->setIncomingValue(i, PHIOp.first);
        ValuePHI->setIncomingBlock(i, PHIOp.second);
        ++i;
      }
    }

    DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
                 << "\n");
    return performSymbolicEvaluation(ValuePHI, Visited);
  }
  return nullptr;
}

// The algorithm initially places the values of the routine in the TOP
// congruence class. The leader of TOP is the undetermined value `undef`.
// When the algorithm has finished, values still in TOP are unreachable.
void NewGVN::initializeCongruenceClasses(Function &F) {
  NextCongruenceNum = 0;

  // Note that even though we use the live on entry def as a representative
  // MemoryAccess, it is *not* the same as the actual live on entry def. We
  // have no real equivalemnt to undef for MemoryAccesses, and so we really
  // should be checking whether the MemoryAccess is top if we want to know if it
  // is equivalent to everything.  Otherwise, what this really signifies is that
  // the access "it reaches all the way back to the beginning of the function"

  // Initialize all other instructions to be in TOP class.
  TOPClass = createCongruenceClass(nullptr, nullptr);
  TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
  //  The live on entry def gets put into it's own class
  MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
      createMemoryClass(MSSA->getLiveOnEntryDef());

  for (auto DTN : nodes(DT)) {
    BasicBlock *BB = DTN->getBlock();
    // All MemoryAccesses are equivalent to live on entry to start. They must
    // be initialized to something so that initial changes are noticed. For
    // the maximal answer, we initialize them all to be the same as
    // liveOnEntry.
    auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
    if (MemoryBlockDefs)
      for (const auto &Def : *MemoryBlockDefs) {
        MemoryAccessToClass[&Def] = TOPClass;
        auto *MD = dyn_cast<MemoryDef>(&Def);
        // Insert the memory phis into the member list.
        if (!MD) {
          const MemoryPhi *MP = cast<MemoryPhi>(&Def);
          TOPClass->memory_insert(MP);
          MemoryPhiState.insert({MP, MPS_TOP});
        }

        if (MD && isa<StoreInst>(MD->getMemoryInst()))
          TOPClass->incStoreCount();
      }
    for (auto &I : *BB) {
      // TODO: Move to helper
      if (isa<PHINode>(&I))
        for (auto *U : I.users())
          if (auto *UInst = dyn_cast<Instruction>(U))
            if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
              PHINodeUses.insert(UInst);
      // Don't insert void terminators into the class. We don't value number
      // them, and they just end up sitting in TOP.
      if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
        continue;
      TOPClass->insert(&I);
      ValueToClass[&I] = TOPClass;
    }
  }

  // Initialize arguments to be in their own unique congruence classes
  for (auto &FA : F.args())
    createSingletonCongruenceClass(&FA);
}

void NewGVN::cleanupTables() {
  for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
    DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
                 << " has " << CongruenceClasses[i]->size() << " members\n");
    // Make sure we delete the congruence class (probably worth switching to
    // a unique_ptr at some point.
    delete CongruenceClasses[i];
    CongruenceClasses[i] = nullptr;
  }

  // Destroy the value expressions
  SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
                                         AllTempInstructions.end());
  AllTempInstructions.clear();

  // We have to drop all references for everything first, so there are no uses
  // left as we delete them.
  for (auto *I : TempInst) {
    I->dropAllReferences();
  }

  while (!TempInst.empty()) {
    auto *I = TempInst.back();
    TempInst.pop_back();
    I->deleteValue();
  }

  ValueToClass.clear();
  ArgRecycler.clear(ExpressionAllocator);
  ExpressionAllocator.Reset();
  CongruenceClasses.clear();
  ExpressionToClass.clear();
  ValueToExpression.clear();
  RealToTemp.clear();
  AdditionalUsers.clear();
  ExpressionToPhiOfOps.clear();
  TempToBlock.clear();
  TempToMemory.clear();
  PHIOfOpsPHIs.clear();
  ReachableBlocks.clear();
  ReachableEdges.clear();
#ifndef NDEBUG
  ProcessedCount.clear();
#endif
  InstrDFS.clear();
  InstructionsToErase.clear();
  DFSToInstr.clear();
  BlockInstRange.clear();
  TouchedInstructions.clear();
  MemoryAccessToClass.clear();
  PredicateToUsers.clear();
  MemoryToUsers.clear();
}

// Assign local DFS number mapping to instructions, and leave space for Value
// PHI's.
std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
                                                       unsigned Start) {
  unsigned End = Start;
  if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
    InstrDFS[MemPhi] = End++;
    DFSToInstr.emplace_back(MemPhi);
  }

  // Then the real block goes next.
  for (auto &I : *B) {
    // There's no need to call isInstructionTriviallyDead more than once on
    // an instruction. Therefore, once we know that an instruction is dead
    // we change its DFS number so that it doesn't get value numbered.
    if (isInstructionTriviallyDead(&I, TLI)) {
      InstrDFS[&I] = 0;
      DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
      markInstructionForDeletion(&I);
      continue;
    }
    InstrDFS[&I] = End++;
    DFSToInstr.emplace_back(&I);
  }

  // All of the range functions taken half-open ranges (open on the end side).
  // So we do not subtract one from count, because at this point it is one
  // greater than the last instruction.
  return std::make_pair(Start, End);
}

void NewGVN::updateProcessedCount(const Value *V) {
#ifndef NDEBUG
  if (ProcessedCount.count(V) == 0) {
    ProcessedCount.insert({V, 1});
  } else {
    ++ProcessedCount[V];
    assert(ProcessedCount[V] < 100 &&
           "Seem to have processed the same Value a lot");
  }
#endif
}
// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
  // If all the arguments are the same, the MemoryPhi has the same value as the
  // argument.  Filter out unreachable blocks and self phis from our operands.
  // TODO: We could do cycle-checking on the memory phis to allow valueizing for
  // self-phi checking.
  const BasicBlock *PHIBlock = MP->getBlock();
  auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
    return cast<MemoryAccess>(U) != MP &&
           !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
           ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
  });
  // If all that is left is nothing, our memoryphi is undef. We keep it as
  // InitialClass.  Note: The only case this should happen is if we have at
  // least one self-argument.
  if (Filtered.begin() == Filtered.end()) {
    if (setMemoryClass(MP, TOPClass))
      markMemoryUsersTouched(MP);
    return;
  }

