aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGDecl.cpp
blob: 6ad43cefc4d291f6b91acb829f57eacd82daa79d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "PatternInit.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"

using namespace clang;
using namespace CodeGen;

void CodeGenFunction::EmitDecl(const Decl &D) {
  switch (D.getKind()) {
  case Decl::BuiltinTemplate:
  case Decl::TranslationUnit:
  case Decl::ExternCContext:
  case Decl::Namespace:
  case Decl::UnresolvedUsingTypename:
  case Decl::ClassTemplateSpecialization:
  case Decl::ClassTemplatePartialSpecialization:
  case Decl::VarTemplateSpecialization:
  case Decl::VarTemplatePartialSpecialization:
  case Decl::TemplateTypeParm:
  case Decl::UnresolvedUsingValue:
  case Decl::NonTypeTemplateParm:
  case Decl::CXXDeductionGuide:
  case Decl::CXXMethod:
  case Decl::CXXConstructor:
  case Decl::CXXDestructor:
  case Decl::CXXConversion:
  case Decl::Field:
  case Decl::MSProperty:
  case Decl::IndirectField:
  case Decl::ObjCIvar:
  case Decl::ObjCAtDefsField:
  case Decl::ParmVar:
  case Decl::ImplicitParam:
  case Decl::ClassTemplate:
  case Decl::VarTemplate:
  case Decl::FunctionTemplate:
  case Decl::TypeAliasTemplate:
  case Decl::TemplateTemplateParm:
  case Decl::ObjCMethod:
  case Decl::ObjCCategory:
  case Decl::ObjCProtocol:
  case Decl::ObjCInterface:
  case Decl::ObjCCategoryImpl:
  case Decl::ObjCImplementation:
  case Decl::ObjCProperty:
  case Decl::ObjCCompatibleAlias:
  case Decl::PragmaComment:
  case Decl::PragmaDetectMismatch:
  case Decl::AccessSpec:
  case Decl::LinkageSpec:
  case Decl::Export:
  case Decl::ObjCPropertyImpl:
  case Decl::FileScopeAsm:
  case Decl::Friend:
  case Decl::FriendTemplate:
  case Decl::Block:
  case Decl::Captured:
  case Decl::ClassScopeFunctionSpecialization:
  case Decl::UsingShadow:
  case Decl::ConstructorUsingShadow:
  case Decl::ObjCTypeParam:
  case Decl::Binding:
    llvm_unreachable("Declaration should not be in declstmts!");
  case Decl::Function:  // void X();
  case Decl::Record:    // struct/union/class X;
  case Decl::Enum:      // enum X;
  case Decl::EnumConstant: // enum ? { X = ? }
  case Decl::CXXRecord: // struct/union/class X; [C++]
  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
  case Decl::Label:        // __label__ x;
  case Decl::Import:
  case Decl::OMPThreadPrivate:
  case Decl::OMPAllocate:
  case Decl::OMPCapturedExpr:
  case Decl::OMPRequires:
  case Decl::Empty:
  case Decl::Concept:
    // None of these decls require codegen support.
    return;

  case Decl::NamespaceAlias:
    if (CGDebugInfo *DI = getDebugInfo())
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
    return;
  case Decl::Using:          // using X; [C++]
    if (CGDebugInfo *DI = getDebugInfo())
        DI->EmitUsingDecl(cast<UsingDecl>(D));
    return;
  case Decl::UsingPack:
    for (auto *Using : cast<UsingPackDecl>(D).expansions())
      EmitDecl(*Using);
    return;
  case Decl::UsingDirective: // using namespace X; [C++]
    if (CGDebugInfo *DI = getDebugInfo())
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
    return;
  case Decl::Var:
  case Decl::Decomposition: {
    const VarDecl &VD = cast<VarDecl>(D);
    assert(VD.isLocalVarDecl() &&
           "Should not see file-scope variables inside a function!");
    EmitVarDecl(VD);
    if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
      for (auto *B : DD->bindings())
        if (auto *HD = B->getHoldingVar())
          EmitVarDecl(*HD);
    return;
  }

  case Decl::OMPDeclareReduction:
    return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);

  case Decl::OMPDeclareMapper:
    return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);

  case Decl::Typedef:      // typedef int X;
  case Decl::TypeAlias: {  // using X = int; [C++0x]
    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
    QualType Ty = TD.getUnderlyingType();

    if (Ty->isVariablyModifiedType())
      EmitVariablyModifiedType(Ty);

    return;
  }
  }
}

/// EmitVarDecl - This method handles emission of any variable declaration
/// inside a function, including static vars etc.
void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
  if (D.hasExternalStorage())
    // Don't emit it now, allow it to be emitted lazily on its first use.
    return;

  // Some function-scope variable does not have static storage but still
  // needs to be emitted like a static variable, e.g. a function-scope
  // variable in constant address space in OpenCL.
  if (D.getStorageDuration() != SD_Automatic) {
    // Static sampler variables translated to function calls.
    if (D.getType()->isSamplerT())
      return;

    llvm::GlobalValue::LinkageTypes Linkage =
        CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);

    // FIXME: We need to force the emission/use of a guard variable for
    // some variables even if we can constant-evaluate them because
    // we can't guarantee every translation unit will constant-evaluate them.

    return EmitStaticVarDecl(D, Linkage);
  }

  if (D.getType().getAddressSpace() == LangAS::opencl_local)
    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);

  assert(D.hasLocalStorage());
  return EmitAutoVarDecl(D);
}

static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
  if (CGM.getLangOpts().CPlusPlus)
    return CGM.getMangledName(&D).str();

  // If this isn't C++, we don't need a mangled name, just a pretty one.
  assert(!D.isExternallyVisible() && "name shouldn't matter");
  std::string ContextName;
  const DeclContext *DC = D.getDeclContext();
  if (auto *CD = dyn_cast<CapturedDecl>(DC))
    DC = cast<DeclContext>(CD->getNonClosureContext());
  if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    ContextName = CGM.getMangledName(FD);
  else if (const auto *BD = dyn_cast<BlockDecl>(DC))
    ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
  else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
    ContextName = OMD->getSelector().getAsString();
  else
    llvm_unreachable("Unknown context for static var decl");

  ContextName += "." + D.getNameAsString();
  return ContextName;
}

llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
    const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
  // In general, we don't always emit static var decls once before we reference
  // them. It is possible to reference them before emitting the function that
  // contains them, and it is possible to emit the containing function multiple
  // times.
  if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
    return ExistingGV;

  QualType Ty = D.getType();
  assert(Ty->isConstantSizeType() && "VLAs can't be static");

  // Use the label if the variable is renamed with the asm-label extension.
  std::string Name;
  if (D.hasAttr<AsmLabelAttr>())
    Name = getMangledName(&D);
  else
    Name = getStaticDeclName(*this, D);

  llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
  LangAS AS = GetGlobalVarAddressSpace(&D);
  unsigned TargetAS = getContext().getTargetAddressSpace(AS);

  // OpenCL variables in local address space and CUDA shared
  // variables cannot have an initializer.
  llvm::Constant *Init = nullptr;
  if (Ty.getAddressSpace() == LangAS::opencl_local ||
      D.hasAttr<CUDASharedAttr>())
    Init = llvm::UndefValue::get(LTy);
  else
    Init = EmitNullConstant(Ty);

  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
      getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
      nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
  GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());

  if (supportsCOMDAT() && GV->isWeakForLinker())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));

  if (D.getTLSKind())
    setTLSMode(GV, D);

  setGVProperties(GV, &D);

  // Make sure the result is of the correct type.
  LangAS ExpectedAS = Ty.getAddressSpace();
  llvm::Constant *Addr = GV;
  if (AS != ExpectedAS) {
    Addr = getTargetCodeGenInfo().performAddrSpaceCast(
        *this, GV, AS, ExpectedAS,
        LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
  }

  setStaticLocalDeclAddress(&D, Addr);

  // Ensure that the static local gets initialized by making sure the parent
  // function gets emitted eventually.
  const Decl *DC = cast<Decl>(D.getDeclContext());

  // We can't name blocks or captured statements directly, so try to emit their
  // parents.
  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
    DC = DC->getNonClosureContext();
    // FIXME: Ensure that global blocks get emitted.
    if (!DC)
      return Addr;
  }

  GlobalDecl GD;
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    GD = GlobalDecl(CD, Ctor_Base);
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    GD = GlobalDecl(DD, Dtor_Base);
  else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    GD = GlobalDecl(FD);
  else {
    // Don't do anything for Obj-C method decls or global closures. We should
    // never defer them.
    assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
  }
  if (GD.getDecl()) {
    // Disable emission of the parent function for the OpenMP device codegen.
    CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
    (void)GetAddrOfGlobal(GD);
  }

  return Addr;
}

/// hasNontrivialDestruction - Determine whether a type's destruction is
/// non-trivial. If so, and the variable uses static initialization, we must
/// register its destructor to run on exit.
static bool hasNontrivialDestruction(QualType T) {
  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
  return RD && !RD->hasTrivialDestructor();
}

