aboutsummaryrefslogtreecommitdiffstats
path: root/lib/StaticAnalyzer/Checkers/UninitializedObject/UninitializedObjectChecker.cpp
blob: 9d608c12d19be79d31815c40a594702d1de8f2aa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a checker that reports uninitialized fields in objects
// created after a constructor call.
//
// To read about command line options and how the checker works, refer to the
// top of the file and inline comments in UninitializedObject.h.
//
// Some of the logic is implemented in UninitializedPointee.cpp, to reduce the
// complexity of this file.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "UninitializedObject.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"

using namespace clang;
using namespace clang::ento;
using namespace clang::ast_matchers;

/// We'll mark fields (and pointee of fields) that are confirmed to be
/// uninitialized as already analyzed.
REGISTER_SET_WITH_PROGRAMSTATE(AnalyzedRegions, const MemRegion *)

namespace {

class UninitializedObjectChecker
    : public Checker<check::EndFunction, check::DeadSymbols> {
  std::unique_ptr<BuiltinBug> BT_uninitField;

public:
  // The fields of this struct will be initialized when registering the checker.
  UninitObjCheckerOptions Opts;

  UninitializedObjectChecker()
      : BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}

  void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
};

/// A basic field type, that is not a pointer or a reference, it's dynamic and
/// static type is the same.
class RegularField final : public FieldNode {
public:
  RegularField(const FieldRegion *FR) : FieldNode(FR) {}

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    Out << "uninitialized field ";
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {}

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << getVariableName(getDecl());
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {
    Out << '.';
  }
};

/// Represents that the FieldNode that comes after this is declared in a base
/// of the previous FieldNode. As such, this descendant doesn't wrap a
/// FieldRegion, and is purely a tool to describe a relation between two other
/// FieldRegion wrapping descendants.
class BaseClass final : public FieldNode {
  const QualType BaseClassT;

public:
  BaseClass(const QualType &T) : FieldNode(nullptr), BaseClassT(T) {
    assert(!T.isNull());
    assert(T->getAsCXXRecordDecl());
  }

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    llvm_unreachable("This node can never be the final node in the "
                     "fieldchain!");
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {}

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << BaseClassT->getAsCXXRecordDecl()->getName() << "::";
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {}

  virtual bool isBase() const override { return true; }
};

} // end of anonymous namespace

// Utility function declarations.

/// Returns the region that was constructed by CtorDecl, or nullptr if that
/// isn't possible.
static const TypedValueRegion *
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
                     CheckerContext &Context);

/// Checks whether the object constructed by \p Ctor will be analyzed later
/// (e.g. if the object is a field of another object, in which case we'd check
/// it multiple times).
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
                                      CheckerContext &Context);

/// Checks whether RD contains a field with a name or type name that matches
/// \p Pattern.
static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern);

/// Checks _syntactically_ whether it is possible to access FD from the record
/// that contains it without a preceding assert (even if that access happens
/// inside a method). This is mainly used for records that act like unions, like
/// having multiple bit fields, with only a fraction being properly initialized.
/// If these fields are properly guarded with asserts, this method returns
/// false.
///
/// Since this check is done syntactically, this method could be inaccurate.
static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State);

//===----------------------------------------------------------------------===//
//                  Methods for UninitializedObjectChecker.
//===----------------------------------------------------------------------===//

void UninitializedObjectChecker::checkEndFunction(
    const ReturnStmt *RS, CheckerContext &Context) const {

  const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
      Context.getLocationContext()->getDecl());
  if (!CtorDecl)
    return;

  if (!CtorDecl->isUserProvided())
    return;

  if (CtorDecl->getParent()->isUnion())
    return;

  // This avoids essentially the same error being reported multiple times.
  if (willObjectBeAnalyzedLater(CtorDecl, Context))
    return;

  const TypedValueRegion *R = getConstructedRegion(CtorDecl, Context);
  if (!R)
    return;

  FindUninitializedFields F(Context.getState(), R, Opts);

  std::pair<ProgramStateRef, const UninitFieldMap &> UninitInfo =
      F.getResults();

  ProgramStateRef UpdatedState = UninitInfo.first;
  const UninitFieldMap &UninitFields = UninitInfo.second;

  if (UninitFields.empty()) {
    Context.addTransition(UpdatedState);
    return;
  }

  // There are uninitialized fields in the record.