  // Transform the remaining operands into operand leaders.
  // FIXME: mapped_iterator should have a range version.
  auto LookupFunc = [&](const Use &U) {
    return lookupMemoryLeader(cast<MemoryAccess>(U));
  };
  auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
  auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);

  // and now check if all the elements are equal.
  // Sadly, we can't use std::equals since these are random access iterators.
  const auto *AllSameValue = *MappedBegin;
  ++MappedBegin;
  bool AllEqual = std::all_of(
      MappedBegin, MappedEnd,
      [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });

  if (AllEqual)
    DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
  else
    DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
  // If it's equal to something, it's in that class. Otherwise, it has to be in
  // a class where it is the leader (other things may be equivalent to it, but
  // it needs to start off in its own class, which means it must have been the
  // leader, and it can't have stopped being the leader because it was never
  // removed).
  CongruenceClass *CC =
      AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
  auto OldState = MemoryPhiState.lookup(MP);
  assert(OldState != MPS_Invalid && "Invalid memory phi state");
  auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
  MemoryPhiState[MP] = NewState;
  if (setMemoryClass(MP, CC) || OldState != NewState)
    markMemoryUsersTouched(MP);
}

// Value number a single instruction, symbolically evaluating, performing
// congruence finding, and updating mappings.
void NewGVN::valueNumberInstruction(Instruction *I) {
  DEBUG(dbgs() << "Processing instruction " << *I << "\n");
  if (!I->isTerminator()) {
    const Expression *Symbolized = nullptr;
    SmallPtrSet<Value *, 2> Visited;
    if (DebugCounter::shouldExecute(VNCounter)) {
      Symbolized = performSymbolicEvaluation(I, Visited);
      // Make a phi of ops if necessary
      if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
          !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
        auto *PHIE = makePossiblePhiOfOps(I, Visited);
        if (PHIE)
          Symbolized = PHIE;
      }

    } else {
      // Mark the instruction as unused so we don't value number it again.
      InstrDFS[I] = 0;
    }
    // If we couldn't come up with a symbolic expression, use the unknown
    // expression
    if (Symbolized == nullptr)
      Symbolized = createUnknownExpression(I);
    performCongruenceFinding(I, Symbolized);
  } else {
    // Handle terminators that return values. All of them produce values we
    // don't currently understand.  We don't place non-value producing
    // terminators in a class.
    if (!I->getType()->isVoidTy()) {
      auto *Symbolized = createUnknownExpression(I);
      performCongruenceFinding(I, Symbolized);
    }
    processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
  }
}

// Check if there is a path, using single or equal argument phi nodes, from
// First to Second.
bool NewGVN::singleReachablePHIPath(
    SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
    const MemoryAccess *Second) const {
  if (First == Second)
    return true;
  if (MSSA->isLiveOnEntryDef(First))
    return false;

  // This is not perfect, but as we're just verifying here, we can live with
  // the loss of precision. The real solution would be that of doing strongly
  // connected component finding in this routine, and it's probably not worth
  // the complexity for the time being. So, we just keep a set of visited
  // MemoryAccess and return true when we hit a cycle.
  if (Visited.count(First))
    return true;
  Visited.insert(First);

  const auto *EndDef = First;
  for (auto *ChainDef : optimized_def_chain(First)) {
    if (ChainDef == Second)
      return true;
    if (MSSA->isLiveOnEntryDef(ChainDef))
      return false;
    EndDef = ChainDef;
  }
  auto *MP = cast<MemoryPhi>(EndDef);
  auto ReachableOperandPred = [&](const Use &U) {
    return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
  };
  auto FilteredPhiArgs =
      make_filter_range(MP->operands(), ReachableOperandPred);
  SmallVector<const Value *, 32> OperandList;
  std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
            std::back_inserter(OperandList));
  bool Okay = OperandList.size() == 1;
  if (!Okay)
    Okay =
        std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
  if (Okay)
    return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
                                  Second);
  return false;
}

// Verify the that the memory equivalence table makes sense relative to the
// congruence classes.  Note that this checking is not perfect, and is currently
// subject to very rare false negatives. It is only useful for
// testing/debugging.
void NewGVN::verifyMemoryCongruency() const {
#ifndef NDEBUG
  // Verify that the memory table equivalence and memory member set match
  for (const auto *CC : CongruenceClasses) {
    if (CC == TOPClass || CC->isDead())
      continue;
    if (CC->getStoreCount() != 0) {
      assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
             "Any class with a store as a leader should have a "
             "representative stored value");
      assert(CC->getMemoryLeader() &&
             "Any congruence class with a store should have a "
             "representative access");
    }

    if (CC->getMemoryLeader())
      assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
             "Representative MemoryAccess does not appear to be reverse "
             "mapped properly");
    for (auto M : CC->memory())
      assert(MemoryAccessToClass.lookup(M) == CC &&
             "Memory member does not appear to be reverse mapped properly");
  }

  // Anything equivalent in the MemoryAccess table should be in the same
  // congruence class.