/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it.  If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one.  Otherwise it just returns GV.
llvm::GlobalVariable *
CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
                                               llvm::GlobalVariable *GV) {
  ConstantEmitter emitter(*this);
  llvm::Constant *Init = emitter.tryEmitForInitializer(D);

  // If constant emission failed, then this should be a C++ static
  // initializer.
  if (!Init) {
    if (!getLangOpts().CPlusPlus)
      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
    else if (HaveInsertPoint()) {
      // Since we have a static initializer, this global variable can't
      // be constant.
      GV->setConstant(false);

      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
    }
    return GV;
  }

  // The initializer may differ in type from the global. Rewrite
  // the global to match the initializer.  (We have to do this
  // because some types, like unions, can't be completely represented
  // in the LLVM type system.)
  if (GV->getType()->getElementType() != Init->getType()) {
    llvm::GlobalVariable *OldGV = GV;

    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
                                  OldGV->isConstant(),
                                  OldGV->getLinkage(), Init, "",
                                  /*InsertBefore*/ OldGV,
                                  OldGV->getThreadLocalMode(),
                           CGM.getContext().getTargetAddressSpace(D.getType()));
    GV->setVisibility(OldGV->getVisibility());
    GV->setDSOLocal(OldGV->isDSOLocal());
    GV->setComdat(OldGV->getComdat());

    // Steal the name of the old global
    GV->takeName(OldGV);

    // Replace all uses of the old global with the new global
    llvm::Constant *NewPtrForOldDecl =
    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
    OldGV->replaceAllUsesWith(NewPtrForOldDecl);

    // Erase the old global, since it is no longer used.
    OldGV->eraseFromParent();
  }

  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
  GV->setInitializer(Init);

  emitter.finalize(GV);

  if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
    // We have a constant initializer, but a nontrivial destructor. We still
    // need to perform a guarded "initialization" in order to register the
    // destructor.
    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
  }

  return GV;
}

void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
                                      llvm::GlobalValue::LinkageTypes Linkage) {
  // Check to see if we already have a global variable for this
  // declaration.  This can happen when double-emitting function
  // bodies, e.g. with complete and base constructors.
  llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
  CharUnits alignment = getContext().getDeclAlign(&D);

  // Store into LocalDeclMap before generating initializer to handle
  // circular references.
  setAddrOfLocalVar(&D, Address(addr, alignment));

  // We can't have a VLA here, but we can have a pointer to a VLA,
  // even though that doesn't really make any sense.
  // Make sure to evaluate VLA bounds now so that we have them for later.
  if (D.getType()->isVariablyModifiedType())
    EmitVariablyModifiedType(D.getType());

  // Save the type in case adding the initializer forces a type change.
  llvm::Type *expectedType = addr->getType();

  llvm::GlobalVariable *var =
    cast<llvm::GlobalVariable>(addr->stripPointerCasts());

  // CUDA's local and local static __shared__ variables should not
  // have any non-empty initializers. This is ensured by Sema.
  // Whatever initializer such variable may have when it gets here is
  // a no-op and should not be emitted.
  bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
                         D.hasAttr<CUDASharedAttr>();
  // If this value has an initializer, emit it.
  if (D.getInit() && !isCudaSharedVar)
    var = AddInitializerToStaticVarDecl(D, var);

  var->setAlignment(alignment.getQuantity());

  if (D.hasAttr<AnnotateAttr>())
    CGM.AddGlobalAnnotations(&D, var);

  if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
    var->addAttribute("bss-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
    var->addAttribute("data-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
    var->addAttribute("rodata-section", SA->getName());

  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
    var->setSection(SA->getName());

  if (D.hasAttr<UsedAttr>())
    CGM.addUsedGlobal(var);

  // We may have to cast the constant because of the initializer
  // mismatch above.
  //
  // FIXME: It is really dangerous to store this in the map; if anyone
  // RAUW's the GV uses of this constant will be invalid.
  llvm::Constant *castedAddr =
    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
  if (var != castedAddr)
    LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
  CGM.setStaticLocalDeclAddress(&D, castedAddr);

  CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);

  // Emit global variable debug descriptor for static vars.
  CGDebugInfo *DI = getDebugInfo();
  if (DI &&
      CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
    DI->setLocation(D.getLocation());
    DI->EmitGlobalVariable(var, &D);
  }
}

namespace {
  struct DestroyObject final : EHScopeStack::Cleanup {
    DestroyObject(Address addr, QualType type,
                  CodeGenFunction::Destroyer *destroyer,
                  bool useEHCleanupForArray)
      : addr(addr), type(type), destroyer(destroyer),
        useEHCleanupForArray(useEHCleanupForArray) {}

    Address addr;
    QualType type;
    CodeGenFunction::Destroyer *destroyer;
    bool useEHCleanupForArray;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Don't use an EH cleanup recursively from an EH cleanup.
      bool useEHCleanupForArray =
        flags.isForNormalCleanup() && this->useEHCleanupForArray;

      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
    }
  };

  template <class Derived>
  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
    DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
        : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}

    llvm::Value *NRVOFlag;
    Address Loc;
    QualType Ty;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Along the exceptions path we always execute the dtor.
      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;

      llvm::BasicBlock *SkipDtorBB = nullptr;
      if (NRVO) {
        // If we exited via NRVO, we skip the destructor call.
        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
        llvm::Value *DidNRVO =
          CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
        CGF.EmitBlock(RunDtorBB);
      }

      static_cast<Derived *>(this)->emitDestructorCall(CGF);

      if (NRVO) CGF.EmitBlock(SkipDtorBB);
    }

    virtual ~DestroyNRVOVariable() = default;
  };

  struct DestroyNRVOVariableCXX final
      : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
    DestroyNRVOVariableCXX(Address addr, QualType type,
                           const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
        : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
          Dtor(Dtor) {}

    const CXXDestructorDecl *Dtor;

    void emitDestructorCall(CodeGenFunction &CGF) {
      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
                                /*ForVirtualBase=*/false,
                                /*Delegating=*/false, Loc, Ty);
    }
  };

  struct DestroyNRVOVariableC final
      : DestroyNRVOVariable<DestroyNRVOVariableC> {
    DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
        : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}

    void emitDestructorCall(CodeGenFunction &CGF) {
      CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
    }
  };

  struct CallStackRestore final : EHScopeStack::Cleanup {
    Address Stack;
    CallStackRestore(Address Stack) : Stack(Stack) {}
    void Emit(CodeGenFunction &CGF, Flags flags) override {
      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
      llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
      CGF.Builder.CreateCall(F, V);
    }
  };

  struct ExtendGCLifetime final : EHScopeStack::Cleanup {
    const VarDecl &Var;
    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Compute the address of the local variable, in case it's a
      // byref or something.
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
                      Var.getType(), VK_LValue, SourceLocation());
      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
                                                SourceLocation());
      CGF.EmitExtendGCLifetime(value);
    }
  };

  struct CallCleanupFunction final : EHScopeStack::Cleanup {
    llvm::Constant *CleanupFn;
    const CGFunctionInfo &FnInfo;
    const VarDecl &Var;

    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
                        const VarDecl *Var)
      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
                      Var.getType(), VK_LValue, SourceLocation());
      // Compute the address of the local variable, in case it's a byref
      // or something.
      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();

      // In some cases, the type of the function argument will be different from
      // the type of the pointer. An example of this is
      // void f(void* arg);
      // __attribute__((cleanup(f))) void *g;
      //
      // To fix this we insert a bitcast here.
      QualType ArgTy = FnInfo.arg_begin()->type;
      llvm::Value *Arg =
        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));

      CallArgList Args;
      Args.add(RValue::get(Arg),
               CGF.getContext().getPointerType(Var.getType()));
      auto Callee = CGCallee::forDirect(CleanupFn);
      CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
    }
  };
} // end anonymous namespace

/// EmitAutoVarWithLifetime - Does the setup required for an automatic
/// variable with lifetime.
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
                                    Address addr,
                                    Qualifiers::ObjCLifetime lifetime) {
  switch (lifetime) {
  case Qualifiers::OCL_None:
    llvm_unreachable("present but none");

  case Qualifiers::OCL_ExplicitNone:
    // nothing to do
    break;

  case Qualifiers::OCL_Strong: {
    CodeGenFunction::Destroyer *destroyer =
      (var.hasAttr<ObjCPreciseLifetimeAttr>()
       ? CodeGenFunction::destroyARCStrongPrecise
       : CodeGenFunction::destroyARCStrongImprecise);

    CleanupKind cleanupKind = CGF.getARCCleanupKind();
    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
                    cleanupKind & EHCleanup);
    break;
  }
  case Qualifiers::OCL_Autoreleasing:
    // nothing to do
    break;

  case Qualifiers::OCL_Weak:
    // __weak objects always get EH cleanups; otherwise, exceptions
    // could cause really nasty crashes instead of mere leaks.
    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
                    CodeGenFunction::destroyARCWeak,
                    /*useEHCleanup*/ true);
    break;
  }
}

static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
  if (const Expr *e = dyn_cast<Expr>(s)) {
    // Skip the most common kinds of expressions that make
    // hierarchy-walking expensive.
    s = e = e->IgnoreParenCasts();

