aboutsummaryrefslogtreecommitdiffstats
path: root/include/clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h
blob: d38058f9af56d809ea129e027489816ed8bbaa27 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the state of the program along the analysisa path.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H

#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/Support/Allocator.h"
#include <utility>

namespace llvm {
class APSInt;
}

namespace clang {
class ASTContext;

namespace ento {

class AnalysisManager;
class CallEvent;
class CallEventManager;

typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
    ProgramStateManager &, SubEngine *);
typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
    ProgramStateManager &);

//===----------------------------------------------------------------------===//
// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
//===----------------------------------------------------------------------===//

template <typename T> struct ProgramStatePartialTrait;

template <typename T> struct ProgramStateTrait {
  typedef typename T::data_type data_type;
  static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
  static inline data_type MakeData(void *const* P) {
    return P ? (data_type) *P : (data_type) 0;
  }
};

/// \class ProgramState
/// ProgramState - This class encapsulates:
///
///    1. A mapping from expressions to values (Environment)
///    2. A mapping from locations to values (Store)
///    3. Constraints on symbolic values (GenericDataMap)
///
///  Together these represent the "abstract state" of a program.
///
///  ProgramState is intended to be used as a functional object; that is,
///  once it is created and made "persistent" in a FoldingSet, its
///  values will never change.
class ProgramState : public llvm::FoldingSetNode {
public:
  typedef llvm::ImmutableSet<llvm::APSInt*>                IntSetTy;
  typedef llvm::ImmutableMap<void*, void*>                 GenericDataMap;

private:
  void operator=(const ProgramState& R) = delete;

  friend class ProgramStateManager;
  friend class ExplodedGraph;
  friend class ExplodedNode;

  ProgramStateManager *stateMgr;
  Environment Env;           // Maps a Stmt to its current SVal.
  Store store;               // Maps a location to its current value.
  GenericDataMap   GDM;      // Custom data stored by a client of this class.
  unsigned refCount;

  /// makeWithStore - Return a ProgramState with the same values as the current
  ///  state with the exception of using the specified Store.
  ProgramStateRef makeWithStore(const StoreRef &store) const;

  void setStore(const StoreRef &storeRef);

public:
  /// This ctor is used when creating the first ProgramState object.
  ProgramState(ProgramStateManager *mgr, const Environment& env,
          StoreRef st, GenericDataMap gdm);

  /// Copy ctor - We must explicitly define this or else the "Next" ptr
  ///  in FoldingSetNode will also get copied.
  ProgramState(const ProgramState &RHS);

  ~ProgramState();

  int64_t getID() const;

  /// Return the ProgramStateManager associated with this state.
  ProgramStateManager &getStateManager() const {
    return *stateMgr;
  }

  AnalysisManager &getAnalysisManager() const;

  /// Return the ConstraintManager.
  ConstraintManager &getConstraintManager() const;

  /// getEnvironment - Return the environment associated with this state.
  ///  The environment is the mapping from expressions to values.
  const Environment& getEnvironment() const { return Env; }

  /// Return the store associated with this state.  The store
  ///  is a mapping from locations to values.
  Store getStore() const { return store; }


  /// getGDM - Return the generic data map associated with this state.
  GenericDataMap getGDM() const { return GDM; }

  void setGDM(GenericDataMap gdm) { GDM = gdm; }

  /// Profile - Profile the contents of a ProgramState object for use in a
  ///  FoldingSet.  Two ProgramState objects are considered equal if they
  ///  have the same Environment, Store, and GenericDataMap.
  static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
    V->Env.Profile(ID);
    ID.AddPointer(V->store);
    V->GDM.Profile(ID);
  }

  /// Profile - Used to profile the contents of this object for inclusion
  ///  in a FoldingSet.
  void Profile(llvm::FoldingSetNodeID& ID) const {
    Profile(ID, this);
  }

  BasicValueFactory &getBasicVals() const;
  SymbolManager &getSymbolManager() const;