  ExplodedNode *Node = Context.generateNonFatalErrorNode(UpdatedState);
  if (!Node)
    return;

  PathDiagnosticLocation LocUsedForUniqueing;
  const Stmt *CallSite = Context.getStackFrame()->getCallSite();
  if (CallSite)
    LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
        CallSite, Context.getSourceManager(), Node->getLocationContext());

  // For Plist consumers that don't support notes just yet, we'll convert notes
  // to warnings.
  if (Opts.ShouldConvertNotesToWarnings) {
    for (const auto &Pair : UninitFields) {

      auto Report = llvm::make_unique<BugReport>(
          *BT_uninitField, Pair.second, Node, LocUsedForUniqueing,
          Node->getLocationContext()->getDecl());
      Context.emitReport(std::move(Report));
    }
    return;
  }

  SmallString<100> WarningBuf;
  llvm::raw_svector_ostream WarningOS(WarningBuf);
  WarningOS << UninitFields.size() << " uninitialized field"
            << (UninitFields.size() == 1 ? "" : "s")
            << " at the end of the constructor call";

  auto Report = llvm::make_unique<BugReport>(
      *BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
      Node->getLocationContext()->getDecl());

  for (const auto &Pair : UninitFields) {
    Report->addNote(Pair.second,
                    PathDiagnosticLocation::create(Pair.first->getDecl(),
                                                   Context.getSourceManager()));
  }
  Context.emitReport(std::move(Report));
}

void UninitializedObjectChecker::checkDeadSymbols(SymbolReaper &SR,
                                                  CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  for (const MemRegion *R : State->get<AnalyzedRegions>()) {
    if (!SR.isLiveRegion(R))
      State = State->remove<AnalyzedRegions>(R);
  }
}

//===----------------------------------------------------------------------===//
//                   Methods for FindUninitializedFields.
//===----------------------------------------------------------------------===//

FindUninitializedFields::FindUninitializedFields(
    ProgramStateRef State, const TypedValueRegion *const R,
    const UninitObjCheckerOptions &Opts)
    : State(State), ObjectR(R), Opts(Opts) {

  isNonUnionUninit(ObjectR, FieldChainInfo(ChainFactory));

  // In non-pedantic mode, if ObjectR doesn't contain a single initialized
  // field, we'll assume that Object was intentionally left uninitialized.
  if (!Opts.IsPedantic && !isAnyFieldInitialized())
    UninitFields.clear();
}

bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain,
                                                const MemRegion *PointeeR) {
  const FieldRegion *FR = Chain.getUninitRegion();

  assert((PointeeR || !isDereferencableType(FR->getDecl()->getType())) &&
         "One must also pass the pointee region as a parameter for "
         "dereferenceable fields!");

  if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
          FR->getDecl()->getLocation()))
    return false;

  if (Opts.IgnoreGuardedFields && !hasUnguardedAccess(FR->getDecl(), State))
    return false;

  if (State->contains<AnalyzedRegions>(FR))
    return false;

  if (PointeeR) {
    if (State->contains<AnalyzedRegions>(PointeeR)) {
      return false;
    }
    State = State->add<AnalyzedRegions>(PointeeR);
  }

  State = State->add<AnalyzedRegions>(FR);

  UninitFieldMap::mapped_type NoteMsgBuf;
  llvm::raw_svector_ostream OS(NoteMsgBuf);
  Chain.printNoteMsg(OS);

  return UninitFields.insert({FR, std::move(NoteMsgBuf)}).second;
}

bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
                                               FieldChainInfo LocalChain) {
  assert(R->getValueType()->isRecordType() &&
         !R->getValueType()->isUnionType() &&
         "This method only checks non-union record objects!");

  const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition();

  if (!RD) {
    IsAnyFieldInitialized = true;
    return true;
  }

  if (!Opts.IgnoredRecordsWithFieldPattern.empty() &&
      shouldIgnoreRecord(RD, Opts.IgnoredRecordsWithFieldPattern)) {
    IsAnyFieldInitialized = true;
    return false;
  }

  bool ContainsUninitField = false;

  // Are all of this non-union's fields initialized?
  for (const FieldDecl *I : RD->fields()) {

    const auto FieldVal =
        State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
    const auto *FR = FieldVal.getRegionAs<FieldRegion>();
    QualType T = I->getType();

    // If LocalChain already contains FR, then we encountered a cyclic
    // reference. In this case, region FR is already under checking at an
    // earlier node in the directed tree.
    if (LocalChain.contains(FR))
      return false;

    if (T->isStructureOrClassType()) {
      if (isNonUnionUninit(FR, LocalChain.add(RegularField(FR))))
        ContainsUninitField = true;
      continue;
    }

    if (T->isUnionType()) {
      if (isUnionUninit(FR)) {
        if (addFieldToUninits(LocalChain.add(RegularField(FR))))
          ContainsUninitField = true;
      } else
        IsAnyFieldInitialized = true;
      continue;
    }

    if (T->isArrayType()) {
      IsAnyFieldInitialized = true;
      continue;
    }

