aboutsummaryrefslogtreecommitdiffstats
path: root/include/lldb/Utility/ReproducerInstrumentation.h
blob: f90ce4bc767a3b213c56a4ee27122bb89ffd24e5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
//===-- ReproducerInstrumentation.h -----------------------------*- C++ -*-===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLDB_UTILITY_REPRODUCER_INSTRUMENTATION_H
#define LLDB_UTILITY_REPRODUCER_INSTRUMENTATION_H

#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Logging.h"

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"

#include <iostream>
#include <map>
#include <type_traits>

template <typename T,
          typename std::enable_if<std::is_fundamental<T>::value, int>::type = 0>
inline void stringify_append(llvm::raw_string_ostream &ss, const T &t) {
  ss << t;
}

template <typename T, typename std::enable_if<!std::is_fundamental<T>::value,
                                              int>::type = 0>
inline void stringify_append(llvm::raw_string_ostream &ss, const T &t) {
  ss << &t;
}

template <typename T>
inline void stringify_append(llvm::raw_string_ostream &ss, const T *t) {
  ss << reinterpret_cast<const void *>(t);
}

template <>
inline void stringify_append<char>(llvm::raw_string_ostream &ss,
                                   const char *t) {
  ss << t;
}

template <typename Head>
inline void stringify_helper(llvm::raw_string_ostream &ss, const Head &head) {
  stringify_append(ss, head);
}

template <typename Head, typename... Tail>
inline void stringify_helper(llvm::raw_string_ostream &ss, const Head &head,
                             const Tail &... tail) {
  stringify_append(ss, head);
  ss << ", ";
  stringify_helper(ss, tail...);
}

template <typename... Ts> inline std::string stringify_args(const Ts &... ts) {
  std::string buffer;
  llvm::raw_string_ostream ss(buffer);
  stringify_helper(ss, ts...);
  return ss.str();
}

// Define LLDB_REPRO_INSTR_TRACE to trace to stderr instead of LLDB's log
// infrastructure. This is useful when you need to see traces before the logger
// is initialized or enabled.
// #define LLDB_REPRO_INSTR_TRACE

#define LLDB_REGISTER_CONSTRUCTOR(Class, Signature)                            \
  R.Register<Class * Signature>(&construct<Class Signature>::doit, "", #Class, \
                                #Class, #Signature)
#define LLDB_REGISTER_METHOD(Result, Class, Method, Signature)                 \
  R.Register(                                                                  \
      &invoke<Result(Class::*) Signature>::method<(&Class::Method)>::doit,     \
      #Result, #Class, #Method, #Signature)
#define LLDB_REGISTER_METHOD_CONST(Result, Class, Method, Signature)           \
  R.Register(&invoke<Result(Class::*) Signature const>::method_const<(         \
                 &Class::Method)>::doit,                                       \
             #Result, #Class, #Method, #Signature)
#define LLDB_REGISTER_STATIC_METHOD(Result, Class, Method, Signature)          \
  R.Register<Result Signature>(                                                \
      static_cast<Result(*) Signature>(&Class::Method), #Result, #Class,       \
      #Method, #Signature)

#define LLDB_RECORD_CONSTRUCTOR(Class, Signature, ...)                         \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));      \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       &lldb_private::repro::construct<Class Signature>::doit, \
                       __VA_ARGS__);                                           \
    sb_recorder.RecordResult(this);                                            \
  }

#define LLDB_RECORD_CONSTRUCTOR_NO_ARGS(Class)                                 \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);             \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       &lldb_private::repro::construct<Class()>::doit);        \
    sb_recorder.RecordResult(this);                                            \
  }

#define LLDB_RECORD_METHOD(Result, Class, Method, Signature, ...)              \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));      \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(                                                        \
        data.GetSerializer(), data.GetRegistry(),                              \
        &lldb_private::repro::invoke<Result(Class::*) Signature>::method<(     \
            &Class::Method)>::doit,                                            \
        this, __VA_ARGS__);                                                    \
  }