  //==---------------------------------------------------------------------==//
  // Constraints on values.
  //==---------------------------------------------------------------------==//
  //
  // Each ProgramState records constraints on symbolic values.  These constraints
  // are managed using the ConstraintManager associated with a ProgramStateManager.
  // As constraints gradually accrue on symbolic values, added constraints
  // may conflict and indicate that a state is infeasible (as no real values
  // could satisfy all the constraints).  This is the principal mechanism
  // for modeling path-sensitivity in ExprEngine/ProgramState.
  //
  // Various "assume" methods form the interface for adding constraints to
  // symbolic values.  A call to 'assume' indicates an assumption being placed
  // on one or symbolic values.  'assume' methods take the following inputs:
  //
  //  (1) A ProgramState object representing the current state.
  //
  //  (2) The assumed constraint (which is specific to a given "assume" method).
  //
  //  (3) A binary value "Assumption" that indicates whether the constraint is
  //      assumed to be true or false.
  //
  // The output of "assume*" is a new ProgramState object with the added constraints.
  // If no new state is feasible, NULL is returned.
  //

  /// Assumes that the value of \p cond is zero (if \p assumption is "false")
  /// or non-zero (if \p assumption is "true").
  ///
  /// This returns a new state with the added constraint on \p cond.
  /// If no new state is feasible, NULL is returned.
  LLVM_NODISCARD ProgramStateRef assume(DefinedOrUnknownSVal cond,
                                        bool assumption) const;

  /// Assumes both "true" and "false" for \p cond, and returns both
  /// corresponding states (respectively).
  ///
  /// This is more efficient than calling assume() twice. Note that one (but not
  /// both) of the returned states may be NULL.
  LLVM_NODISCARD std::pair<ProgramStateRef, ProgramStateRef>
  assume(DefinedOrUnknownSVal cond) const;

  LLVM_NODISCARD ProgramStateRef
  assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
                bool assumption, QualType IndexType = QualType()) const;

  /// Assumes that the value of \p Val is bounded with [\p From; \p To]
  /// (if \p assumption is "true") or it is fully out of this range
  /// (if \p assumption is "false").
  ///
  /// This returns a new state with the added constraint on \p cond.
  /// If no new state is feasible, NULL is returned.
  LLVM_NODISCARD ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
                                                      const llvm::APSInt &From,
                                                      const llvm::APSInt &To,
                                                      bool assumption) const;

  /// Assumes given range both "true" and "false" for \p Val, and returns both
  /// corresponding states (respectively).
  ///
  /// This is more efficient than calling assume() twice. Note that one (but not
  /// both) of the returned states may be NULL.
  LLVM_NODISCARD std::pair<ProgramStateRef, ProgramStateRef>
  assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
                       const llvm::APSInt &To) const;

  /// Check if the given SVal is not constrained to zero and is not
  ///        a zero constant.
  ConditionTruthVal isNonNull(SVal V) const;

  /// Check if the given SVal is constrained to zero or is a zero
  ///        constant.
  ConditionTruthVal isNull(SVal V) const;

  /// \return Whether values \p Lhs and \p Rhs are equal.
  ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;

  /// Utility method for getting regions.
  const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;

  //==---------------------------------------------------------------------==//
  // Binding and retrieving values to/from the environment and symbolic store.
  //==---------------------------------------------------------------------==//

  /// Create a new state by binding the value 'V' to the statement 'S' in the
  /// state's environment.
  LLVM_NODISCARD ProgramStateRef BindExpr(const Stmt *S,
                                          const LocationContext *LCtx, SVal V,
                                          bool Invalidate = true) const;

  LLVM_NODISCARD ProgramStateRef bindLoc(Loc location, SVal V,
                                         const LocationContext *LCtx,
                                         bool notifyChanges = true) const;

  LLVM_NODISCARD ProgramStateRef bindLoc(SVal location, SVal V,
                                         const LocationContext *LCtx) const;

  /// Initializes the region of memory represented by \p loc with an initial
  /// value. Once initialized, all values loaded from any sub-regions of that
  /// region will be equal to \p V, unless overwritten later by the program.
  /// This method should not be used on regions that are already initialized.
  /// If you need to indicate that memory contents have suddenly become unknown
  /// within a certain region of memory, consider invalidateRegions().
  LLVM_NODISCARD ProgramStateRef
  bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;

  /// Performs C++ zero-initialization procedure on the region of memory
  /// represented by \p loc.
  LLVM_NODISCARD ProgramStateRef
  bindDefaultZero(SVal loc, const LocationContext *LCtx) const;

  LLVM_NODISCARD ProgramStateRef killBinding(Loc LV) const;