  // Filter out the unreachable and trivially dead entries, because they may
  // never have been updated if the instructions were not processed.
  auto ReachableAccessPred =
      [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
        bool Result = ReachableBlocks.count(Pair.first->getBlock());
        if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
            MemoryToDFSNum(Pair.first) == 0)
          return false;
        if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
          return !isInstructionTriviallyDead(MemDef->getMemoryInst());

        // We could have phi nodes which operands are all trivially dead,
        // so we don't process them.
        if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
          for (auto &U : MemPHI->incoming_values()) {
            if (Instruction *I = dyn_cast<Instruction>(U.get())) {
              if (!isInstructionTriviallyDead(I))
                return true;
            }
          }
          return false;
        }

        return true;
      };

  auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
  for (auto KV : Filtered) {
    if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
      auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
      if (FirstMUD && SecondMUD) {
        SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
        assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
                ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
                    ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
               "The instructions for these memory operations should have "
               "been in the same congruence class or reachable through"
               "a single argument phi");
      }
    } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
      // We can only sanely verify that MemoryDefs in the operand list all have
      // the same class.
      auto ReachableOperandPred = [&](const Use &U) {
        return ReachableEdges.count(
                   {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
               isa<MemoryDef>(U);

      };
      // All arguments should in the same class, ignoring unreachable arguments
      auto FilteredPhiArgs =
          make_filter_range(FirstMP->operands(), ReachableOperandPred);
      SmallVector<const CongruenceClass *, 16> PhiOpClasses;
      std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
                     std::back_inserter(PhiOpClasses), [&](const Use &U) {
                       const MemoryDef *MD = cast<MemoryDef>(U);
                       return ValueToClass.lookup(MD->getMemoryInst());
                     });
      assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
                        PhiOpClasses.begin()) &&
             "All MemoryPhi arguments should be in the same class");
    }
  }
#endif
}

// Verify that the sparse propagation we did actually found the maximal fixpoint
// We do this by storing the value to class mapping, touching all instructions,
// and redoing the iteration to see if anything changed.
void NewGVN::verifyIterationSettled(Function &F) {
#ifndef NDEBUG
  DEBUG(dbgs() << "Beginning iteration verification\n");
  if (DebugCounter::isCounterSet(VNCounter))
    DebugCounter::setCounterValue(VNCounter, StartingVNCounter);

  // Note that we have to store the actual classes, as we may change existing
  // classes during iteration.  This is because our memory iteration propagation
  // is not perfect, and so may waste a little work.  But it should generate
  // exactly the same congruence classes we have now, with different IDs.
  std::map<const Value *, CongruenceClass> BeforeIteration;

  for (auto &KV : ValueToClass) {
    if (auto *I = dyn_cast<Instruction>(KV.first))
      // Skip unused/dead instructions.
      if (InstrToDFSNum(I) == 0)
        continue;
    BeforeIteration.insert({KV.first, *KV.second});
  }

  TouchedInstructions.set();
  TouchedInstructions.reset(0);
  iterateTouchedInstructions();
  DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
      EqualClasses;
  for (const auto &KV : ValueToClass) {
    if (auto *I = dyn_cast<Instruction>(KV.first))
      // Skip unused/dead instructions.
      if (InstrToDFSNum(I) == 0)
        continue;
    // We could sink these uses, but i think this adds a bit of clarity here as
    // to what we are comparing.
    auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
    auto *AfterCC = KV.second;
    // Note that the classes can't change at this point, so we memoize the set
    // that are equal.
    if (!EqualClasses.count({BeforeCC, AfterCC})) {
      assert(BeforeCC->isEquivalentTo(AfterCC) &&
             "Value number changed after main loop completed!");
      EqualClasses.insert({BeforeCC, AfterCC});
    }
  }
#endif
}

// Verify that for each store expression in the expression to class mapping,
// only the latest appears, and multiple ones do not appear.
// Because loads do not use the stored value when doing equality with stores,
// if we don't erase the old store expressions from the table, a load can find
// a no-longer valid StoreExpression.
void NewGVN::verifyStoreExpressions() const {
#ifndef NDEBUG
  // This is the only use of this, and it's not worth defining a complicated
  // densemapinfo hash/equality function for it.
  std::set<
      std::pair<const Value *,
                std::tuple<const Value *, const CongruenceClass *, Value *>>>
      StoreExpressionSet;
  for (const auto &KV : ExpressionToClass) {
    if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
      // Make sure a version that will conflict with loads is not already there
      auto Res = StoreExpressionSet.insert(
          {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
                                              SE->getStoredValue())});
      bool Okay = Res.second;
      // It's okay to have the same expression already in there if it is
      // identical in nature.
      // This can happen when the leader of the stored value changes over time.
      if (!Okay)
        Okay = (std::get<1>(Res.first->second) == KV.second) &&
               (lookupOperandLeader(std::get<2>(Res.first->second)) ==
                lookupOperandLeader(SE->getStoredValue()));
      assert(Okay && "Stored expression conflict exists in expression table");
      auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
      assert(ValueExpr && ValueExpr->equals(*SE) &&
             "StoreExpression in ExpressionToClass is not latest "
             "StoreExpression for value");
    }
  }
#endif
}

// This is the main value numbering loop, it iterates over the initial touched
// instruction set, propagating value numbers, marking things touched, etc,
// until the set of touched instructions is completely empty.
void NewGVN::iterateTouchedInstructions() {
  unsigned int Iterations = 0;
  // Figure out where touchedinstructions starts
  int FirstInstr = TouchedInstructions.find_first();
  // Nothing set, nothing to iterate, just return.
  if (FirstInstr == -1)
    return;
  const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
  while (TouchedInstructions.any()) {
    ++Iterations;
    // Walk through all the instructions in all the blocks in RPO.
    // TODO: As we hit a new block, we should push and pop equalities into a
    // table lookupOperandLeader can use, to catch things PredicateInfo
    // might miss, like edge-only equivalences.
    for (unsigned InstrNum : TouchedInstructions.set_bits()) {

      // This instruction was found to be dead. We don't bother looking
      // at it again.
      if (InstrNum == 0) {
        TouchedInstructions.reset(InstrNum);
        continue;
      }

      Value *V = InstrFromDFSNum(InstrNum);
      const BasicBlock *CurrBlock = getBlockForValue(V);

      // If we hit a new block, do reachability processing.
      if (CurrBlock != LastBlock) {
        LastBlock = CurrBlock;
        bool BlockReachable = ReachableBlocks.count(CurrBlock);
        const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);