#define LLDB_RECORD_METHOD_CONST(Result, Class, Method, Signature, ...)        \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));      \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(                                                        \
        data.GetSerializer(), data.GetRegistry(),                              \
        &lldb_private::repro::invoke<Result(                                   \
            Class::*) Signature const>::method_const<(&Class::Method)>::doit,  \
        this, __VA_ARGS__);                                                    \
  }

#define LLDB_RECORD_METHOD_NO_ARGS(Result, Class, Method)                      \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);             \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       &lldb_private::repro::invoke<Result (                   \
                           Class::*)()>::method<(&Class::Method)>::doit,       \
                       this);                                                  \
  }

#define LLDB_RECORD_METHOD_CONST_NO_ARGS(Result, Class, Method)                \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);             \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(                                                        \
        data.GetSerializer(), data.GetRegistry(),                              \
        &lldb_private::repro::invoke<Result (                                  \
            Class::*)() const>::method_const<(&Class::Method)>::doit,          \
        this);                                                                 \
  }

#define LLDB_RECORD_STATIC_METHOD(Result, Class, Method, Signature, ...)       \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));      \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       static_cast<Result(*) Signature>(&Class::Method),       \
                       __VA_ARGS__);                                           \
  }

#define LLDB_RECORD_STATIC_METHOD_NO_ARGS(Result, Class, Method)               \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);             \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       static_cast<Result (*)()>(&Class::Method));             \
  }

#define LLDB_RECORD_RESULT(Result) sb_recorder.RecordResult(Result);

/// The LLDB_RECORD_DUMMY macro is special because it doesn't actually record
/// anything. It's used to track API boundaries when we cannot record for
/// technical reasons.
#define LLDB_RECORD_DUMMY(Result, Class, Method, Signature, ...)               \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));

namespace lldb_private {
namespace repro {

/// Mapping between serialized indices and their corresponding objects.
///
/// This class is used during replay to map indices back to in-memory objects.
///
/// When objects are constructed, they are added to this mapping using
/// AddObjectForIndex.
///
/// When an object is passed to a function, its index is deserialized and
/// AddObjectForIndex returns the corresponding object. If there is no object
/// for the given index, a nullptr is returend. The latter is valid when custom
/// replay code is in place and the actual object is ignored.
class IndexToObject {
public:
  /// Returns an object as a pointer for the given index or nullptr if not
  /// present in the map.
  template <typename T> T *GetObjectForIndex(unsigned idx) {
    assert(idx != 0 && "Cannot get object for sentinel");
    void *object = GetObjectForIndexImpl(idx);
    return static_cast<T *>(object);
  }

  /// Adds a pointer to an object to the mapping for the given index.
  template <typename T> void AddObjectForIndex(unsigned idx, T *object) {
    AddObjectForIndexImpl(
        idx, static_cast<void *>(
                 const_cast<typename std::remove_const<T>::type *>(object)));
  }

  /// Adds a reference to an object to the mapping for the given index.
  template <typename T> void AddObjectForIndex(unsigned idx, T &object) {
    AddObjectForIndexImpl(
        idx, static_cast<void *>(
                 const_cast<typename std::remove_const<T>::type *>(&object)));
  }

private:
  /// Helper method that does the actual lookup. The void* result is later cast
  /// by the caller.
  void *GetObjectForIndexImpl(unsigned idx);

  /// Helper method that does the actual insertion.
  void AddObjectForIndexImpl(unsigned idx, void *object);

  /// Keeps a mapping between indices and their corresponding object.
  llvm::DenseMap<unsigned, void *> m_mapping;
};

/// We need to differentiate between pointers to fundamental and
/// non-fundamental types. See the corresponding Deserializer::Read method
/// for the reason why.
struct PointerTag {};
struct ReferenceTag {};
struct ValueTag {};
struct FundamentalPointerTag {};
struct FundamentalReferenceTag {};