  /// Returns the state with bindings for the given regions
  ///  cleared from the store.
  ///
  /// Optionally invalidates global regions as well.
  ///
  /// \param Regions the set of regions to be invalidated.
  /// \param E the expression that caused the invalidation.
  /// \param BlockCount The number of times the current basic block has been
  //         visited.
  /// \param CausesPointerEscape the flag is set to true when
  ///        the invalidation entails escape of a symbol (representing a
  ///        pointer). For example, due to it being passed as an argument in a
  ///        call.
  /// \param IS the set of invalidated symbols.
  /// \param Call if non-null, the invalidated regions represent parameters to
  ///        the call and should be considered directly invalidated.
  /// \param ITraits information about special handling for a particular
  ///        region/symbol.
  LLVM_NODISCARD ProgramStateRef
  invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
                    unsigned BlockCount, const LocationContext *LCtx,
                    bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
                    const CallEvent *Call = nullptr,
                    RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;

  LLVM_NODISCARD ProgramStateRef
  invalidateRegions(ArrayRef<SVal> Regions, const Expr *E,
                    unsigned BlockCount, const LocationContext *LCtx,
                    bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
                    const CallEvent *Call = nullptr,
                    RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;

  /// enterStackFrame - Returns the state for entry to the given stack frame,
  ///  preserving the current state.
  LLVM_NODISCARD ProgramStateRef enterStackFrame(
      const CallEvent &Call, const StackFrameContext *CalleeCtx) const;

  /// Get the lvalue for a base class object reference.
  Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;

  /// Get the lvalue for a base class object reference.
  Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
                bool IsVirtual) const;

  /// Get the lvalue for a variable reference.
  Loc getLValue(const VarDecl *D, const LocationContext *LC) const;

  Loc getLValue(const CompoundLiteralExpr *literal,
                const LocationContext *LC) const;

  /// Get the lvalue for an ivar reference.
  SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;

  /// Get the lvalue for a field reference.
  SVal getLValue(const FieldDecl *decl, SVal Base) const;

  /// Get the lvalue for an indirect field reference.
  SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;

  /// Get the lvalue for an array index.
  SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;

  /// Returns the SVal bound to the statement 'S' in the state's environment.
  SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;

  SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;

  /// Return the value bound to the specified location.
  /// Returns UnknownVal() if none found.
  SVal getSVal(Loc LV, QualType T = QualType()) const;

  /// Returns the "raw" SVal bound to LV before any value simplfication.
  SVal getRawSVal(Loc LV, QualType T= QualType()) const;

  /// Return the value bound to the specified location.
  /// Returns UnknownVal() if none found.
  SVal getSVal(const MemRegion* R, QualType T = QualType()) const;

  /// Return the value bound to the specified location, assuming
  /// that the value is a scalar integer or an enumeration or a pointer.
  /// Returns UnknownVal() if none found or the region is not known to hold
  /// a value of such type.
  SVal getSValAsScalarOrLoc(const MemRegion *R) const;

  using region_iterator = const MemRegion **;

  /// Visits the symbols reachable from the given SVal using the provided
  /// SymbolVisitor.
  ///
  /// This is a convenience API. Consider using ScanReachableSymbols class
  /// directly when making multiple scans on the same state with the same
  /// visitor to avoid repeated initialization cost.
  /// \sa ScanReachableSymbols
  bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;

  /// Visits the symbols reachable from the regions in the given
  /// MemRegions range using the provided SymbolVisitor.
  bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
                            SymbolVisitor &visitor) const;

  template <typename CB> CB scanReachableSymbols(SVal val) const;
  template <typename CB> CB
  scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;

  //==---------------------------------------------------------------------==//
  // Accessing the Generic Data Map (GDM).
  //==---------------------------------------------------------------------==//

  void *const* FindGDM(void *K) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  add(typename ProgramStateTrait<T>::key_type K) const;

  template <typename T>
  typename ProgramStateTrait<T>::data_type
  get() const {
    return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
  }

  template<typename T>
  typename ProgramStateTrait<T>::lookup_type
  get(typename ProgramStateTrait<T>::key_type key) const {
    void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
    return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
  }

  template <typename T>
  typename ProgramStateTrait<T>::context_type get_context() const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  remove(typename ProgramStateTrait<T>::key_type K) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  remove(typename ProgramStateTrait<T>::key_type K,
         typename ProgramStateTrait<T>::context_type C) const;

  template <typename T> LLVM_NODISCARD ProgramStateRef remove() const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  set(typename ProgramStateTrait<T>::data_type D) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  set(typename ProgramStateTrait<T>::key_type K,
      typename ProgramStateTrait<T>::value_type E) const;

  template <typename T>
  LLVM_NODISCARD ProgramStateRef
  set(typename ProgramStateTrait<T>::key_type K,
      typename ProgramStateTrait<T>::value_type E,
      typename ProgramStateTrait<T>::context_type C) const;

  template<typename T>
  bool contains(typename ProgramStateTrait<T>::key_type key) const {
    void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
    return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
  }