    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
      return (ref->getDecl() == &var);
    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
      const BlockDecl *block = be->getBlockDecl();
      for (const auto &I : block->captures()) {
        if (I.getVariable() == &var)
          return true;
      }
    }
  }

  for (const Stmt *SubStmt : s->children())
    // SubStmt might be null; as in missing decl or conditional of an if-stmt.
    if (SubStmt && isAccessedBy(var, SubStmt))
      return true;

  return false;
}

static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
  if (!decl) return false;
  if (!isa<VarDecl>(decl)) return false;
  const VarDecl *var = cast<VarDecl>(decl);
  return isAccessedBy(*var, e);
}

static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
                                   const LValue &destLV, const Expr *init) {
  bool needsCast = false;

  while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
    switch (castExpr->getCastKind()) {
    // Look through casts that don't require representation changes.
    case CK_NoOp:
    case CK_BitCast:
    case CK_BlockPointerToObjCPointerCast:
      needsCast = true;
      break;

    // If we find an l-value to r-value cast from a __weak variable,
    // emit this operation as a copy or move.
    case CK_LValueToRValue: {
      const Expr *srcExpr = castExpr->getSubExpr();
      if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
        return false;

      // Emit the source l-value.
      LValue srcLV = CGF.EmitLValue(srcExpr);

      // Handle a formal type change to avoid asserting.
      auto srcAddr = srcLV.getAddress();
      if (needsCast) {
        srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
                                         destLV.getAddress().getElementType());
      }

      // If it was an l-value, use objc_copyWeak.
      if (srcExpr->getValueKind() == VK_LValue) {
        CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
      } else {
        assert(srcExpr->getValueKind() == VK_XValue);
        CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
      }
      return true;
    }

    // Stop at anything else.
    default:
      return false;
    }

    init = castExpr->getSubExpr();
  }
  return false;
}

static void drillIntoBlockVariable(CodeGenFunction &CGF,
                                   LValue &lvalue,
                                   const VarDecl *var) {
  lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
}

void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
                                           SourceLocation Loc) {
  if (!SanOpts.has(SanitizerKind::NullabilityAssign))
    return;

  auto Nullability = LHS.getType()->getNullability(getContext());
  if (!Nullability || *Nullability != NullabilityKind::NonNull)
    return;

  // Check if the right hand side of the assignment is nonnull, if the left
  // hand side must be nonnull.
  SanitizerScope SanScope(this);
  llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
  llvm::Constant *StaticData[] = {
      EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
      llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
      llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
  EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
            SanitizerHandler::TypeMismatch, StaticData, RHS);
}

void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
                                     LValue lvalue, bool capturedByInit) {
  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
  if (!lifetime) {
    llvm::Value *value = EmitScalarExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitNullabilityCheck(lvalue, value, init->getExprLoc());
    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
    return;
  }

  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
    init = DIE->getExpr();

  // If we're emitting a value with lifetime, we have to do the
  // initialization *before* we leave the cleanup scopes.
  if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
    enterFullExpression(fe);
    init = fe->getSubExpr();
  }
  CodeGenFunction::RunCleanupsScope Scope(*this);

  // We have to maintain the illusion that the variable is
  // zero-initialized.  If the variable might be accessed in its
  // initializer, zero-initialize before running the initializer, then
  // actually perform the initialization with an assign.
  bool accessedByInit = false;
  if (lifetime != Qualifiers::OCL_ExplicitNone)
    accessedByInit = (capturedByInit || isAccessedBy(D, init));
  if (accessedByInit) {
    LValue tempLV = lvalue;
    // Drill down to the __block object if necessary.
    if (capturedByInit) {
      // We can use a simple GEP for this because it can't have been
      // moved yet.
      tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
                                              cast<VarDecl>(D),
                                              /*follow*/ false));
    }

    auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
    llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());

    // If __weak, we want to use a barrier under certain conditions.
    if (lifetime == Qualifiers::OCL_Weak)
      EmitARCInitWeak(tempLV.getAddress(), zero);

    // Otherwise just do a simple store.
    else
      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
  }

  // Emit the initializer.
  llvm::Value *value = nullptr;

  switch (lifetime) {
  case Qualifiers::OCL_None:
    llvm_unreachable("present but none");

  case Qualifiers::OCL_Strong: {
    if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
      value = EmitARCRetainScalarExpr(init);
      break;
    }
    // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
    // that we omit the retain, and causes non-autoreleased return values to be
    // immediately released.
    LLVM_FALLTHROUGH;
  }

  case Qualifiers::OCL_ExplicitNone:
    value = EmitARCUnsafeUnretainedScalarExpr(init);
    break;

  case Qualifiers::OCL_Weak: {
    // If it's not accessed by the initializer, try to emit the
    // initialization with a copy or move.
    if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
      return;
    }

    // No way to optimize a producing initializer into this.  It's not
    // worth optimizing for, because the value will immediately
    // disappear in the common case.
    value = EmitScalarExpr(init);

    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    if (accessedByInit)
      EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
    else
      EmitARCInitWeak(lvalue.getAddress(), value);
    return;
  }

  case Qualifiers::OCL_Autoreleasing:
    value = EmitARCRetainAutoreleaseScalarExpr(init);
    break;
  }

  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));

  EmitNullabilityCheck(lvalue, value, init->getExprLoc());

  // If the variable might have been accessed by its initializer, we
  // might have to initialize with a barrier.  We have to do this for
  // both __weak and __strong, but __weak got filtered out above.
  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    EmitARCRelease(oldValue, ARCImpreciseLifetime);
    return;
  }

  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
}

/// Decide whether we can emit the non-zero parts of the specified initializer
/// with equal or fewer than NumStores scalar stores.
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
                                               unsigned &NumStores) {
  // Zero and Undef never requires any extra stores.
  if (isa<llvm::ConstantAggregateZero>(Init) ||
      isa<llvm::ConstantPointerNull>(Init) ||
      isa<llvm::UndefValue>(Init))
    return true;
  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
      isa<llvm::ConstantExpr>(Init))
    return Init->isNullValue() || NumStores--;

  // See if we can emit each element.
  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
        return false;
    }
    return true;
  }

  if (llvm::ConstantDataSequential *CDS =
        dyn_cast<llvm::ConstantDataSequential>(Init)) {
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      llvm::Constant *Elt = CDS->getElementAsConstant(i);
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
        return false;
    }
    return true;
  }

  // Anything else is hard and scary.
  return false;
}

/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
/// the scalar stores that would be required.
static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
                                        llvm::Constant *Init, Address Loc,
                                        bool isVolatile, CGBuilderTy &Builder) {
  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
         "called emitStoresForInitAfterBZero for zero or undef value.");

  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
      isa<llvm::ConstantExpr>(Init)) {
    Builder.CreateStore(Init, Loc, isVolatile);
    return;
  }

  if (llvm::ConstantDataSequential *CDS =
          dyn_cast<llvm::ConstantDataSequential>(Init)) {
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      llvm::Constant *Elt = CDS->getElementAsConstant(i);

      // If necessary, get a pointer to the element and emit it.
      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
        emitStoresForInitAfterBZero(
            CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
            Builder);
    }
    return;
  }

  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
         "Unknown value type!");

  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));

    // If necessary, get a pointer to the element and emit it.
    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
      emitStoresForInitAfterBZero(CGM, Elt,
                                  Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
                                  isVolatile, Builder);
  }
}

/// Decide whether we should use bzero plus some stores to initialize a local
/// variable instead of using a memcpy from a constant global.  It is beneficial
/// to use bzero if the global is all zeros, or mostly zeros and large.
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
                                                 uint64_t GlobalSize) {
  // If a global is all zeros, always use a bzero.
  if (isa<llvm::ConstantAggregateZero>(Init)) return true;

  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
  // do it if it will require 6 or fewer scalar stores.
  // TODO: Should budget depends on the size?  Avoiding a large global warrants
  // plopping in more stores.
  unsigned StoreBudget = 6;
  uint64_t SizeLimit = 32;

  return GlobalSize > SizeLimit &&
         canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
}

/// Decide whether we should use memset to initialize a local variable instead
/// of using a memcpy from a constant global. Assumes we've already decided to
/// not user bzero.
/// FIXME We could be more clever, as we are for bzero above, and generate
///       memset followed by stores. It's unclear that's worth the effort.
static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
                                                uint64_t GlobalSize,
                                                const llvm::DataLayout &DL) {
  uint64_t SizeLimit = 32;
  if (GlobalSize <= SizeLimit)
    return nullptr;
  return llvm::isBytewiseValue(Init, DL);
}

/// Decide whether we want to split a constant structure or array store into a
/// sequence of its fields' stores. This may cost us code size and compilation
/// speed, but plays better with store optimizations.
static bool shouldSplitConstantStore(CodeGenModule &CGM,
                                     uint64_t GlobalByteSize) {
  // Don't break things that occupy more than one cacheline.
  uint64_t ByteSizeLimit = 64;
  if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    return false;
  if (GlobalByteSize <= ByteSizeLimit)
    return true;
  return false;
}

enum class IsPattern { No, Yes };