        // If it's not reachable, erase any touched instructions and move on.
        if (!BlockReachable) {
          TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
          DEBUG(dbgs() << "Skipping instructions in block "
                       << getBlockName(CurrBlock)
                       << " because it is unreachable\n");
          continue;
        }
        updateProcessedCount(CurrBlock);
      }
      // Reset after processing (because we may mark ourselves as touched when
      // we propagate equalities).
      TouchedInstructions.reset(InstrNum);

      if (auto *MP = dyn_cast<MemoryPhi>(V)) {
        DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
        valueNumberMemoryPhi(MP);
      } else if (auto *I = dyn_cast<Instruction>(V)) {
        valueNumberInstruction(I);
      } else {
        llvm_unreachable("Should have been a MemoryPhi or Instruction");
      }
      updateProcessedCount(V);
    }
  }
  NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
}

// This is the main transformation entry point.
bool NewGVN::runGVN() {
  if (DebugCounter::isCounterSet(VNCounter))
    StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
  bool Changed = false;
  NumFuncArgs = F.arg_size();
  MSSAWalker = MSSA->getWalker();
  SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();

  // Count number of instructions for sizing of hash tables, and come
  // up with a global dfs numbering for instructions.
  unsigned ICount = 1;
  // Add an empty instruction to account for the fact that we start at 1
  DFSToInstr.emplace_back(nullptr);
  // Note: We want ideal RPO traversal of the blocks, which is not quite the
  // same as dominator tree order, particularly with regard whether backedges
  // get visited first or second, given a block with multiple successors.
  // If we visit in the wrong order, we will end up performing N times as many
  // iterations.
  // The dominator tree does guarantee that, for a given dom tree node, it's
  // parent must occur before it in the RPO ordering. Thus, we only need to sort
  // the siblings.
  ReversePostOrderTraversal<Function *> RPOT(&F);
  unsigned Counter = 0;
  for (auto &B : RPOT) {
    auto *Node = DT->getNode(B);
    assert(Node && "RPO and Dominator tree should have same reachability");
    RPOOrdering[Node] = ++Counter;
  }
  // Sort dominator tree children arrays into RPO.
  for (auto &B : RPOT) {
    auto *Node = DT->getNode(B);
    if (Node->getChildren().size() > 1)
      std::sort(Node->begin(), Node->end(),
                [&](const DomTreeNode *A, const DomTreeNode *B) {
                  return RPOOrdering[A] < RPOOrdering[B];
                });
  }

  // Now a standard depth first ordering of the domtree is equivalent to RPO.
  for (auto DTN : depth_first(DT->getRootNode())) {
    BasicBlock *B = DTN->getBlock();
    const auto &BlockRange = assignDFSNumbers(B, ICount);
    BlockInstRange.insert({B, BlockRange});
    ICount += BlockRange.second - BlockRange.first;
  }
  initializeCongruenceClasses(F);

  TouchedInstructions.resize(ICount);
  // Ensure we don't end up resizing the expressionToClass map, as
  // that can be quite expensive. At most, we have one expression per
  // instruction.
  ExpressionToClass.reserve(ICount);

  // Initialize the touched instructions to include the entry block.
  const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
  TouchedInstructions.set(InstRange.first, InstRange.second);
  DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
               << " marked reachable\n");
  ReachableBlocks.insert(&F.getEntryBlock());

  iterateTouchedInstructions();
  verifyMemoryCongruency();
  verifyIterationSettled(F);
  verifyStoreExpressions();

  Changed |= eliminateInstructions(F);

  // Delete all instructions marked for deletion.
  for (Instruction *ToErase : InstructionsToErase) {
    if (!ToErase->use_empty())
      ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));

    if (ToErase->getParent())
      ToErase->eraseFromParent();
  }

  // Delete all unreachable blocks.
  auto UnreachableBlockPred = [&](const BasicBlock &BB) {
    return !ReachableBlocks.count(&BB);
  };

  for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
    DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
                 << " is unreachable\n");
    deleteInstructionsInBlock(&BB);
    Changed = true;
  }

  cleanupTables();
  return Changed;
}

struct NewGVN::ValueDFS {
  int DFSIn = 0;
  int DFSOut = 0;
  int LocalNum = 0;
  // Only one of Def and U will be set.
  // The bool in the Def tells us whether the Def is the stored value of a
  // store.
  PointerIntPair<Value *, 1, bool> Def;
  Use *U = nullptr;
  bool operator<(const ValueDFS &Other) const {
    // It's not enough that any given field be less than - we have sets
    // of fields that need to be evaluated together to give a proper ordering.
    // For example, if you have;
    // DFS (1, 3)
    // Val 0
    // DFS (1, 2)
    // Val 50
    // We want the second to be less than the first, but if we just go field
    // by field, we will get to Val 0 < Val 50 and say the first is less than
    // the second. We only want it to be less than if the DFS orders are equal.
    //
    // Each LLVM instruction only produces one value, and thus the lowest-level
    // differentiator that really matters for the stack (and what we use as as a
    // replacement) is the local dfs number.
    // Everything else in the structure is instruction level, and only affects
    // the order in which we will replace operands of a given instruction.
    //
    // For a given instruction (IE things with equal dfsin, dfsout, localnum),
    // the order of replacement of uses does not matter.
    // IE given,
    //  a = 5
    //  b = a + a
    // When you hit b, you will have two valuedfs with the same dfsin, out, and
    // localnum.
    // The .val will be the same as well.
    // The .u's will be different.
    // You will replace both, and it does not matter what order you replace them
    // in (IE whether you replace operand 2, then operand 1, or operand 1, then
    // operand 2).
    // Similarly for the case of same dfsin, dfsout, localnum, but different
    // .val's
    //  a = 5
    //  b  = 6
    //  c = a + b
    // in c, we will a valuedfs for a, and one for b,with everything the same
    // but .val  and .u.
    // It does not matter what order we replace these operands in.
    // You will always end up with the same IR, and this is guaranteed.
    return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
           std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
                    Other.U);
  }
};