  // Pretty-printing.
  void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
                 const char *NL = "\n", unsigned int Space = 0,
                 bool IsDot = false) const;

  void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
                unsigned int Space = 0) const;

  void dump() const;

private:
  friend void ProgramStateRetain(const ProgramState *state);
  friend void ProgramStateRelease(const ProgramState *state);

  /// \sa invalidateValues()
  /// \sa invalidateRegions()
  ProgramStateRef
  invalidateRegionsImpl(ArrayRef<SVal> Values,
                        const Expr *E, unsigned BlockCount,
                        const LocationContext *LCtx,
                        bool ResultsInSymbolEscape,
                        InvalidatedSymbols *IS,
                        RegionAndSymbolInvalidationTraits *HTraits,
                        const CallEvent *Call) const;
};

//===----------------------------------------------------------------------===//
// ProgramStateManager - Factory object for ProgramStates.
//===----------------------------------------------------------------------===//

class ProgramStateManager {
  friend class ProgramState;
  friend void ProgramStateRelease(const ProgramState *state);
private:
  /// Eng - The SubEngine that owns this state manager.
  SubEngine *Eng; /* Can be null. */

  EnvironmentManager                   EnvMgr;
  std::unique_ptr<StoreManager>        StoreMgr;
  std::unique_ptr<ConstraintManager>   ConstraintMgr;

  ProgramState::GenericDataMap::Factory     GDMFactory;

  typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
  GDMContextsTy GDMContexts;

  /// StateSet - FoldingSet containing all the states created for analyzing
  ///  a particular function.  This is used to unique states.
  llvm::FoldingSet<ProgramState> StateSet;

  /// Object that manages the data for all created SVals.
  std::unique_ptr<SValBuilder> svalBuilder;

  /// Manages memory for created CallEvents.
  std::unique_ptr<CallEventManager> CallEventMgr;

  /// A BumpPtrAllocator to allocate states.
  llvm::BumpPtrAllocator &Alloc;

  /// A vector of ProgramStates that we can reuse.
  std::vector<ProgramState *> freeStates;

public:
  ProgramStateManager(ASTContext &Ctx,
                 StoreManagerCreator CreateStoreManager,
                 ConstraintManagerCreator CreateConstraintManager,
                 llvm::BumpPtrAllocator& alloc,
                 SubEngine *subeng);

  ~ProgramStateManager();

  ProgramStateRef getInitialState(const LocationContext *InitLoc);

  ASTContext &getContext() { return svalBuilder->getContext(); }
  const ASTContext &getContext() const { return svalBuilder->getContext(); }

  BasicValueFactory &getBasicVals() {
    return svalBuilder->getBasicValueFactory();
  }

  SValBuilder &getSValBuilder() {
    return *svalBuilder;
  }

  SymbolManager &getSymbolManager() {
    return svalBuilder->getSymbolManager();
  }
  const SymbolManager &getSymbolManager() const {
    return svalBuilder->getSymbolManager();
  }

  llvm::BumpPtrAllocator& getAllocator() { return Alloc; }

  MemRegionManager& getRegionManager() {
    return svalBuilder->getRegionManager();
  }
  const MemRegionManager &getRegionManager() const {
    return svalBuilder->getRegionManager();
  }

  CallEventManager &getCallEventManager() { return *CallEventMgr; }

  StoreManager &getStoreManager() { return *StoreMgr; }
  ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
  SubEngine &getOwningEngine() { return *Eng; }

  ProgramStateRef removeDeadBindings(ProgramStateRef St,
                                    const StackFrameContext *LCtx,
                                    SymbolReaper& SymReaper);

public:

  SVal ArrayToPointer(Loc Array, QualType ElementTy) {
    return StoreMgr->ArrayToPointer(Array, ElementTy);
  }