/// Generate a constant filled with either a pattern or zeroes.
static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Type *Ty) {
  if (isPattern == IsPattern::Yes)
    return initializationPatternFor(CGM, Ty);
  else
    return llvm::Constant::getNullValue(Ty);
}

static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Constant *constant);

/// Helper function for constWithPadding() to deal with padding in structures.
static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
                                              IsPattern isPattern,
                                              llvm::StructType *STy,
                                              llvm::Constant *constant) {
  const llvm::DataLayout &DL = CGM.getDataLayout();
  const llvm::StructLayout *Layout = DL.getStructLayout(STy);
  llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
  unsigned SizeSoFar = 0;
  SmallVector<llvm::Constant *, 8> Values;
  bool NestedIntact = true;
  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
    unsigned CurOff = Layout->getElementOffset(i);
    if (SizeSoFar < CurOff) {
      assert(!STy->isPacked());
      auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
      Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
    }
    llvm::Constant *CurOp;
    if (constant->isZeroValue())
      CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
    else
      CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
    auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
    if (CurOp != NewOp)
      NestedIntact = false;
    Values.push_back(NewOp);
    SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
  }
  unsigned TotalSize = Layout->getSizeInBytes();
  if (SizeSoFar < TotalSize) {
    auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
    Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
  }
  if (NestedIntact && Values.size() == STy->getNumElements())
    return constant;
  return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
}

/// Replace all padding bytes in a given constant with either a pattern byte or
/// 0x00.
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Constant *constant) {
  llvm::Type *OrigTy = constant->getType();
  if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
    return constStructWithPadding(CGM, isPattern, STy, constant);
  if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
    llvm::SmallVector<llvm::Constant *, 8> Values;
    unsigned Size = STy->getNumElements();
    if (!Size)
      return constant;
    llvm::Type *ElemTy = STy->getElementType();
    bool ZeroInitializer = constant->isZeroValue();
    llvm::Constant *OpValue, *PaddedOp;
    if (ZeroInitializer) {
      OpValue = llvm::Constant::getNullValue(ElemTy);
      PaddedOp = constWithPadding(CGM, isPattern, OpValue);
    }
    for (unsigned Op = 0; Op != Size; ++Op) {
      if (!ZeroInitializer) {
        OpValue = constant->getAggregateElement(Op);
        PaddedOp = constWithPadding(CGM, isPattern, OpValue);
      }
      Values.push_back(PaddedOp);
    }
    auto *NewElemTy = Values[0]->getType();
    if (NewElemTy == ElemTy)
      return constant;
    if (OrigTy->isArrayTy()) {
      auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
      return llvm::ConstantArray::get(ArrayTy, Values);
    } else {
      return llvm::ConstantVector::get(Values);
    }
  }
  return constant;
}

Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
                                               llvm::Constant *Constant,
                                               CharUnits Align) {
  auto FunctionName = [&](const DeclContext *DC) -> std::string {
    if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
      if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
        return CC->getNameAsString();
      if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
        return CD->getNameAsString();
      return getMangledName(FD);
    } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
      return OM->getNameAsString();
    } else if (isa<BlockDecl>(DC)) {
      return "<block>";
    } else if (isa<CapturedDecl>(DC)) {
      return "<captured>";
    } else {
      llvm_unreachable("expected a function or method");
    }
  };

  // Form a simple per-variable cache of these values in case we find we
  // want to reuse them.
  llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
  if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
    auto *Ty = Constant->getType();
    bool isConstant = true;
    llvm::GlobalVariable *InsertBefore = nullptr;
    unsigned AS =
        getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
    std::string Name;
    if (D.hasGlobalStorage())
      Name = getMangledName(&D).str() + ".const";
    else if (const DeclContext *DC = D.getParentFunctionOrMethod())
      Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
    else
      llvm_unreachable("local variable has no parent function or method");
    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
        getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
        Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
    GV->setAlignment(Align.getQuantity());
    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    CacheEntry = GV;
  } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
    CacheEntry->setAlignment(Align.getQuantity());
  }

  return Address(CacheEntry, Align);
}

static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
                                                const VarDecl &D,
                                                CGBuilderTy &Builder,
                                                llvm::Constant *Constant,
                                                CharUnits Align) {
  Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
  llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
                                                   SrcPtr.getAddressSpace());
  if (SrcPtr.getType() != BP)
    SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
  return SrcPtr;
}

static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
                                  Address Loc, bool isVolatile,
                                  CGBuilderTy &Builder,
                                  llvm::Constant *constant) {
  auto *Ty = constant->getType();
  uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
  if (!ConstantSize)
    return;

  bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
                          Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
  if (canDoSingleStore) {
    Builder.CreateStore(constant, Loc, isVolatile);
    return;
  }

  auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);

  // If the initializer is all or mostly the same, codegen with bzero / memset
  // then do a few stores afterward.
  if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
                         isVolatile);

    bool valueAlreadyCorrect =
        constant->isNullValue() || isa<llvm::UndefValue>(constant);
    if (!valueAlreadyCorrect) {
      Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
      emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
    }
    return;
  }

  // If the initializer is a repeated byte pattern, use memset.
  llvm::Value *Pattern =
      shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
  if (Pattern) {
    uint64_t Value = 0x00;
    if (!isa<llvm::UndefValue>(Pattern)) {
      const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
      assert(AP.getBitWidth() <= 8);
      Value = AP.getLimitedValue();
    }
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
                         isVolatile);
    return;
  }

  // If the initializer is small, use a handful of stores.
  if (shouldSplitConstantStore(CGM, ConstantSize)) {
    if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
      // FIXME: handle the case when STy != Loc.getElementType().
      if (STy == Loc.getElementType()) {
        for (unsigned i = 0; i != constant->getNumOperands(); i++) {
          Address EltPtr = Builder.CreateStructGEP(Loc, i);
          emitStoresForConstant(
              CGM, D, EltPtr, isVolatile, Builder,
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
        }
        return;
      }
    } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
      // FIXME: handle the case when ATy != Loc.getElementType().
      if (ATy == Loc.getElementType()) {
        for (unsigned i = 0; i != ATy->getNumElements(); i++) {
          Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
          emitStoresForConstant(
              CGM, D, EltPtr, isVolatile, Builder,
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
        }
        return;
      }
    }
  }

  // Copy from a global.
  Builder.CreateMemCpy(Loc,
                       createUnnamedGlobalForMemcpyFrom(
                           CGM, D, Builder, constant, Loc.getAlignment()),
                       SizeVal, isVolatile);
}

static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
                                  Address Loc, bool isVolatile,
                                  CGBuilderTy &Builder) {
  llvm::Type *ElTy = Loc.getElementType();
  llvm::Constant *constant =
      constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}

static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
                                     Address Loc, bool isVolatile,
                                     CGBuilderTy &Builder) {
  llvm::Type *ElTy = Loc.getElementType();
  llvm::Constant *constant = constWithPadding(
      CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
  assert(!isa<llvm::UndefValue>(constant));
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}

static bool containsUndef(llvm::Constant *constant) {
  auto *Ty = constant->getType();
  if (isa<llvm::UndefValue>(constant))
    return true;
  if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
    for (llvm::Use &Op : constant->operands())
      if (containsUndef(cast<llvm::Constant>(Op)))
        return true;
  return false;
}

static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
                                    llvm::Constant *constant) {
  auto *Ty = constant->getType();
  if (isa<llvm::UndefValue>(constant))
    return patternOrZeroFor(CGM, isPattern, Ty);
  if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
    return constant;
  if (!containsUndef(constant))
    return constant;
  llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
  for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
    auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
    Values[Op] = replaceUndef(CGM, isPattern, OpValue);
  }
  if (Ty->isStructTy())
    return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
  if (Ty->isArrayTy())
    return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
  assert(Ty->isVectorTy());
  return llvm::ConstantVector::get(Values);
}

/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
/// variable declaration with auto, register, or no storage class specifier.
/// These turn into simple stack objects, or GlobalValues depending on target.
void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
  AutoVarEmission emission = EmitAutoVarAlloca(D);
  EmitAutoVarInit(emission);
  EmitAutoVarCleanups(emission);
}

/// Emit a lifetime.begin marker if some criteria are satisfied.
/// \return a pointer to the temporary size Value if a marker was emitted, null
/// otherwise
llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
                                                llvm::Value *Addr) {
  if (!ShouldEmitLifetimeMarkers)
    return nullptr;

  assert(Addr->getType()->getPointerAddressSpace() ==
             CGM.getDataLayout().getAllocaAddrSpace() &&
         "Pointer should be in alloca address space");
  llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
  llvm::CallInst *C =
      Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
  C->setDoesNotThrow();
  return SizeV;
}

void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
  assert(Addr->getType()->getPointerAddressSpace() ==
             CGM.getDataLayout().getAllocaAddrSpace() &&
         "Pointer should be in alloca address space");
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
  llvm::CallInst *C =
      Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
  C->setDoesNotThrow();
}

void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
    CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
  // For each dimension stores its QualType and corresponding
  // size-expression Value.
  SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
  SmallVector<IdentifierInfo *, 4> VLAExprNames;