// This function converts the set of members for a congruence class from values,
// to sets of defs and uses with associated DFS info.  The total number of
// reachable uses for each value is stored in UseCount, and instructions that
// seem
// dead (have no non-dead uses) are stored in ProbablyDead.
void NewGVN::convertClassToDFSOrdered(
    const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
    DenseMap<const Value *, unsigned int> &UseCounts,
    SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
  for (auto D : Dense) {
    // First add the value.
    BasicBlock *BB = getBlockForValue(D);
    // Constants are handled prior to ever calling this function, so
    // we should only be left with instructions as members.
    assert(BB && "Should have figured out a basic block for value");
    ValueDFS VDDef;
    DomTreeNode *DomNode = DT->getNode(BB);
    VDDef.DFSIn = DomNode->getDFSNumIn();
    VDDef.DFSOut = DomNode->getDFSNumOut();
    // If it's a store, use the leader of the value operand, if it's always
    // available, or the value operand.  TODO: We could do dominance checks to
    // find a dominating leader, but not worth it ATM.
    if (auto *SI = dyn_cast<StoreInst>(D)) {
      auto Leader = lookupOperandLeader(SI->getValueOperand());
      if (alwaysAvailable(Leader)) {
        VDDef.Def.setPointer(Leader);
      } else {
        VDDef.Def.setPointer(SI->getValueOperand());
        VDDef.Def.setInt(true);
      }
    } else {
      VDDef.Def.setPointer(D);
    }
    assert(isa<Instruction>(D) &&
           "The dense set member should always be an instruction");
    Instruction *Def = cast<Instruction>(D);
    VDDef.LocalNum = InstrToDFSNum(D);
    DFSOrderedSet.push_back(VDDef);
    // If there is a phi node equivalent, add it
    if (auto *PN = RealToTemp.lookup(Def)) {
      auto *PHIE =
          dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
      if (PHIE) {
        VDDef.Def.setInt(false);
        VDDef.Def.setPointer(PN);
        VDDef.LocalNum = 0;
        DFSOrderedSet.push_back(VDDef);
      }
    }

    unsigned int UseCount = 0;
    // Now add the uses.
    for (auto &U : Def->uses()) {
      if (auto *I = dyn_cast<Instruction>(U.getUser())) {
        // Don't try to replace into dead uses
        if (InstructionsToErase.count(I))
          continue;
        ValueDFS VDUse;
        // Put the phi node uses in the incoming block.
        BasicBlock *IBlock;
        if (auto *P = dyn_cast<PHINode>(I)) {
          IBlock = P->getIncomingBlock(U);
          // Make phi node users appear last in the incoming block
          // they are from.
          VDUse.LocalNum = InstrDFS.size() + 1;
        } else {
          IBlock = getBlockForValue(I);
          VDUse.LocalNum = InstrToDFSNum(I);
        }

        // Skip uses in unreachable blocks, as we're going
        // to delete them.
        if (ReachableBlocks.count(IBlock) == 0)
          continue;

        DomTreeNode *DomNode = DT->getNode(IBlock);
        VDUse.DFSIn = DomNode->getDFSNumIn();
        VDUse.DFSOut = DomNode->getDFSNumOut();
        VDUse.U = &U;
        ++UseCount;
        DFSOrderedSet.emplace_back(VDUse);
      }
    }

    // If there are no uses, it's probably dead (but it may have side-effects,
    // so not definitely dead. Otherwise, store the number of uses so we can
    // track if it becomes dead later).
    if (UseCount == 0)
      ProbablyDead.insert(Def);
    else
      UseCounts[Def] = UseCount;
  }
}

// This function converts the set of members for a congruence class from values,
// to the set of defs for loads and stores, with associated DFS info.
void NewGVN::convertClassToLoadsAndStores(
    const CongruenceClass &Dense,
    SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
  for (auto D : Dense) {
    if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
      continue;

    BasicBlock *BB = getBlockForValue(D);
    ValueDFS VD;
    DomTreeNode *DomNode = DT->getNode(BB);
    VD.DFSIn = DomNode->getDFSNumIn();
    VD.DFSOut = DomNode->getDFSNumOut();
    VD.Def.setPointer(D);

    // If it's an instruction, use the real local dfs number.
    if (auto *I = dyn_cast<Instruction>(D))
      VD.LocalNum = InstrToDFSNum(I);
    else
      llvm_unreachable("Should have been an instruction");

    LoadsAndStores.emplace_back(VD);
  }
}

static void patchReplacementInstruction(Instruction *I, Value *Repl) {
  auto *ReplInst = dyn_cast<Instruction>(Repl);
  if (!ReplInst)
    return;

  // Patch the replacement so that it is not more restrictive than the value
  // being replaced.
  // Note that if 'I' is a load being replaced by some operation,
  // for example, by an arithmetic operation, then andIRFlags()
  // would just erase all math flags from the original arithmetic
  // operation, which is clearly not wanted and not needed.
  if (!isa<LoadInst>(I))
    ReplInst->andIRFlags(I);

  // FIXME: If both the original and replacement value are part of the
  // same control-flow region (meaning that the execution of one
  // guarantees the execution of the other), then we can combine the
  // noalias scopes here and do better than the general conservative
  // answer used in combineMetadata().