/// Return the deserialization tag for the given type T.
template <class T> struct serializer_tag { typedef ValueTag type; };
template <class T> struct serializer_tag<T *> {
  typedef
      typename std::conditional<std::is_fundamental<T>::value,
                                FundamentalPointerTag, PointerTag>::type type;
};
template <class T> struct serializer_tag<T &> {
  typedef typename std::conditional<std::is_fundamental<T>::value,
                                    FundamentalReferenceTag, ReferenceTag>::type
      type;
};

/// Deserializes data from a buffer. It is used to deserialize function indices
/// to replay, their arguments and return values.
///
/// Fundamental types and strings are read by value. Objects are read by their
/// index, which get translated by the IndexToObject mapping maintained in
/// this class.
///
/// Additional bookkeeping with regards to the IndexToObject is required to
/// deserialize objects. When a constructor is run or an object is returned by
/// value, we need to capture the object and add it to the index together with
/// its index. This is the job of HandleReplayResult(Void).
class Deserializer {
public:
  Deserializer(llvm::StringRef buffer) : m_buffer(buffer) {}

  /// Returns true when the buffer has unread data.
  bool HasData(unsigned size) { return size <= m_buffer.size(); }

  /// Deserialize and interpret value as T.
  template <typename T> T Deserialize() {
#ifdef LLDB_REPRO_INSTR_TRACE
    llvm::errs() << "Deserializing with " << LLVM_PRETTY_FUNCTION << "\n";
#endif
    return Read<T>(typename serializer_tag<T>::type());
  }

  /// Store the returned value in the index-to-object mapping.
  template <typename T> void HandleReplayResult(const T &t) {
    unsigned result = Deserialize<unsigned>();
    if (std::is_fundamental<T>::value)
      return;
    // We need to make a copy as the original object might go out of scope.
    m_index_to_object.AddObjectForIndex(result, new T(t));
  }

  /// Store the returned value in the index-to-object mapping.
  template <typename T> void HandleReplayResult(T *t) {
    unsigned result = Deserialize<unsigned>();
    if (std::is_fundamental<T>::value)
      return;
    m_index_to_object.AddObjectForIndex(result, t);
  }

  /// All returned types are recorded, even when the function returns a void.
  /// The latter requires special handling.
  void HandleReplayResultVoid() {
    unsigned result = Deserialize<unsigned>();
    assert(result == 0);
    (void)result;
  }

private:
  template <typename T> T Read(ValueTag) {
    assert(HasData(sizeof(T)));
    T t;
    std::memcpy(reinterpret_cast<char *>(&t), m_buffer.data(), sizeof(T));
    m_buffer = m_buffer.drop_front(sizeof(T));
    return t;
  }

  template <typename T> T Read(PointerTag) {
    typedef typename std::remove_pointer<T>::type UnderlyingT;
    return m_index_to_object.template GetObjectForIndex<UnderlyingT>(
        Deserialize<unsigned>());
  }

  template <typename T> T Read(ReferenceTag) {
    typedef typename std::remove_reference<T>::type UnderlyingT;
    // If this is a reference to a fundamental type we just read its value.
    return *m_index_to_object.template GetObjectForIndex<UnderlyingT>(
        Deserialize<unsigned>());
  }

  /// This method is used to parse references to fundamental types. Because
  /// they're not recorded in the object table we have serialized their value.
  /// We read its value, allocate a copy on the heap, and return a pointer to
  /// the copy.
  template <typename T> T Read(FundamentalPointerTag) {
    typedef typename std::remove_pointer<T>::type UnderlyingT;
    return new UnderlyingT(Deserialize<UnderlyingT>());
  }

  /// This method is used to parse references to fundamental types. Because
  /// they're not recorded in the object table we have serialized their value.
  /// We read its value, allocate a copy on the heap, and return a reference to
  /// the copy.
  template <typename T> T Read(FundamentalReferenceTag) {
    // If this is a reference to a fundamental type we just read its value.
    typedef typename std::remove_reference<T>::type UnderlyingT;
    return *(new UnderlyingT(Deserialize<UnderlyingT>()));
  }