  // Break down the array into individual dimensions.
  QualType Type1D = D.getType();
  while (getContext().getAsVariableArrayType(Type1D)) {
    auto VlaSize = getVLAElements1D(Type1D);
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
      Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
    else {
      // Generate a locally unique name for the size expression.
      Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
      SmallString<12> Buffer;
      StringRef NameRef = Name.toStringRef(Buffer);
      auto &Ident = getContext().Idents.getOwn(NameRef);
      VLAExprNames.push_back(&Ident);
      auto SizeExprAddr =
          CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
      Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
      Dimensions.emplace_back(SizeExprAddr.getPointer(),
                              Type1D.getUnqualifiedType());
    }
    Type1D = VlaSize.Type;
  }

  if (!EmitDebugInfo)
    return;

  // Register each dimension's size-expression with a DILocalVariable,
  // so that it can be used by CGDebugInfo when instantiating a DISubrange
  // to describe this array.
  unsigned NameIdx = 0;
  for (auto &VlaSize : Dimensions) {
    llvm::Metadata *MD;
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
      MD = llvm::ConstantAsMetadata::get(C);
    else {
      // Create an artificial VarDecl to generate debug info for.
      IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
      auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
      auto QT = getContext().getIntTypeForBitwidth(
          VlaExprTy->getScalarSizeInBits(), false);
      auto *ArtificialDecl = VarDecl::Create(
          getContext(), const_cast<DeclContext *>(D.getDeclContext()),
          D.getLocation(), D.getLocation(), NameIdent, QT,
          getContext().CreateTypeSourceInfo(QT), SC_Auto);
      ArtificialDecl->setImplicit();

      MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
                                         Builder);
    }
    assert(MD && "No Size expression debug node created");
    DI->registerVLASizeExpression(VlaSize.Type, MD);
  }
}

/// EmitAutoVarAlloca - Emit the alloca and debug information for a
/// local variable.  Does not emit initialization or destruction.
CodeGenFunction::AutoVarEmission
CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
  QualType Ty = D.getType();
  assert(
      Ty.getAddressSpace() == LangAS::Default ||
      (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));

  AutoVarEmission emission(D);

  bool isEscapingByRef = D.isEscapingByref();
  emission.IsEscapingByRef = isEscapingByRef;

  CharUnits alignment = getContext().getDeclAlign(&D);

  // If the type is variably-modified, emit all the VLA sizes for it.
  if (Ty->isVariablyModifiedType())
    EmitVariablyModifiedType(Ty);

  auto *DI = getDebugInfo();
  bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
                                 codegenoptions::LimitedDebugInfo;

  Address address = Address::invalid();
  Address AllocaAddr = Address::invalid();
  Address OpenMPLocalAddr =
      getLangOpts().OpenMP
          ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
          : Address::invalid();
  bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();

  if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
    address = OpenMPLocalAddr;
  } else if (Ty->isConstantSizeType()) {
    // If this value is an array or struct with a statically determinable
    // constant initializer, there are optimizations we can do.
    //
    // TODO: We should constant-evaluate the initializer of any variable,
    // as long as it is initialized by a constant expression. Currently,
    // isConstantInitializer produces wrong answers for structs with
    // reference or bitfield members, and a few other cases, and checking
    // for POD-ness protects us from some of these.
    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
        (D.isConstexpr() ||
         ((Ty.isPODType(getContext()) ||
           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
          D.getInit()->isConstantInitializer(getContext(), false)))) {

      // If the variable's a const type, and it's neither an NRVO
      // candidate nor a __block variable and has no mutable members,
      // emit it as a global instead.
      // Exception is if a variable is located in non-constant address space
      // in OpenCL.
      if ((!getLangOpts().OpenCL ||
           Ty.getAddressSpace() == LangAS::opencl_constant) &&
          (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
           !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);

        // Signal this condition to later callbacks.
        emission.Addr = Address::invalid();
        assert(emission.wasEmittedAsGlobal());
        return emission;
      }

      // Otherwise, tell the initialization code that we're in this case.
      emission.IsConstantAggregate = true;
    }

    // A normal fixed sized variable becomes an alloca in the entry block,
    // unless:
    // - it's an NRVO variable.
    // - we are compiling OpenMP and it's an OpenMP local variable.
    if (NRVO) {
      // The named return value optimization: allocate this variable in the
      // return slot, so that we can elide the copy when returning this
      // variable (C++0x [class.copy]p34).
      address = ReturnValue;

      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
        const auto *RD = RecordTy->getDecl();
        const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
        if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
            RD->isNonTrivialToPrimitiveDestroy()) {
          // Create a flag that is used to indicate when the NRVO was applied
          // to this variable. Set it to zero to indicate that NRVO was not
          // applied.
          llvm::Value *Zero = Builder.getFalse();
          Address NRVOFlag =
            CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
          EnsureInsertPoint();
          Builder.CreateStore(Zero, NRVOFlag);

          // Record the NRVO flag for this variable.
          NRVOFlags[&D] = NRVOFlag.getPointer();
          emission.NRVOFlag = NRVOFlag.getPointer();
        }
      }
    } else {
      CharUnits allocaAlignment;
      llvm::Type *allocaTy;
      if (isEscapingByRef) {
        auto &byrefInfo = getBlockByrefInfo(&D);
        allocaTy = byrefInfo.Type;
        allocaAlignment = byrefInfo.ByrefAlignment;
      } else {
        allocaTy = ConvertTypeForMem(Ty);
        allocaAlignment = alignment;
      }

      // Create the alloca.  Note that we set the name separately from
      // building the instruction so that it's there even in no-asserts
      // builds.
      address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
                                 /*ArraySize=*/nullptr, &AllocaAddr);

      // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
      // the catch parameter starts in the catchpad instruction, and we can't
      // insert code in those basic blocks.
      bool IsMSCatchParam =
          D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();

      // Emit a lifetime intrinsic if meaningful. There's no point in doing this
      // if we don't have a valid insertion point (?).
      if (HaveInsertPoint() && !IsMSCatchParam) {
        // If there's a jump into the lifetime of this variable, its lifetime
        // gets broken up into several regions in IR, which requires more work
        // to handle correctly. For now, just omit the intrinsics; this is a
        // rare case, and it's better to just be conservatively correct.
        // PR28267.
        //
        // We have to do this in all language modes if there's a jump past the
        // declaration. We also have to do it in C if there's a jump to an
        // earlier point in the current block because non-VLA lifetimes begin as
        // soon as the containing block is entered, not when its variables
        // actually come into scope; suppressing the lifetime annotations
        // completely in this case is unnecessarily pessimistic, but again, this
        // is rare.
        if (!Bypasses.IsBypassed(&D) &&
            !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
          uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
          emission.SizeForLifetimeMarkers =
              EmitLifetimeStart(size, AllocaAddr.getPointer());
        }
      } else {
        assert(!emission.useLifetimeMarkers());
      }
    }
  } else {
    EnsureInsertPoint();

    if (!DidCallStackSave) {
      // Save the stack.
      Address Stack =
        CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");

      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
      llvm::Value *V = Builder.CreateCall(F);
      Builder.CreateStore(V, Stack);

      DidCallStackSave = true;

      // Push a cleanup block and restore the stack there.
      // FIXME: in general circumstances, this should be an EH cleanup.
      pushStackRestore(NormalCleanup, Stack);
    }

    auto VlaSize = getVLASize(Ty);
    llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);

    // Allocate memory for the array.
    address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
                               &AllocaAddr);

    // If we have debug info enabled, properly describe the VLA dimensions for
    // this type by registering the vla size expression for each of the
    // dimensions.
    EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
  }

  setAddrOfLocalVar(&D, address);
  emission.Addr = address;
  emission.AllocaAddr = AllocaAddr;

  // Emit debug info for local var declaration.
  if (EmitDebugInfo && HaveInsertPoint()) {
    Address DebugAddr = address;
    bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
    DI->setLocation(D.getLocation());

    // If NRVO, use a pointer to the return address.
    if (UsePointerValue)
      DebugAddr = ReturnValuePointer;

    (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
                                        UsePointerValue);
  }

  if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
    EmitVarAnnotations(&D, address.getPointer());

  // Make sure we call @llvm.lifetime.end.
  if (emission.useLifetimeMarkers())
    EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
                                         emission.getOriginalAllocatedAddress(),
                                         emission.getSizeForLifetimeMarkers());

  return emission;
}

static bool isCapturedBy(const VarDecl &, const Expr *);

/// Determines whether the given __block variable is potentially
/// captured by the given statement.
static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
  if (const Expr *E = dyn_cast<Expr>(S))
    return isCapturedBy(Var, E);
  for (const Stmt *SubStmt : S->children())
    if (isCapturedBy(Var, SubStmt))
      return true;
  return false;
}