  // Methods that manipulate the GDM.
  ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
  ProgramStateRef removeGDM(ProgramStateRef state, void *Key);

  // Methods that query & manipulate the Store.

  void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
    StoreMgr->iterBindings(state->getStore(), F);
  }

  ProgramStateRef getPersistentState(ProgramState &Impl);
  ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
                                           ProgramStateRef GDMState);

  bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
    return ConstraintMgr->haveEqualConstraints(S1, S2);
  }

  bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
    return S1->Env == S2->Env;
  }

  bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
    return S1->store == S2->store;
  }

  //==---------------------------------------------------------------------==//
  // Generic Data Map methods.
  //==---------------------------------------------------------------------==//
  //
  // ProgramStateManager and ProgramState support a "generic data map" that allows
  // different clients of ProgramState objects to embed arbitrary data within a
  // ProgramState object.  The generic data map is essentially an immutable map
  // from a "tag" (that acts as the "key" for a client) and opaque values.
  // Tags/keys and values are simply void* values.  The typical way that clients
  // generate unique tags are by taking the address of a static variable.
  // Clients are responsible for ensuring that data values referred to by a
  // the data pointer are immutable (and thus are essentially purely functional
  // data).
  //
  // The templated methods below use the ProgramStateTrait<T> class
  // to resolve keys into the GDM and to return data values to clients.
  //

  // Trait based GDM dispatch.
  template <typename T>
  ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
                  ProgramStateTrait<T>::MakeVoidPtr(D));
  }

  template<typename T>
  ProgramStateRef set(ProgramStateRef st,
                     typename ProgramStateTrait<T>::key_type K,
                     typename ProgramStateTrait<T>::value_type V,
                     typename ProgramStateTrait<T>::context_type C) {

    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
     ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
  }

  template <typename T>
  ProgramStateRef add(ProgramStateRef st,
                     typename ProgramStateTrait<T>::key_type K,
                     typename ProgramStateTrait<T>::context_type C) {
    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
        ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
  }

  template <typename T>
  ProgramStateRef remove(ProgramStateRef st,
                        typename ProgramStateTrait<T>::key_type K,
                        typename ProgramStateTrait<T>::context_type C) {

    return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
     ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
  }

  template <typename T>
  ProgramStateRef remove(ProgramStateRef st) {
    return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
  }

  void *FindGDMContext(void *index,
                       void *(*CreateContext)(llvm::BumpPtrAllocator&),
                       void  (*DeleteContext)(void*));

  template <typename T>
  typename ProgramStateTrait<T>::context_type get_context() {
    void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
                             ProgramStateTrait<T>::CreateContext,
                             ProgramStateTrait<T>::DeleteContext);

    return ProgramStateTrait<T>::MakeContext(p);
  }
};


//===----------------------------------------------------------------------===//
// Out-of-line method definitions for ProgramState.
//===----------------------------------------------------------------------===//

inline ConstraintManager &ProgramState::getConstraintManager() const {
  return stateMgr->getConstraintManager();
}

inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
                                                const LocationContext *LC) const
{
  return getStateManager().getRegionManager().getVarRegion(D, LC);
}

inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
                                      bool Assumption) const {
  if (Cond.isUnknown())
    return this;

  return getStateManager().ConstraintMgr
      ->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
}

inline std::pair<ProgramStateRef , ProgramStateRef >
ProgramState::assume(DefinedOrUnknownSVal Cond) const {
  if (Cond.isUnknown())
    return std::make_pair(this, this);

  return getStateManager().ConstraintMgr
      ->assumeDual(this, Cond.castAs<DefinedSVal>());
}

inline ProgramStateRef ProgramState::assumeInclusiveRange(
    DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
    bool Assumption) const {
  if (Val.isUnknown())
    return this;

  assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!");

  return getStateManager().ConstraintMgr->assumeInclusiveRange(
      this, Val.castAs<NonLoc>(), From, To, Assumption);
}

inline std::pair<ProgramStateRef, ProgramStateRef>
ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
                                   const llvm::APSInt &From,
                                   const llvm::APSInt &To) const {
  if (Val.isUnknown())
    return std::make_pair(this, this);

  assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!");

  return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
      this, Val.castAs<NonLoc>(), From, To);
}

inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
  if (Optional<Loc> L = LV.getAs<Loc>())
    return bindLoc(*L, V, LCtx);
  return this;
}

inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
                                   const SubRegion *Super) const {
  const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
  return loc::MemRegionVal(
           getStateManager().getRegionManager().getCXXBaseObjectRegion(
                                            Base, Super, BaseSpec.isVirtual()));
}

inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
                                   const SubRegion *Super,
                                   bool IsVirtual) const {
  return loc::MemRegionVal(
           getStateManager().getRegionManager().getCXXBaseObjectRegion(
                                                  BaseClass, Super, IsVirtual));
}

inline Loc ProgramState::getLValue(const VarDecl *VD,
                               const LocationContext *LC) const {
  return getStateManager().StoreMgr->getLValueVar(VD, LC);
}

inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
                               const LocationContext *LC) const {
  return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
}

inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
  return getStateManager().StoreMgr->getLValueIvar(D, Base);
}

inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
  return getStateManager().StoreMgr->getLValueField(D, Base);
}

inline SVal ProgramState::getLValue(const IndirectFieldDecl *D,
                                    SVal Base) const {
  StoreManager &SM = *getStateManager().StoreMgr;
  for (const auto *I : D->chain()) {
    Base = SM.getLValueField(cast<FieldDecl>(I), Base);
  }

  return Base;
}

inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
  if (Optional<NonLoc> N = Idx.getAs<NonLoc>())
    return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
  return UnknownVal();
}

inline SVal ProgramState::getSVal(const Stmt *Ex,
                                  const LocationContext *LCtx) const{
  return Env.getSVal(EnvironmentEntry(Ex, LCtx),
                     *getStateManager().svalBuilder);
}

inline SVal
ProgramState::getSValAsScalarOrLoc(const Stmt *S,
                                   const LocationContext *LCtx) const {
  if (const Expr *Ex = dyn_cast<Expr>(S)) {
    QualType T = Ex->getType();
    if (Ex->isGLValue() || Loc::isLocType(T) ||
        T->isIntegralOrEnumerationType())
      return getSVal(S, LCtx);
  }

  return UnknownVal();
}

inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
  return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
}

inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
  return getStateManager().StoreMgr->getBinding(getStore(),
                                                loc::MemRegionVal(R),
                                                T);
}

inline BasicValueFactory &ProgramState::getBasicVals() const {
  return getStateManager().getBasicVals();
}

inline SymbolManager &ProgramState::getSymbolManager() const {
  return getStateManager().getSymbolManager();
}

template<typename T>
ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
  return getStateManager().add<T>(this, K, get_context<T>());
}

template <typename T>
typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
  return getStateManager().get_context<T>();
}

template<typename T>
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
  return getStateManager().remove<T>(this, K, get_context<T>());
}

template<typename T>
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
                               typename ProgramStateTrait<T>::context_type C) const {
  return getStateManager().remove<T>(this, K, C);
}

template <typename T>
ProgramStateRef ProgramState::remove() const {
  return getStateManager().remove<T>(this);
}

template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
  return getStateManager().set<T>(this, D);
}

template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
                            typename ProgramStateTrait<T>::value_type E) const {
  return getStateManager().set<T>(this, K, E, get_context<T>());
}

template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
                            typename ProgramStateTrait<T>::value_type E,
                            typename ProgramStateTrait<T>::context_type C) const {
  return getStateManager().set<T>(this, K, E, C);
}

template <typename CB>
CB ProgramState::scanReachableSymbols(SVal val) const {
  CB cb(this);
  scanReachableSymbols(val, cb);
  return cb;
}

template <typename CB>
CB ProgramState::scanReachableSymbols(
    llvm::iterator_range<region_iterator> Reachable) const {
  CB cb(this);
  scanReachableSymbols(Reachable, cb);
  return cb;
}

/// \class ScanReachableSymbols
/// A utility class that visits the reachable symbols using a custom
/// SymbolVisitor. Terminates recursive traversal when the visitor function
/// returns false.
class ScanReachableSymbols {
  typedef llvm::DenseSet<const void*> VisitedItems;

  VisitedItems visited;
  ProgramStateRef state;
  SymbolVisitor &visitor;
public:
  ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
      : state(std::move(st)), visitor(v) {}

  bool scan(nonloc::LazyCompoundVal val);
  bool scan(nonloc::CompoundVal val);
  bool scan(SVal val);
  bool scan(const MemRegion *R);
  bool scan(const SymExpr *sym);
};

} // end ento namespace

} // end clang namespace

#endif