  /// Mapping of indices to objects.
  IndexToObject m_index_to_object;

  /// Buffer containing the serialized data.
  llvm::StringRef m_buffer;
};

/// Partial specialization for C-style strings. We read the string value
/// instead of treating it as pointer.
template <> const char *Deserializer::Deserialize<const char *>();
template <> char *Deserializer::Deserialize<char *>();

/// Helpers to auto-synthesize function replay code. It deserializes the replay
/// function's arguments one by one and finally calls the corresponding
/// function.
template <typename... Remaining> struct DeserializationHelper;

template <typename Head, typename... Tail>
struct DeserializationHelper<Head, Tail...> {
  template <typename Result, typename... Deserialized> struct deserialized {
    static Result doit(Deserializer &deserializer,
                       Result (*f)(Deserialized..., Head, Tail...),
                       Deserialized... d) {
      return DeserializationHelper<Tail...>::
          template deserialized<Result, Deserialized..., Head>::doit(
              deserializer, f, d..., deserializer.Deserialize<Head>());
    }
  };
};

template <> struct DeserializationHelper<> {
  template <typename Result, typename... Deserialized> struct deserialized {
    static Result doit(Deserializer &deserializer, Result (*f)(Deserialized...),
                       Deserialized... d) {
      return f(d...);
    }
  };
};

/// The replayer interface.
struct Replayer {
  virtual ~Replayer() {}
  virtual void operator()(Deserializer &deserializer) const = 0;
};

/// The default replayer deserializes the arguments and calls the function.
template <typename Signature> struct DefaultReplayer;
template <typename Result, typename... Args>
struct DefaultReplayer<Result(Args...)> : public Replayer {
  DefaultReplayer(Result (*f)(Args...)) : Replayer(), f(f) {}

  void operator()(Deserializer &deserializer) const override {
    deserializer.HandleReplayResult(
        DeserializationHelper<Args...>::template deserialized<Result>::doit(
            deserializer, f));
  }

  Result (*f)(Args...);
};

/// Partial specialization for function returning a void type. It ignores the
/// (absent) return value.
template <typename... Args>
struct DefaultReplayer<void(Args...)> : public Replayer {
  DefaultReplayer(void (*f)(Args...)) : Replayer(), f(f) {}

  void operator()(Deserializer &deserializer) const override {
    DeserializationHelper<Args...>::template deserialized<void>::doit(
        deserializer, f);
    deserializer.HandleReplayResultVoid();
  }

  void (*f)(Args...);
};

/// The registry contains a unique mapping between functions and their ID. The
/// IDs can be serialized and deserialized to replay a function. Functions need
/// to be registered with the registry for this to work.
class Registry {
private:
  struct SignatureStr {
    SignatureStr(llvm::StringRef result = {}, llvm::StringRef scope = {},
                 llvm::StringRef name = {}, llvm::StringRef args = {})
        : result(result), scope(scope), name(name), args(args) {}

    std::string ToString() const;

    llvm::StringRef result;
    llvm::StringRef scope;
    llvm::StringRef name;
    llvm::StringRef args;
  };

public:
  Registry() = default;
  virtual ~Registry() = default;

  /// Register a default replayer for a function.
  template <typename Signature>
  void Register(Signature *f, llvm::StringRef result = {},
                llvm::StringRef scope = {}, llvm::StringRef name = {},
                llvm::StringRef args = {}) {
    DoRegister(uintptr_t(f), llvm::make_unique<DefaultReplayer<Signature>>(f),
               SignatureStr(result, scope, name, args));
  }

  /// Register a replayer that invokes a custom function with the same
  /// signature as the replayed function.
  template <typename Signature>
  void Register(Signature *f, Signature *g, llvm::StringRef result = {},
                llvm::StringRef scope = {}, llvm::StringRef name = {},
                llvm::StringRef args = {}) {
    DoRegister(uintptr_t(f), llvm::make_unique<DefaultReplayer<Signature>>(g),
               SignatureStr(result, scope, name, args));
  }