/// Determines whether the given __block variable is potentially
/// captured by the given expression.
static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
  // Skip the most common kinds of expressions that make
  // hierarchy-walking expensive.
  E = E->IgnoreParenCasts();

  if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
    const BlockDecl *Block = BE->getBlockDecl();
    for (const auto &I : Block->captures()) {
      if (I.getVariable() == &Var)
        return true;
    }

    // No need to walk into the subexpressions.
    return false;
  }

  if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    const CompoundStmt *CS = SE->getSubStmt();
    for (const auto *BI : CS->body())
      if (const auto *BIE = dyn_cast<Expr>(BI)) {
        if (isCapturedBy(Var, BIE))
          return true;
      }
      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
          // special case declarations
          for (const auto *I : DS->decls()) {
              if (const auto *VD = dyn_cast<VarDecl>((I))) {
                const Expr *Init = VD->getInit();
                if (Init && isCapturedBy(Var, Init))
                  return true;
              }
          }
      }
      else
        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
        // Later, provide code to poke into statements for capture analysis.
        return true;
    return false;
  }

  for (const Stmt *SubStmt : E->children())
    if (isCapturedBy(Var, SubStmt))
      return true;

  return false;
}

/// Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
  if (!Init)
    return true;

  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
      if (Constructor->isTrivial() &&
          Constructor->isDefaultConstructor() &&
          !Construct->requiresZeroInitialization())
        return true;

  return false;
}

void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
                                                      const VarDecl &D,
                                                      Address Loc) {
  auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
  CharUnits Size = getContext().getTypeSizeInChars(type);
  bool isVolatile = type.isVolatileQualified();
  if (!Size.isZero()) {
    switch (trivialAutoVarInit) {
    case LangOptions::TrivialAutoVarInitKind::Uninitialized:
      llvm_unreachable("Uninitialized handled by caller");
    case LangOptions::TrivialAutoVarInitKind::Zero:
      emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
      break;
    case LangOptions::TrivialAutoVarInitKind::Pattern:
      emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
      break;
    }
    return;
  }

  // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
  // them, so emit a memcpy with the VLA size to initialize each element.
  // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
  // will catch that code, but there exists code which generates zero-sized
  // VLAs. Be nice and initialize whatever they requested.
  const auto *VlaType = getContext().getAsVariableArrayType(type);
  if (!VlaType)
    return;
  auto VlaSize = getVLASize(VlaType);
  auto SizeVal = VlaSize.NumElts;
  CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
  switch (trivialAutoVarInit) {
  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
    llvm_unreachable("Uninitialized handled by caller");

  case LangOptions::TrivialAutoVarInitKind::Zero:
    if (!EltSize.isOne())
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
                         isVolatile);
    break;

  case LangOptions::TrivialAutoVarInitKind::Pattern: {
    llvm::Type *ElTy = Loc.getElementType();
    llvm::Constant *Constant = constWithPadding(
        CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
    CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
    llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
    llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
    llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
    llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
        SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
        "vla.iszerosized");
    Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
    EmitBlock(SetupBB);
    if (!EltSize.isOne())
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
    llvm::Value *BaseSizeInChars =
        llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
    Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
    llvm::Value *End =
        Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
    llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
    EmitBlock(LoopBB);
    llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
    Cur->addIncoming(Begin.getPointer(), OriginBB);
    CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
    Builder.CreateMemCpy(Address(Cur, CurAlign),
                         createUnnamedGlobalForMemcpyFrom(
                             CGM, D, Builder, Constant, ConstantAlign),
                         BaseSizeInChars, isVolatile);
    llvm::Value *Next =
        Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
    llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
    Builder.CreateCondBr(Done, ContBB, LoopBB);
    Cur->addIncoming(Next, LoopBB);
    EmitBlock(ContBB);
  } break;
  }
}

void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
  assert(emission.Variable && "emission was not valid!");

  // If this was emitted as a global constant, we're done.
  if (emission.wasEmittedAsGlobal()) return;

  const VarDecl &D = *emission.Variable;
  auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
  QualType type = D.getType();

  // If this local has an initializer, emit it now.
  const Expr *Init = D.getInit();

  // If we are at an unreachable point, we don't need to emit the initializer
  // unless it contains a label.
  if (!HaveInsertPoint()) {
    if (!Init || !ContainsLabel(Init)) return;
    EnsureInsertPoint();
  }

  // Initialize the structure of a __block variable.
  if (emission.IsEscapingByRef)
    emitByrefStructureInit(emission);

  // Initialize the variable here if it doesn't have a initializer and it is a
  // C struct that is non-trivial to initialize or an array containing such a
  // struct.
  if (!Init &&
      type.isNonTrivialToPrimitiveDefaultInitialize() ==
          QualType::PDIK_Struct) {
    LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
    if (emission.IsEscapingByRef)
      drillIntoBlockVariable(*this, Dst, &D);
    defaultInitNonTrivialCStructVar(Dst);
    return;
  }

  // Check whether this is a byref variable that's potentially
  // captured and moved by its own initializer.  If so, we'll need to
  // emit the initializer first, then copy into the variable.
  bool capturedByInit =
      Init && emission.IsEscapingByRef && isCapturedBy(D, Init);

  bool locIsByrefHeader = !capturedByInit;
  const Address Loc =
      locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;

  // Note: constexpr already initializes everything correctly.
  LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
      (D.isConstexpr()
           ? LangOptions::TrivialAutoVarInitKind::Uninitialized
           : (D.getAttr<UninitializedAttr>()
                  ? LangOptions::TrivialAutoVarInitKind::Uninitialized
                  : getContext().getLangOpts().getTrivialAutoVarInit()));

  auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
    if (trivialAutoVarInit ==
        LangOptions::TrivialAutoVarInitKind::Uninitialized)
      return;

    // Only initialize a __block's storage: we always initialize the header.
    if (emission.IsEscapingByRef && !locIsByrefHeader)
      Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);

    return emitZeroOrPatternForAutoVarInit(type, D, Loc);
  };

  if (isTrivialInitializer(Init))
    return initializeWhatIsTechnicallyUninitialized(Loc);

  llvm::Constant *constant = nullptr;
  if (emission.IsConstantAggregate ||
      D.mightBeUsableInConstantExpressions(getContext())) {
    assert(!capturedByInit && "constant init contains a capturing block?");
    constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
    if (constant && !constant->isZeroValue() &&
        (trivialAutoVarInit !=
         LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
      IsPattern isPattern =
          (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
              ? IsPattern::Yes
              : IsPattern::No;
      // C guarantees that brace-init with fewer initializers than members in
      // the aggregate will initialize the rest of the aggregate as-if it were
      // static initialization. In turn static initialization guarantees that
      // padding is initialized to zero bits. We could instead pattern-init if D
      // has any ImplicitValueInitExpr, but that seems to be unintuitive
      // behavior.
      constant = constWithPadding(CGM, IsPattern::No,
                                  replaceUndef(CGM, isPattern, constant));
    }
  }

  if (!constant) {
    initializeWhatIsTechnicallyUninitialized(Loc);
    LValue lv = MakeAddrLValue(Loc, type);
    lv.setNonGC(true);
    return EmitExprAsInit(Init, &D, lv, capturedByInit);
  }

  if (!emission.IsConstantAggregate) {
    // For simple scalar/complex initialization, store the value directly.
    LValue lv = MakeAddrLValue(Loc, type);
    lv.setNonGC(true);
    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
  }

  llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
  emitStoresForConstant(
      CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
      type.isVolatileQualified(), Builder, constant);
}

/// Emit an expression as an initializer for an object (variable, field, etc.)
/// at the given location.  The expression is not necessarily the normal
/// initializer for the object, and the address is not necessarily
/// its normal location.
///
/// \param init the initializing expression
/// \param D the object to act as if we're initializing
/// \param loc the address to initialize; its type is a pointer
///   to the LLVM mapping of the object's type
/// \param alignment the alignment of the address
/// \param capturedByInit true if \p D is a __block variable
///   whose address is potentially changed by the initializer
void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
                                     LValue lvalue, bool capturedByInit) {
  QualType type = D->getType();

  if (type->isReferenceType()) {
    RValue rvalue = EmitReferenceBindingToExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitStoreThroughLValue(rvalue, lvalue, true);
    return;
  }
  switch (getEvaluationKind(type)) {
  case TEK_Scalar:
    EmitScalarInit(init, D, lvalue, capturedByInit);
    return;
  case TEK_Complex: {
    ComplexPairTy complex = EmitComplexExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
    return;
  }
  case TEK_Aggregate:
    if (type->isAtomicType()) {
      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
    } else {
      AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
      if (isa<VarDecl>(D))
        Overlap = AggValueSlot::DoesNotOverlap;
      else if (auto *FD = dyn_cast<FieldDecl>(D))
        Overlap = getOverlapForFieldInit(FD);
      // TODO: how can we delay here if D is captured by its initializer?
      EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
                                              AggValueSlot::IsDestructed,
                                         AggValueSlot::DoesNotNeedGCBarriers,
                                              AggValueSlot::IsNotAliased,
                                              Overlap));
    }
    return;
  }
  llvm_unreachable("bad evaluation kind");
}