  // In general, GVN unifies expressions over different control-flow
  // regions, and so we need a conservative combination of the noalias
  // scopes.
  static const unsigned KnownIDs[] = {
      LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
      LLVMContext::MD_noalias,        LLVMContext::MD_range,
      LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
      LLVMContext::MD_invariant_group};
  combineMetadata(ReplInst, I, KnownIDs);
}

static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
  patchReplacementInstruction(I, Repl);
  I->replaceAllUsesWith(Repl);
}

void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
  ++NumGVNBlocksDeleted;

  // Delete the instructions backwards, as it has a reduced likelihood of having
  // to update as many def-use and use-def chains. Start after the terminator.
  auto StartPoint = BB->rbegin();
  ++StartPoint;
  // Note that we explicitly recalculate BB->rend() on each iteration,
  // as it may change when we remove the first instruction.
  for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
    Instruction &Inst = *I++;
    if (!Inst.use_empty())
      Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
    if (isa<LandingPadInst>(Inst))
      continue;

    Inst.eraseFromParent();
    ++NumGVNInstrDeleted;
  }
  // Now insert something that simplifycfg will turn into an unreachable.
  Type *Int8Ty = Type::getInt8Ty(BB->getContext());
  new StoreInst(UndefValue::get(Int8Ty),
                Constant::getNullValue(Int8Ty->getPointerTo()),
                BB->getTerminator());
}

void NewGVN::markInstructionForDeletion(Instruction *I) {
  DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
  InstructionsToErase.insert(I);
}

void NewGVN::replaceInstruction(Instruction *I, Value *V) {

  DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
  patchAndReplaceAllUsesWith(I, V);
  // We save the actual erasing to avoid invalidating memory
  // dependencies until we are done with everything.
  markInstructionForDeletion(I);
}

namespace {

// This is a stack that contains both the value and dfs info of where
// that value is valid.
class ValueDFSStack {
public:
  Value *back() const { return ValueStack.back(); }
  std::pair<int, int> dfs_back() const { return DFSStack.back(); }

  void push_back(Value *V, int DFSIn, int DFSOut) {
    ValueStack.emplace_back(V);
    DFSStack.emplace_back(DFSIn, DFSOut);
  }
  bool empty() const { return DFSStack.empty(); }
  bool isInScope(int DFSIn, int DFSOut) const {
    if (empty())
      return false;
    return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
  }

  void popUntilDFSScope(int DFSIn, int DFSOut) {

    // These two should always be in sync at this point.
    assert(ValueStack.size() == DFSStack.size() &&
           "Mismatch between ValueStack and DFSStack");
    while (
        !DFSStack.empty() &&
        !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
      DFSStack.pop_back();
      ValueStack.pop_back();
    }
  }

private:
  SmallVector<Value *, 8> ValueStack;
  SmallVector<std::pair<int, int>, 8> DFSStack;
};
}

// Given a value and a basic block we are trying to see if it is available in,
// see if the value has a leader available in that block.
Value *NewGVN::findPhiOfOpsLeader(const Expression *E,
                                  const BasicBlock *BB) const {
  // It would already be constant if we could make it constant
  if (auto *CE = dyn_cast<ConstantExpression>(E))
    return CE->getConstantValue();
  if (auto *VE = dyn_cast<VariableExpression>(E))
    return VE->getVariableValue();

  auto *CC = ExpressionToClass.lookup(E);
  if (!CC)
    return nullptr;
  if (alwaysAvailable(CC->getLeader()))
    return CC->getLeader();

  for (auto Member : *CC) {
    auto *MemberInst = dyn_cast<Instruction>(Member);
    // Anything that isn't an instruction is always available.
    if (!MemberInst)
      return Member;
    // If we are looking for something in the same block as the member, it must
    // be a leader because this function is looking for operands for a phi node.
    if (MemberInst->getParent() == BB ||
        DT->dominates(MemberInst->getParent(), BB)) {
      return Member;
    }
  }
  return nullptr;
}

bool NewGVN::eliminateInstructions(Function &F) {
  // This is a non-standard eliminator. The normal way to eliminate is
  // to walk the dominator tree in order, keeping track of available
  // values, and eliminating them.  However, this is mildly
  // pointless. It requires doing lookups on every instruction,
  // regardless of whether we will ever eliminate it.  For
  // instructions part of most singleton congruence classes, we know we
  // will never eliminate them.

  // Instead, this eliminator looks at the congruence classes directly, sorts
  // them into a DFS ordering of the dominator tree, and then we just
  // perform elimination straight on the sets by walking the congruence
  // class member uses in order, and eliminate the ones dominated by the
  // last member.   This is worst case O(E log E) where E = number of
  // instructions in a single congruence class.  In theory, this is all
  // instructions.   In practice, it is much faster, as most instructions are
  // either in singleton congruence classes or can't possibly be eliminated
  // anyway (if there are no overlapping DFS ranges in class).
  // When we find something not dominated, it becomes the new leader
  // for elimination purposes.
  // TODO: If we wanted to be faster, We could remove any members with no
  // overlapping ranges while sorting, as we will never eliminate anything
  // with those members, as they don't dominate anything else in our set.

  bool AnythingReplaced = false;

  // Since we are going to walk the domtree anyway, and we can't guarantee the
  // DFS numbers are updated, we compute some ourselves.
  DT->updateDFSNumbers();

  // Go through all of our phi nodes, and kill the arguments associated with
  // unreachable edges.
  auto ReplaceUnreachablePHIArgs = [&](PHINode &PHI, BasicBlock *BB) {
    for (auto &Operand : PHI.incoming_values())
      if (!ReachableEdges.count({PHI.getIncomingBlock(Operand), BB})) {
        DEBUG(dbgs() << "Replacing incoming value of " << PHI << " for block "
                     << getBlockName(PHI.getIncomingBlock(Operand))
                     << " with undef due to it being unreachable\n");
        Operand.set(UndefValue::get(PHI.getType()));
      }
  };
  SmallPtrSet<BasicBlock *, 8> BlocksWithPhis;
  for (auto &B : F)
    if ((!B.empty() && isa<PHINode>(*B.begin())) ||
        (PHIOfOpsPHIs.find(&B) != PHIOfOpsPHIs.end()))
      BlocksWithPhis.insert(&B);
  DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
  for (auto KV : ReachableEdges)
    ReachablePredCount[KV.getEnd()]++;
  for (auto *BB : BlocksWithPhis)
    // TODO: It would be faster to use getNumIncomingBlocks() on a phi node in
    // the block and subtract the pred count, but it's more complicated.
    if (ReachablePredCount.lookup(BB) !=
        unsigned(std::distance(pred_begin(BB), pred_end(BB)))) {
      for (auto II = BB->begin(); isa<PHINode>(II); ++II) {
        auto &PHI = cast<PHINode>(*II);
        ReplaceUnreachablePHIArgs(PHI, BB);
      }
      for_each_found(PHIOfOpsPHIs, BB, [&](PHINode *PHI) {
        ReplaceUnreachablePHIArgs(*PHI, BB);
      });
    }