  /// Replay functions from a file.
  bool Replay(const FileSpec &file);

  /// Replay functions from a buffer.
  bool Replay(llvm::StringRef buffer);

  /// Returns the ID for a given function address.
  unsigned GetID(uintptr_t addr);

protected:
  /// Register the given replayer for a function (and the ID mapping).
  void DoRegister(uintptr_t RunID, std::unique_ptr<Replayer> replayer,
                  SignatureStr signature);

private:
  std::string GetSignature(unsigned id);
  Replayer *GetReplayer(unsigned id);

  /// Mapping of function addresses to replayers and their ID.
  std::map<uintptr_t, std::pair<std::unique_ptr<Replayer>, unsigned>>
      m_replayers;

  /// Mapping of IDs to replayer instances.
  std::map<unsigned, std::pair<Replayer *, SignatureStr>> m_ids;
};

/// To be used as the "Runtime ID" of a constructor. It also invokes the
/// constructor when called.
template <typename Signature> struct construct;
template <typename Class, typename... Args> struct construct<Class(Args...)> {
  static Class *doit(Args... args) { return new Class(args...); }
};

/// To be used as the "Runtime ID" of a member function. It also invokes the
/// member function when called.
template <typename Signature> struct invoke;
template <typename Result, typename Class, typename... Args>
struct invoke<Result (Class::*)(Args...)> {
  template <Result (Class::*m)(Args...)> struct method {
    static Result doit(Class *c, Args... args) { return (c->*m)(args...); }
  };
};

template <typename Result, typename Class, typename... Args>
struct invoke<Result (Class::*)(Args...) const> {
  template <Result (Class::*m)(Args...) const> struct method_const {
    static Result doit(Class *c, Args... args) { return (c->*m)(args...); }
  };
};

template <typename Class, typename... Args>
struct invoke<void (Class::*)(Args...)> {
  template <void (Class::*m)(Args...)> struct method {
    static void doit(Class *c, Args... args) { (c->*m)(args...); }
  };
};

/// Maps an object to an index for serialization. Indices are unique and
/// incremented for every new object.
///
/// Indices start at 1 in order to differentiate with an invalid index (0) in
/// the serialized buffer.
class ObjectToIndex {
public:
  template <typename T> unsigned GetIndexForObject(T *t) {
    return GetIndexForObjectImpl(static_cast<const void *>(t));
  }

private:
  unsigned GetIndexForObjectImpl(const void *object);

  llvm::DenseMap<const void *, unsigned> m_mapping;
};

/// Serializes functions, their arguments and their return type to a stream.
class Serializer {
public:
  Serializer(llvm::raw_ostream &stream = llvm::outs()) : m_stream(stream) {}

  /// Recursively serialize all the given arguments.
  template <typename Head, typename... Tail>
  void SerializeAll(const Head &head, const Tail &... tail) {
    Serialize(head);
    SerializeAll(tail...);
  }

  void SerializeAll() {
    m_stream.flush();
  }

private:
  /// Serialize pointers. We need to differentiate between pointers to
  /// fundamental types (in which case we serialize its value) and pointer to
  /// objects (in which case we serialize their index).
  template <typename T> void Serialize(T *t) {
    if (std::is_fundamental<T>::value) {
      Serialize(*t);
    } else {
      unsigned idx = m_tracker.GetIndexForObject(t);
      Serialize(idx);
    }
  }

  /// Serialize references. We need to differentiate between references to
  /// fundamental types (in which case we serialize its value) and references
  /// to objects (in which case we serialize their index).
  template <typename T> void Serialize(T &t) {
    if (std::is_fundamental<T>::value) {
      m_stream.write(reinterpret_cast<const char *>(&t), sizeof(T));
    } else {
      unsigned idx = m_tracker.GetIndexForObject(&t);
      Serialize(idx);
    }
  }

  void Serialize(void *v) {
    // FIXME: Support void*
    llvm_unreachable("void* is currently unsupported.");
  }

  void Serialize(const char *t) {
    m_stream << t;
    m_stream.write(0x0);
  }

  /// Serialization stream.
  llvm::raw_ostream &m_stream;