    SVal V = State->getSVal(FieldVal);

    if (isDereferencableType(T) || V.getAs<nonloc::LocAsInteger>()) {
      if (isDereferencableUninit(FR, LocalChain))
        ContainsUninitField = true;
      continue;
    }

    if (isPrimitiveType(T)) {
      if (isPrimitiveUninit(V)) {
        if (addFieldToUninits(LocalChain.add(RegularField(FR))))
          ContainsUninitField = true;
      }
      continue;
    }

    llvm_unreachable("All cases are handled!");
  }

  // Checking bases. The checker will regard inherited data members as direct
  // fields.
  const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
  if (!CXXRD)
    return ContainsUninitField;

  for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
    const auto *BaseRegion = State->getLValue(BaseSpec, R)
                                 .castAs<loc::MemRegionVal>()
                                 .getRegionAs<TypedValueRegion>();

    // If the head of the list is also a BaseClass, we'll overwrite it to avoid
    // note messages like 'this->A::B::x'.
    if (!LocalChain.isEmpty() && LocalChain.getHead().isBase()) {
      if (isNonUnionUninit(BaseRegion, LocalChain.replaceHead(
                                           BaseClass(BaseSpec.getType()))))
        ContainsUninitField = true;
    } else {
      if (isNonUnionUninit(BaseRegion,
                           LocalChain.add(BaseClass(BaseSpec.getType()))))
        ContainsUninitField = true;
    }
  }

  return ContainsUninitField;
}

bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
  assert(R->getValueType()->isUnionType() &&
         "This method only checks union objects!");
  // TODO: Implement support for union fields.
  return false;
}

bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
  if (V.isUndef())
    return true;

  IsAnyFieldInitialized = true;
  return false;
}

//===----------------------------------------------------------------------===//
//                       Methods for FieldChainInfo.
//===----------------------------------------------------------------------===//

bool FieldChainInfo::contains(const FieldRegion *FR) const {
  for (const FieldNode &Node : Chain) {
    if (Node.isSameRegion(FR))
      return true;
  }
  return false;
}

/// Prints every element except the last to `Out`. Since ImmutableLists store
/// elements in reverse order, and have no reverse iterators, we use a
/// recursive function to print the fieldchain correctly. The last element in
/// the chain is to be printed by `FieldChainInfo::print`.
static void printTail(llvm::raw_ostream &Out,
                      const FieldChainInfo::FieldChain L);

// FIXME: This function constructs an incorrect string in the following case:
//
//   struct Base { int x; };
//   struct D1 : Base {}; struct D2 : Base {};
//
//   struct MostDerived : D1, D2 {
//     MostDerived() {}
//   }
//
// A call to MostDerived::MostDerived() will cause two notes that say
// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
// we need an explicit namespace resolution whether the uninit field was
// 'D1::x' or 'D2::x'.
void FieldChainInfo::printNoteMsg(llvm::raw_ostream &Out) const {
  if (Chain.isEmpty())
    return;

  const FieldNode &LastField = getHead();

  LastField.printNoteMsg(Out);
  Out << '\'';

  for (const FieldNode &Node : Chain)
    Node.printPrefix(Out);

  Out << "this->";
  printTail(Out, Chain.getTail());
  LastField.printNode(Out);
  Out << '\'';
}

static void printTail(llvm::raw_ostream &Out,
                      const FieldChainInfo::FieldChain L) {
  if (L.isEmpty())
    return;

  printTail(Out, L.getTail());

  L.getHead().printNode(Out);
  L.getHead().printSeparator(Out);
}

//===----------------------------------------------------------------------===//
//                           Utility functions.
//===----------------------------------------------------------------------===//

static const TypedValueRegion *
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
                     CheckerContext &Context) {

  Loc ThisLoc =
      Context.getSValBuilder().getCXXThis(CtorDecl, Context.getStackFrame());

  SVal ObjectV = Context.getState()->getSVal(ThisLoc);

  auto *R = ObjectV.getAsRegion()->getAs<TypedValueRegion>();
  if (R && !R->getValueType()->getAsCXXRecordDecl())
    return nullptr;

  return R;
}

static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
                                      CheckerContext &Context) {

  const TypedValueRegion *CurrRegion = getConstructedRegion(Ctor, Context);
  if (!CurrRegion)
    return false;

  const LocationContext *LC = Context.getLocationContext();
  while ((LC = LC->getParent())) {

    // If \p Ctor was called by another constructor.
    const auto *OtherCtor = dyn_cast<CXXConstructorDecl>(LC->getDecl());
    if (!OtherCtor)
      continue;

    const TypedValueRegion *OtherRegion =
        getConstructedRegion(OtherCtor, Context);
    if (!OtherRegion)
      continue;