  // Map to store the use counts
  DenseMap<const Value *, unsigned int> UseCounts;
  for (auto *CC : reverse(CongruenceClasses)) {
    DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() << "\n");
    // Track the equivalent store info so we can decide whether to try
    // dead store elimination.
    SmallVector<ValueDFS, 8> PossibleDeadStores;
    SmallPtrSet<Instruction *, 8> ProbablyDead;
    if (CC->isDead() || CC->empty())
      continue;
    // Everything still in the TOP class is unreachable or dead.
    if (CC == TOPClass) {
      for (auto M : *CC) {
        auto *VTE = ValueToExpression.lookup(M);
        if (VTE && isa<DeadExpression>(VTE))
          markInstructionForDeletion(cast<Instruction>(M));
        assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
                InstructionsToErase.count(cast<Instruction>(M))) &&
               "Everything in TOP should be unreachable or dead at this "
               "point");
      }
      continue;
    }

    assert(CC->getLeader() && "We should have had a leader");
    // If this is a leader that is always available, and it's a
    // constant or has no equivalences, just replace everything with
    // it. We then update the congruence class with whatever members
    // are left.
    Value *Leader =
        CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
    if (alwaysAvailable(Leader)) {
      CongruenceClass::MemberSet MembersLeft;
      for (auto M : *CC) {
        Value *Member = M;
        // Void things have no uses we can replace.
        if (Member == Leader || !isa<Instruction>(Member) ||
            Member->getType()->isVoidTy()) {
          MembersLeft.insert(Member);
          continue;
        }
        DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Member
                     << "\n");
        auto *I = cast<Instruction>(Member);
        assert(Leader != I && "About to accidentally remove our leader");
        replaceInstruction(I, Leader);
        AnythingReplaced = true;
      }
      CC->swap(MembersLeft);
    } else {
      // If this is a singleton, we can skip it.
      if (CC->size() != 1 || RealToTemp.lookup(Leader)) {
        // This is a stack because equality replacement/etc may place
        // constants in the middle of the member list, and we want to use
        // those constant values in preference to the current leader, over
        // the scope of those constants.
        ValueDFSStack EliminationStack;

        // Convert the members to DFS ordered sets and then merge them.
        SmallVector<ValueDFS, 8> DFSOrderedSet;
        convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);

        // Sort the whole thing.
        std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
        for (auto &VD : DFSOrderedSet) {
          int MemberDFSIn = VD.DFSIn;
          int MemberDFSOut = VD.DFSOut;
          Value *Def = VD.Def.getPointer();
          bool FromStore = VD.Def.getInt();
          Use *U = VD.U;
          // We ignore void things because we can't get a value from them.
          if (Def && Def->getType()->isVoidTy())
            continue;
          auto *DefInst = dyn_cast_or_null<Instruction>(Def);
          if (DefInst && AllTempInstructions.count(DefInst)) {
            auto *PN = cast<PHINode>(DefInst);

            // If this is a value phi and that's the expression we used, insert
            // it into the program
            // remove from temp instruction list.
            AllTempInstructions.erase(PN);
            auto *DefBlock = getBlockForValue(Def);
            DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
                         << " into block "
                         << getBlockName(getBlockForValue(Def)) << "\n");
            PN->insertBefore(&DefBlock->front());
            Def = PN;
            NumGVNPHIOfOpsEliminations++;
          }

          if (EliminationStack.empty()) {
            DEBUG(dbgs() << "Elimination Stack is empty\n");
          } else {
            DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
                         << EliminationStack.dfs_back().first << ","
                         << EliminationStack.dfs_back().second << ")\n");
          }

          DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
                       << MemberDFSOut << ")\n");
          // First, we see if we are out of scope or empty.  If so,
          // and there equivalences, we try to replace the top of
          // stack with equivalences (if it's on the stack, it must
          // not have been eliminated yet).
          // Then we synchronize to our current scope, by
          // popping until we are back within a DFS scope that
          // dominates the current member.
          // Then, what happens depends on a few factors
          // If the stack is now empty, we need to push
          // If we have a constant or a local equivalence we want to
          // start using, we also push.
          // Otherwise, we walk along, processing members who are
          // dominated by this scope, and eliminate them.
          bool ShouldPush = Def && EliminationStack.empty();
          bool OutOfScope =
              !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);

          if (OutOfScope || ShouldPush) {
            // Sync to our current scope.
            EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
            bool ShouldPush = Def && EliminationStack.empty();
            if (ShouldPush) {
              EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
            }
          }

          // Skip the Def's, we only want to eliminate on their uses.  But mark
          // dominated defs as dead.
          if (Def) {
            // For anything in this case, what and how we value number
            // guarantees that any side-effets that would have occurred (ie
            // throwing, etc) can be proven to either still occur (because it's
            // dominated by something that has the same side-effects), or never
            // occur.  Otherwise, we would not have been able to prove it value
            // equivalent to something else. For these things, we can just mark
            // it all dead.  Note that this is different from the "ProbablyDead"
            // set, which may not be dominated by anything, and thus, are only
            // easy to prove dead if they are also side-effect free. Note that
            // because stores are put in terms of the stored value, we skip
            // stored values here. If the stored value is really dead, it will
            // still be marked for deletion when we process it in its own class.
            if (!EliminationStack.empty() && Def != EliminationStack.back() &&
                isa<Instruction>(Def) && !FromStore)
              markInstructionForDeletion(cast<Instruction>(Def));
            continue;
          }
          // At this point, we know it is a Use we are trying to possibly
          // replace.