/// Enter a destroy cleanup for the given local variable.
void CodeGenFunction::emitAutoVarTypeCleanup(
                            const CodeGenFunction::AutoVarEmission &emission,
                            QualType::DestructionKind dtorKind) {
  assert(dtorKind != QualType::DK_none);

  // Note that for __block variables, we want to destroy the
  // original stack object, not the possibly forwarded object.
  Address addr = emission.getObjectAddress(*this);

  const VarDecl *var = emission.Variable;
  QualType type = var->getType();

  CleanupKind cleanupKind = NormalAndEHCleanup;
  CodeGenFunction::Destroyer *destroyer = nullptr;

  switch (dtorKind) {
  case QualType::DK_none:
    llvm_unreachable("no cleanup for trivially-destructible variable");

  case QualType::DK_cxx_destructor:
    // If there's an NRVO flag on the emission, we need a different
    // cleanup.
    if (emission.NRVOFlag) {
      assert(!type->isArrayType());
      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
      EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
                                                  emission.NRVOFlag);
      return;
    }
    break;

  case QualType::DK_objc_strong_lifetime:
    // Suppress cleanups for pseudo-strong variables.
    if (var->isARCPseudoStrong()) return;

    // Otherwise, consider whether to use an EH cleanup or not.
    cleanupKind = getARCCleanupKind();

    // Use the imprecise destroyer by default.
    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
      destroyer = CodeGenFunction::destroyARCStrongImprecise;
    break;

  case QualType::DK_objc_weak_lifetime:
    break;

  case QualType::DK_nontrivial_c_struct:
    destroyer = CodeGenFunction::destroyNonTrivialCStruct;
    if (emission.NRVOFlag) {
      assert(!type->isArrayType());
      EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
                                                emission.NRVOFlag, type);
      return;
    }
    break;
  }

  // If we haven't chosen a more specific destroyer, use the default.
  if (!destroyer) destroyer = getDestroyer(dtorKind);

  // Use an EH cleanup in array destructors iff the destructor itself
  // is being pushed as an EH cleanup.
  bool useEHCleanup = (cleanupKind & EHCleanup);
  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
                                     useEHCleanup);
}

void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
  assert(emission.Variable && "emission was not valid!");

  // If this was emitted as a global constant, we're done.
  if (emission.wasEmittedAsGlobal()) return;

  // If we don't have an insertion point, we're done.  Sema prevents
  // us from jumping into any of these scopes anyway.
  if (!HaveInsertPoint()) return;

  const VarDecl &D = *emission.Variable;

  // Check the type for a cleanup.
  if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
    emitAutoVarTypeCleanup(emission, dtorKind);

  // In GC mode, honor objc_precise_lifetime.
  if (getLangOpts().getGC() != LangOptions::NonGC &&
      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
  }

  // Handle the cleanup attribute.
  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
    const FunctionDecl *FD = CA->getFunctionDecl();

    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
    assert(F && "Could not find function!");

    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
  }

  // If this is a block variable, call _Block_object_destroy
  // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
  // mode.
  if (emission.IsEscapingByRef &&
      CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
    BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
    if (emission.Variable->getType().isObjCGCWeak())
      Flags |= BLOCK_FIELD_IS_WEAK;
    enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
                      /*LoadBlockVarAddr*/ false,
                      cxxDestructorCanThrow(emission.Variable->getType()));
  }
}

CodeGenFunction::Destroyer *
CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
  switch (kind) {
  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
  case QualType::DK_cxx_destructor:
    return destroyCXXObject;
  case QualType::DK_objc_strong_lifetime:
    return destroyARCStrongPrecise;
  case QualType::DK_objc_weak_lifetime:
    return destroyARCWeak;
  case QualType::DK_nontrivial_c_struct:
    return destroyNonTrivialCStruct;
  }
  llvm_unreachable("Unknown DestructionKind");
}

/// pushEHDestroy - Push the standard destructor for the given type as
/// an EH-only cleanup.
void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
                                    Address addr, QualType type) {
  assert(dtorKind && "cannot push destructor for trivial type");
  assert(needsEHCleanup(dtorKind));

  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
}

/// pushDestroy - Push the standard destructor for the given type as
/// at least a normal cleanup.
void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
                                  Address addr, QualType type) {
  assert(dtorKind && "cannot push destructor for trivial type");

  CleanupKind cleanupKind = getCleanupKind(dtorKind);
  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
              cleanupKind & EHCleanup);
}

void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
                                  QualType type, Destroyer *destroyer,
                                  bool useEHCleanupForArray) {
  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
                                     destroyer, useEHCleanupForArray);
}

void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
}

void CodeGenFunction::pushLifetimeExtendedDestroy(
    CleanupKind cleanupKind, Address addr, QualType type,
    Destroyer *destroyer, bool useEHCleanupForArray) {
  // Push an EH-only cleanup for the object now.
  // FIXME: When popping normal cleanups, we need to keep this EH cleanup
  // around in case a temporary's destructor throws an exception.
  if (cleanupKind & EHCleanup)
    EHStack.pushCleanup<DestroyObject>(
        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
        destroyer, useEHCleanupForArray);

  // Remember that we need to push a full cleanup for the object at the
  // end of the full-expression.
  pushCleanupAfterFullExpr<DestroyObject>(
      cleanupKind, addr, type, destroyer, useEHCleanupForArray);
}

/// emitDestroy - Immediately perform the destruction of the given
/// object.
///
/// \param addr - the address of the object; a type*
/// \param type - the type of the object; if an array type, all
///   objects are destroyed in reverse order
/// \param destroyer - the function to call to destroy individual
///   elements
/// \param useEHCleanupForArray - whether an EH cleanup should be
///   used when destroying array elements, in case one of the
///   destructions throws an exception
void CodeGenFunction::emitDestroy(Address addr, QualType type,
                                  Destroyer *destroyer,
                                  bool useEHCleanupForArray) {
  const ArrayType *arrayType = getContext().getAsArrayType(type);
  if (!arrayType)
    return destroyer(*this, addr, type);

  llvm::Value *length = emitArrayLength(arrayType, type, addr);

  CharUnits elementAlign =
    addr.getAlignment()
        .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));

  // Normally we have to check whether the array is zero-length.
  bool checkZeroLength = true;

  // But if the array length is constant, we can suppress that.
  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
    // ...and if it's constant zero, we can just skip the entire thing.
    if (constLength->isZero()) return;
    checkZeroLength = false;
  }

  llvm::Value *begin = addr.getPointer();
  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
  emitArrayDestroy(begin, end, type, elementAlign, destroyer,
                   checkZeroLength, useEHCleanupForArray);
}

/// emitArrayDestroy - Destroys all the elements of the given array,
/// beginning from last to first.  The array cannot be zero-length.
///
/// \param begin - a type* denoting the first element of the array
/// \param end - a type* denoting one past the end of the array
/// \param elementType - the element type of the array
/// \param destroyer - the function to call to destroy elements
/// \param useEHCleanup - whether to push an EH cleanup to destroy
///   the remaining elements in case the destruction of a single
///   element throws
void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
                                       llvm::Value *end,
                                       QualType elementType,
                                       CharUnits elementAlign,
                                       Destroyer *destroyer,
                                       bool checkZeroLength,
                                       bool useEHCleanup) {
  assert(!elementType->isArrayType());

  // The basic structure here is a do-while loop, because we don't
  // need to check for the zero-element case.
  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");

  if (checkZeroLength) {
    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
                                                "arraydestroy.isempty");
    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
  }

  // Enter the loop body, making that address the current address.
  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
  EmitBlock(bodyBB);
  llvm::PHINode *elementPast =
    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
  elementPast->addIncoming(end, entryBB);

  // Shift the address back by one element.
  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
                                                   "arraydestroy.element");

  if (useEHCleanup)
    pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
                                   destroyer);

  // Perform the actual destruction there.
  destroyer(*this, Address(element, elementAlign), elementType);

  if (useEHCleanup)
    PopCleanupBlock();

  // Check whether we've reached the end.
  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
  Builder.CreateCondBr(done, doneBB, bodyBB);
  elementPast->addIncoming(element, Builder.GetInsertBlock());

  // Done.
  EmitBlock(doneBB);
}

/// Perform partial array destruction as if in an EH cleanup.  Unlike
/// emitArrayDestroy, the element type here may still be an array type.
static void emitPartialArrayDestroy(CodeGenFunction &CGF,
                                    llvm::Value *begin, llvm::Value *end,
                                    QualType type, CharUnits elementAlign,
                                    CodeGenFunction::Destroyer *destroyer) {
  // If the element type is itself an array, drill down.
  unsigned arrayDepth = 0;
  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
    // VLAs don't require a GEP index to walk into.
    if (!isa<VariableArrayType>(arrayType))
      arrayDepth++;
    type = arrayType->getElementType();
  }

  if (arrayDepth) {
    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);

    SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
  }

  // Destroy the array.  We don't ever need an EH cleanup because we
  // assume that we're in an EH cleanup ourselves, so a throwing
  // destructor causes an immediate terminate.
  CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
}

namespace {
  /// RegularPartialArrayDestroy - a cleanup which performs a partial
  /// array destroy where the end pointer is regularly determined and
  /// does not need to be loaded from a local.
  class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
    llvm::Value *ArrayBegin;
    llvm::Value *ArrayEnd;
    QualType ElementType;
    CodeGenFunction::Destroyer *Destroyer;
    CharUnits ElementAlign;
  public:
    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
                               QualType elementType, CharUnits elementAlign,
                               CodeGenFunction::Destroyer *destroyer)
      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
        ElementType(elementType), Destroyer(destroyer),
        ElementAlign(elementAlign) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
                              ElementType, ElementAlign, Destroyer);
    }
  };

  /// IrregularPartialArrayDestroy - a cleanup which performs a
  /// partial array destroy where the end pointer is irregularly
  /// determined and must be loaded from a local.
  class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
    llvm::Value *ArrayBegin;
    Address ArrayEndPointer;
    QualType ElementType;
    CodeGenFunction::Destroyer *Destroyer;
    CharUnits ElementAlign;
  public:
    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
                                 Address arrayEndPointer,
                                 QualType elementType,
                                 CharUnits elementAlign,
                                 CodeGenFunction::Destroyer *destroyer)
      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
        ElementType(elementType), Destroyer(destroyer),
        ElementAlign(elementAlign) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
                              ElementType, ElementAlign, Destroyer);
    }
  };
} // end anonymous namespace

/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array.  The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
///   possibly still an array type
void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
                                                       Address arrayEndPointer,
                                                       QualType elementType,
                                                       CharUnits elementAlign,
                                                       Destroyer *destroyer) {
  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
                                                    arrayBegin, arrayEndPointer,
                                                    elementType, elementAlign,
                                                    destroyer);
}

/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array.  The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
///   possibly still an array type
void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
                                                     llvm::Value *arrayEnd,
                                                     QualType elementType,
                                                     CharUnits elementAlign,
                                                     Destroyer *destroyer) {
  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
                                                  arrayBegin, arrayEnd,
                                                  elementType, elementAlign,
                                                  destroyer);
}

/// Lazily declare the @llvm.lifetime.start intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
  if (LifetimeStartFn)
    return LifetimeStartFn;
  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
    llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
  return LifetimeStartFn;
}

/// Lazily declare the @llvm.lifetime.end intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
  if (LifetimeEndFn)
    return LifetimeEndFn;
  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
    llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
  return LifetimeEndFn;
}

namespace {
  /// A cleanup to perform a release of an object at the end of a
  /// function.  This is used to balance out the incoming +1 of a
  /// ns_consumed argument when we can't reasonably do that just by
  /// not doing the initial retain for a __block argument.
  struct ConsumeARCParameter final : EHScopeStack::Cleanup {
    ConsumeARCParameter(llvm::Value *param,
                        ARCPreciseLifetime_t precise)
      : Param(param), Precise(precise) {}

    llvm::Value *Param;
    ARCPreciseLifetime_t Precise;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitARCRelease(Param, Precise);
    }
  };
} // end anonymous namespace

/// Emit an alloca (or GlobalValue depending on target)
/// for the specified parameter and set up LocalDeclMap.
void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
                                   unsigned ArgNo) {
  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
         "Invalid argument to EmitParmDecl");

  Arg.getAnyValue()->setName(D.getName());

  QualType Ty = D.getType();

  // Use better IR generation for certain implicit parameters.
  if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
    // The only implicit argument a block has is its literal.
    // This may be passed as an inalloca'ed value on Windows x86.
    if (BlockInfo) {
      llvm::Value *V = Arg.isIndirect()
                           ? Builder.CreateLoad(Arg.getIndirectAddress())
                           : Arg.getDirectValue();
      setBlockContextParameter(IPD, ArgNo, V);
      return;
    }
  }

  Address DeclPtr = Address::invalid();
  bool DoStore = false;
  bool IsScalar = hasScalarEvaluationKind(Ty);
  // If we already have a pointer to the argument, reuse the input pointer.
  if (Arg.isIndirect()) {
    DeclPtr = Arg.getIndirectAddress();
    // If we have a prettier pointer type at this point, bitcast to that.
    unsigned AS = DeclPtr.getType()->getAddressSpace();
    llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
    if (DeclPtr.getType() != IRTy)
      DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
    // Indirect argument is in alloca address space, which may be different
    // from the default address space.
    auto AllocaAS = CGM.getASTAllocaAddressSpace();
    auto *V = DeclPtr.getPointer();
    auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
    auto DestLangAS =
        getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
    if (SrcLangAS != DestLangAS) {
      assert(getContext().getTargetAddressSpace(SrcLangAS) ==
             CGM.getDataLayout().getAllocaAddrSpace());
      auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
      auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
      DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
                            *this, V, SrcLangAS, DestLangAS, T, true),
                        DeclPtr.getAlignment());
    }

    // Push a destructor cleanup for this parameter if the ABI requires it.
    // Don't push a cleanup in a thunk for a method that will also emit a
    // cleanup.
    if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
        Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
      if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
        assert((DtorKind == QualType::DK_cxx_destructor ||
                DtorKind == QualType::DK_nontrivial_c_struct) &&
               "unexpected destructor type");
        pushDestroy(DtorKind, DeclPtr, Ty);
        CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
            EHStack.stable_begin();
      }
    }
  } else {
    // Check if the parameter address is controlled by OpenMP runtime.
    Address OpenMPLocalAddr =
        getLangOpts().OpenMP
            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
            : Address::invalid();
    if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
      DeclPtr = OpenMPLocalAddr;
    } else {
      // Otherwise, create a temporary to hold the value.
      DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
                              D.getName() + ".addr");
    }
    DoStore = true;
  }

  llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);

  LValue lv = MakeAddrLValue(DeclPtr, Ty);
  if (IsScalar) {
    Qualifiers qs = Ty.getQualifiers();
    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
      // We honor __attribute__((ns_consumed)) for types with lifetime.
      // For __strong, it's handled by just skipping the initial retain;
      // otherwise we have to balance out the initial +1 with an extra
      // cleanup to do the release at the end of the function.
      bool isConsumed = D.hasAttr<NSConsumedAttr>();

      // If a parameter is pseudo-strong then we can omit the implicit retain.
      if (D.isARCPseudoStrong()) {
        assert(lt == Qualifiers::OCL_Strong &&
               "pseudo-strong variable isn't strong?");
        assert(qs.hasConst() && "pseudo-strong variable should be const!");
        lt = Qualifiers::OCL_ExplicitNone;
      }

      // Load objects passed indirectly.
      if (Arg.isIndirect() && !ArgVal)
        ArgVal = Builder.CreateLoad(DeclPtr);

      if (lt == Qualifiers::OCL_Strong) {
        if (!isConsumed) {
          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
            // use objc_storeStrong(&dest, value) for retaining the
            // object. But first, store a null into 'dest' because
            // objc_storeStrong attempts to release its old value.
            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
            EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
            DoStore = false;
          }
          else
          // Don't use objc_retainBlock for block pointers, because we
          // don't want to Block_copy something just because we got it
          // as a parameter.
            ArgVal = EmitARCRetainNonBlock(ArgVal);
        }
      } else {
        // Push the cleanup for a consumed parameter.
        if (isConsumed) {
          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
                                                   precise);
        }

        if (lt == Qualifiers::OCL_Weak) {
          EmitARCInitWeak(DeclPtr, ArgVal);
          DoStore = false; // The weak init is a store, no need to do two.
        }
      }

      // Enter the cleanup scope.
      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
    }
  }

  // Store the initial value into the alloca.
  if (DoStore)
    EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);

  setAddrOfLocalVar(&D, DeclPtr);

  // Emit debug info for param declaration.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (CGM.getCodeGenOpts().getDebugInfo() >=
        codegenoptions::LimitedDebugInfo) {
      DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
    }
  }

  if (D.hasAttr<AnnotateAttr>())
    EmitVarAnnotations(&D, DeclPtr.getPointer());

  // We can only check return value nullability if all arguments to the
  // function satisfy their nullability preconditions. This makes it necessary
  // to emit null checks for args in the function body itself.
  if (requiresReturnValueNullabilityCheck()) {
    auto Nullability = Ty->getNullability(getContext());
    if (Nullability && *Nullability == NullabilityKind::NonNull) {
      SanitizerScope SanScope(this);
      RetValNullabilityPrecondition =
          Builder.CreateAnd(RetValNullabilityPrecondition,
                            Builder.CreateIsNotNull(Arg.getAnyValue()));
    }
  }
}

void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
                                            CodeGenFunction *CGF) {
  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
    return;
  getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
}

void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
                                            CodeGenFunction *CGF) {
  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
    return;
  // FIXME: need to implement mapper code generation
}

void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
  getOpenMPRuntime().checkArchForUnifiedAddressing(D);
}