  /// Mapping of objects to indices.
  ObjectToIndex m_tracker;
};

class InstrumentationData {
public:
  InstrumentationData() : m_serializer(nullptr), m_registry(nullptr){};
  InstrumentationData(Serializer &serializer, Registry &registry)
      : m_serializer(&serializer), m_registry(&registry){};

  Serializer &GetSerializer() { return *m_serializer; }
  Registry &GetRegistry() { return *m_registry; }

  operator bool() { return m_serializer != nullptr && m_registry != nullptr; }

private:
  Serializer *m_serializer;
  Registry *m_registry;
};

/// RAII object that records function invocations and their return value.
///
/// API calls are only captured when the API boundary is crossed. Once we're in
/// the API layer, and another API function is called, it doesn't need to be
/// recorded.
///
/// When a call is recored, its result is always recorded as well, even if the
/// function returns a void. For functions that return by value, RecordResult
/// should be used. Otherwise a sentinel value (0) will be serialized.
///
/// Because of the functional overlap between logging and recording API calls,
/// this class is also used for logging.
class Recorder {
public:
  Recorder(llvm::StringRef pretty_func = {}, std::string &&pretty_args = {});
  ~Recorder();

  /// Records a single function call.
  template <typename Result, typename... FArgs, typename... RArgs>
  void Record(Serializer &serializer, Registry &registry, Result (*f)(FArgs...),
              const RArgs &... args) {
    m_serializer = &serializer;
    if (!ShouldCapture())
      return;

    unsigned id = registry.GetID(uintptr_t(f));

#ifdef LLDB_REPRO_INSTR_TRACE
    Log(id);
#endif

    serializer.SerializeAll(id);
    serializer.SerializeAll(args...);

    if (std::is_class<typename std::remove_pointer<
            typename std::remove_reference<Result>::type>::type>::value) {
      m_result_recorded = false;
    } else {
      serializer.SerializeAll(0);
      m_result_recorded = true;
    }
  }

  /// Records a single function call.
  template <typename... Args>
  void Record(Serializer &serializer, Registry &registry, void (*f)(Args...),
              const Args &... args) {
    m_serializer = &serializer;
    if (!ShouldCapture())
      return;

    unsigned id = registry.GetID(uintptr_t(f));

#ifdef LLDB_REPRO_INSTR_TRACE
    Log(id);
#endif

    serializer.SerializeAll(id);
    serializer.SerializeAll(args...);

    // Record result.
    serializer.SerializeAll(0);
    m_result_recorded = true;
  }

  /// Record the result of a function call.
  template <typename Result> Result RecordResult(Result &&r) {
    UpdateBoundary();
    if (m_serializer && ShouldCapture()) {
      assert(!m_result_recorded);
      m_serializer->SerializeAll(r);
      m_result_recorded = true;
    }
    return std::forward<Result>(r);
  }

private:
  void UpdateBoundary() {
    if (m_local_boundary)
      g_global_boundary = false;
  }

  bool ShouldCapture() { return m_local_boundary; }

#ifdef LLDB_REPRO_INSTR_TRACE
  void Log(unsigned id) {
    llvm::errs() << "Recording " << id << ": " << m_pretty_func << " ("
                 << m_pretty_args << ")\n";
  }
#endif

  Serializer *m_serializer;

  /// Pretty function for logging.
  llvm::StringRef m_pretty_func;
  std::string m_pretty_args;

  /// Whether this function call was the one crossing the API boundary.
  bool m_local_boundary;

  /// Whether the return value was recorded explicitly.
  bool m_result_recorded;

  /// Whether we're currently across the API boundary.
  static bool g_global_boundary;
};

} // namespace repro
} // namespace lldb_private

#endif // LLDB_UTILITY_REPRODUCER_INSTRUMENTATION_H