          assert(isa<Instruction>(U->get()) &&
                 "Current def should have been an instruction");
          assert(isa<Instruction>(U->getUser()) &&
                 "Current user should have been an instruction");

          // If the thing we are replacing into is already marked to be dead,
          // this use is dead.  Note that this is true regardless of whether
          // we have anything dominating the use or not.  We do this here
          // because we are already walking all the uses anyway.
          Instruction *InstUse = cast<Instruction>(U->getUser());
          if (InstructionsToErase.count(InstUse)) {
            auto &UseCount = UseCounts[U->get()];
            if (--UseCount == 0) {
              ProbablyDead.insert(cast<Instruction>(U->get()));
            }
          }

          // If we get to this point, and the stack is empty we must have a use
          // with nothing we can use to eliminate this use, so just skip it.
          if (EliminationStack.empty())
            continue;

          Value *DominatingLeader = EliminationStack.back();

          auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
          if (II && II->getIntrinsicID() == Intrinsic::ssa_copy)
            DominatingLeader = II->getOperand(0);

          // Don't replace our existing users with ourselves.
          if (U->get() == DominatingLeader)
            continue;
          DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "
                       << *U->get() << " in " << *(U->getUser()) << "\n");

          // If we replaced something in an instruction, handle the patching of
          // metadata.  Skip this if we are replacing predicateinfo with its
          // original operand, as we already know we can just drop it.
          auto *ReplacedInst = cast<Instruction>(U->get());
          auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
          if (!PI || DominatingLeader != PI->OriginalOp)
            patchReplacementInstruction(ReplacedInst, DominatingLeader);
          U->set(DominatingLeader);
          // This is now a use of the dominating leader, which means if the
          // dominating leader was dead, it's now live!
          auto &LeaderUseCount = UseCounts[DominatingLeader];
          // It's about to be alive again.
          if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
            ProbablyDead.erase(cast<Instruction>(DominatingLeader));
          if (LeaderUseCount == 0 && II)
            ProbablyDead.insert(II);
          ++LeaderUseCount;
          AnythingReplaced = true;
        }
      }
    }

    // At this point, anything still in the ProbablyDead set is actually dead if
    // would be trivially dead.
    for (auto *I : ProbablyDead)
      if (wouldInstructionBeTriviallyDead(I))
        markInstructionForDeletion(I);

    // Cleanup the congruence class.
    CongruenceClass::MemberSet MembersLeft;
    for (auto *Member : *CC)
      if (!isa<Instruction>(Member) ||
          !InstructionsToErase.count(cast<Instruction>(Member)))
        MembersLeft.insert(Member);
    CC->swap(MembersLeft);

    // If we have possible dead stores to look at, try to eliminate them.
    if (CC->getStoreCount() > 0) {
      convertClassToLoadsAndStores(*CC, PossibleDeadStores);
      std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
      ValueDFSStack EliminationStack;
      for (auto &VD : PossibleDeadStores) {
        int MemberDFSIn = VD.DFSIn;
        int MemberDFSOut = VD.DFSOut;
        Instruction *Member = cast<Instruction>(VD.Def.getPointer());
        if (EliminationStack.empty() ||
            !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
          // Sync to our current scope.
          EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
          if (EliminationStack.empty()) {
            EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
            continue;
          }
        }
        // We already did load elimination, so nothing to do here.
        if (isa<LoadInst>(Member))
          continue;
        assert(!EliminationStack.empty());
        Instruction *Leader = cast<Instruction>(EliminationStack.back());
        (void)Leader;
        assert(DT->dominates(Leader->getParent(), Member->getParent()));
        // Member is dominater by Leader, and thus dead
        DEBUG(dbgs() << "Marking dead store " << *Member
                     << " that is dominated by " << *Leader << "\n");
        markInstructionForDeletion(Member);
        CC->erase(Member);
        ++NumGVNDeadStores;
      }
    }
  }
  return AnythingReplaced;
}

// This function provides global ranking of operations so that we can place them
// in a canonical order.  Note that rank alone is not necessarily enough for a
// complete ordering, as constants all have the same rank.  However, generally,
// we will simplify an operation with all constants so that it doesn't matter
// what order they appear in.
unsigned int NewGVN::getRank(const Value *V) const {
  // Prefer constants to undef to anything else
  // Undef is a constant, have to check it first.
  // Prefer smaller constants to constantexprs
  if (isa<ConstantExpr>(V))
    return 2;
  if (isa<UndefValue>(V))
    return 1;
  if (isa<Constant>(V))
    return 0;
  else if (auto *A = dyn_cast<Argument>(V))
    return 3 + A->getArgNo();

  // Need to shift the instruction DFS by number of arguments + 3 to account for
  // the constant and argument ranking above.
  unsigned Result = InstrToDFSNum(V);
  if (Result > 0)
    return 4 + NumFuncArgs + Result;
  // Unreachable or something else, just return a really large number.
  return ~0;
}

// This is a function that says whether two commutative operations should
// have their order swapped when canonicalizing.
bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
  // Because we only care about a total ordering, and don't rewrite expressions
  // in this order, we order by rank, which will give a strict weak ordering to
  // everything but constants, and then we order by pointer address.
  return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
}

namespace {
class NewGVNLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid.
  NewGVNLegacyPass() : FunctionPass(ID) {
    initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
  }
  bool runOnFunction(Function &F) override;

private:
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};
} // namespace

bool NewGVNLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;
  return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
                &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
                &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
                &getAnalysis<AAResultsWrapperPass>().getAAResults(),
                &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
                F.getParent()->getDataLayout())
      .runGVN();
}

INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
                    false)

char NewGVNLegacyPass::ID = 0;

// createGVNPass - The public interface to this file.
FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }

PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
  // Apparently the order in which we get these results matter for
  // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
  // the same order here, just in case.
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
  bool Changed =
      NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
          .runGVN();
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}