    // If the CurrRegion is a subregion of OtherRegion, it will be analyzed
    // during the analysis of OtherRegion.
    if (CurrRegion->isSubRegionOf(OtherRegion))
      return true;
  }

  return false;
}

static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern) {
  llvm::Regex R(Pattern);

  for (const FieldDecl *FD : RD->fields()) {
    if (R.match(FD->getType().getAsString()))
      return true;
    if (R.match(FD->getName()))
      return true;
  }

  return false;
}

static const Stmt *getMethodBody(const CXXMethodDecl *M) {
  if (isa<CXXConstructorDecl>(M))
    return nullptr;

  if (!M->isDefined())
    return nullptr;

  return M->getDefinition()->getBody();
}

static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State) {

  if (FD->getAccess() == AccessSpecifier::AS_public)
    return true;

  const auto *Parent = dyn_cast<CXXRecordDecl>(FD->getParent());

  if (!Parent)
    return true;

  Parent = Parent->getDefinition();
  assert(Parent && "The record's definition must be avaible if an uninitialized"
                   " field of it was found!");

  ASTContext &AC = State->getStateManager().getContext();

  auto FieldAccessM = memberExpr(hasDeclaration(equalsNode(FD))).bind("access");

  auto AssertLikeM = callExpr(callee(functionDecl(
      anyOf(hasName("exit"), hasName("panic"), hasName("error"),
            hasName("Assert"), hasName("assert"), hasName("ziperr"),
            hasName("assfail"), hasName("db_error"), hasName("__assert"),
            hasName("__assert2"), hasName("_wassert"), hasName("__assert_rtn"),
            hasName("__assert_fail"), hasName("dtrace_assfail"),
            hasName("yy_fatal_error"), hasName("_XCAssertionFailureHandler"),
            hasName("_DTAssertionFailureHandler"),
            hasName("_TSAssertionFailureHandler")))));

  auto NoReturnFuncM = callExpr(callee(functionDecl(isNoReturn())));

  auto GuardM =
      stmt(anyOf(ifStmt(), switchStmt(), conditionalOperator(), AssertLikeM,
            NoReturnFuncM))
          .bind("guard");

  for (const CXXMethodDecl *M : Parent->methods()) {
    const Stmt *MethodBody = getMethodBody(M);
    if (!MethodBody)
      continue;

    auto Accesses = match(stmt(hasDescendant(FieldAccessM)), *MethodBody, AC);
    if (Accesses.empty())
      continue;
    const auto *FirstAccess = Accesses[0].getNodeAs<MemberExpr>("access");
    assert(FirstAccess);

    auto Guards = match(stmt(hasDescendant(GuardM)), *MethodBody, AC);
    if (Guards.empty())
      return true;
    const auto *FirstGuard = Guards[0].getNodeAs<Stmt>("guard");
    assert(FirstGuard);

    if (FirstAccess->getBeginLoc() < FirstGuard->getBeginLoc())
      return true;
  }

  return false;
}

std::string clang::ento::getVariableName(const FieldDecl *Field) {
  // If Field is a captured lambda variable, Field->getName() will return with
  // an empty string. We can however acquire it's name from the lambda's
  // captures.
  const auto *CXXParent = dyn_cast<CXXRecordDecl>(Field->getParent());

  if (CXXParent && CXXParent->isLambda()) {
    assert(CXXParent->captures_begin());
    auto It = CXXParent->captures_begin() + Field->getFieldIndex();

    if (It->capturesVariable())
      return llvm::Twine("/*captured variable*/" +
                         It->getCapturedVar()->getName())
          .str();

    if (It->capturesThis())
      return "/*'this' capture*/";

    llvm_unreachable("No other capture type is expected!");
  }

  return Field->getName();
}

void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
  auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();

  AnalyzerOptions &AnOpts = Mgr.getAnalyzerOptions();
  UninitObjCheckerOptions &ChOpts = Chk->Opts;

  ChOpts.IsPedantic = AnOpts.getCheckerBooleanOption(Chk, "Pedantic");
  ChOpts.ShouldConvertNotesToWarnings = AnOpts.getCheckerBooleanOption(
      Chk, "NotesAsWarnings");
  ChOpts.CheckPointeeInitialization = AnOpts.getCheckerBooleanOption(
      Chk, "CheckPointeeInitialization");
  ChOpts.IgnoredRecordsWithFieldPattern =
      AnOpts.getCheckerStringOption(Chk, "IgnoreRecordsWithField");
  ChOpts.IgnoreGuardedFields =
      AnOpts.getCheckerBooleanOption(Chk, "IgnoreGuardedFields");

  std::string ErrorMsg;
  if (!llvm::Regex(ChOpts.IgnoredRecordsWithFieldPattern).isValid(ErrorMsg))
    Mgr.reportInvalidCheckerOptionValue(Chk, "IgnoreRecordsWithField",
        "a valid regex, building failed with error message "
        "\"" + ErrorMsg + "\"");
}

bool ento::shouldRegisterUninitializedObjectChecker(const LangOptions &LO) {
  return true;
}