aboutsummaryrefslogtreecommitdiffstats
path: root/gnu/lib/libg++/g++-include/Vec.ccP
blob: c9cbfb2109e6e3064e13b90a8b5fc4cdbe8f8003 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// This may look like C code, but it is really -*- C++ -*-
/* 
Copyright (C) 1988 Free Software Foundation
    written by Doug Lea (dl@rocky.oswego.edu)

This file is part of the GNU C++ Library.  This library is free
software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.  This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#ifdef __GNUG__
#pragma implementation
#endif
#include <stream.h>
#include <builtin.h>
#include "<T>.Vec.h"

// error handling


void default_<T>Vec_error_handler(const char* msg)
{
  cerr << "Fatal <T>Vec error. " << msg << "\n";
  exit(1);
}

one_arg_error_handler_t <T>Vec_error_handler = default_<T>Vec_error_handler;

one_arg_error_handler_t set_<T>Vec_error_handler(one_arg_error_handler_t f)
{
  one_arg_error_handler_t old = <T>Vec_error_handler;
  <T>Vec_error_handler = f;
  return old;
}

void <T>Vec::error(const char* msg)
{
  (*<T>Vec_error_handler)(msg);
}

void <T>Vec::range_error()
{
  (*<T>Vec_error_handler)("Index out of range.");
}

<T>Vec::<T>Vec(<T>Vec& v)
{
  s = new <T> [len = v.len];
  <T>* top = &(s[len]);
  <T>* t = s;
  <T>* u = v.s;
  while (t < top) *t++ = *u++;
}

<T>Vec::<T>Vec(int l, <T&> fill_value)
{
  s = new <T> [len = l];
  <T>* top = &(s[len]);
  <T>* t = s;
  while (t < top) *t++ = fill_value;
}


<T>Vec& <T>Vec::operator = (<T>Vec& v)
{
  if (this != &v)
  {
    delete [] s;
    s = new <T> [len = v.len];
    <T>* top = &(s[len]);
    <T>* t = s;
    <T>* u = v.s;
    while (t < top) *t++ = *u++;
  }
  return *this;
}

void <T>Vec::apply(<T>Procedure f)
{
  <T>* top = &(s[len]);
  <T>* t = s;
  while (t < top) (*f)(*t++);
}

// can't just realloc since there may be need for constructors/destructors
void <T>Vec::resize(int newl)
{
  <T>* news = new <T> [newl];
  <T>* p = news;
  int minl = (len < newl)? len : newl;
  <T>* top = &(s[minl]);
  <T>* t = s;
  while (t < top) *p++ = *t++;
  delete [] s;
  s = news;
  len = newl;
}

<T>Vec concat(<T>Vec & a, <T>Vec & b)
{
  int newl = a.len + b.len;
  <T>* news = new <T> [newl];
  <T>* p = news;
  <T>* top = &(a.s[a.len]);
  <T>* t = a.s;
  while (t < top) *p++ = *t++;
  top = &(b.s[b.len]);
  t = b.s;
  while (t < top) *p++ = *t++;
  return <T>Vec(newl, news);
}


<T>Vec combine(<T>Combiner f, <T>Vec& a, <T>Vec& b)
{
  int newl = (a.len < b.len)? a.len : b.len;
  <T>* news = new <T> [newl];
  <T>* p = news;
  <T>* top = &(a.s[newl]);
  <T>* t = a.s;
  <T>* u = b.s;
  while (t < top) *p++ = (*f)(*t++, *u++);
  return <T>Vec(newl, news);
}

<T> <T>Vec::reduce(<T>Combiner f, <T&> base)
{
  <T> r = base;
  <T>* top = &(s[len]);
  <T>* t = s;
  while (t < top) r = (*f)(r, *t++);
  return r;
}

<T>Vec reverse(<T>Vec& a)
{
  <T>* news = new <T> [a.len];
  if (a.len != 0)
  {
    <T>* lo = news;
    <T>* hi = &(news[a.len - 1]);
    while (lo < hi)
    {
      <T> tmp = *lo;
      *lo++ = *hi;
      *hi-- = tmp;
    }
  }
  return <T>Vec(a.len, news);
}

void <T>Vec::reverse()
{
  if (len != 0)
  {
    <T>* lo = s;
    <T>* hi = &(s[len - 1]);
    while (lo < hi)
    {
      <T> tmp = *lo;
      *lo++ = *hi;
      *hi-- = tmp;
    }
  }
}

int <T>Vec::index(<T&> targ)
{
  for (int i = 0; i < len; ++i) if (<T>EQ(targ, s[i])) return i;
  return -1;
}

<T>Vec map(<T>Mapper f, <T>Vec& a)
{
  <T>* news = new <T> [a.len];
  <T>* p = news;
  <T>* top = &(a.s[a.len]);
  <T>* t = a.s;
  while(t < top) *p++ = (*f)(*t++);
  return <T>Vec(a.len, news);
}

int operator == (<T>Vec& a, <T>Vec& b)
{
  if (a.len != b.len)
    return 0;
  <T>* top = &(a.s[a.len]);
  <T>* t = a.s;
  <T>* u = b.s;
  while (t < top) if (!(<T>EQ(*t++, *u++))) return 0;
  return 1;
}

void <T>Vec::fill(<T&> val, int from, int n)
{
  int to;
  if (n < 0)
    to = len - 1;
  else
    to = from + n - 1;
  if ((unsigned)from > (unsigned)to)
    range_error();
  <T>* t = &(s[from]);
  <T>* top = &(s[to]);
  while (t <= top) *t++ = val;
}

<T>Vec <T>Vec::at(int from, int n)
{
  int to;
  if (n < 0)
  {
    n = len - from;
    to = len - 1;
  }
  else
    to = from + n - 1;
  if ((unsigned)from > (unsigned)to)
    range_error();
  <T>* news = new <T> [n];
  <T>* p = news;
  <T>* t = &(s[from]);
  <T>* top = &(s[to]);
  while (t <= top) *p++ = *t++;
  return <T>Vec(n, news);
}

<T>Vec merge(<T>Vec & a, <T>Vec & b, <T>Comparator f)
{
  int newl = a.len + b.len;
  <T>* news = new <T> [newl];
  <T>* p = news;
  <T>* topa = &(a.s[a.len]);
  <T>* as = a.s;
  <T>* topb = &(b.s[b.len]);
  <T>* bs = b.s;

  for (;;)
  {
    if (as >= topa)
    {
      while (bs < topb) *p++ = *bs++;
      break;
    }
    else if (bs >= topb)
    {
      while (as < topa) *p++ = *as++;
      break;
    }
    else if ((*f)(*as, *bs) <= 0)
      *p++ = *as++;
    else
      *p++ = *bs++;
  }
  return <T>Vec(newl, news);
}

static int gsort(<T>*, int, <T>Comparator);
 
void <T>Vec::sort (<T>Comparator compar)
{
  gsort(s, len, compar);
}


// An adaptation of Schmidt's new quicksort

static inline void SWAP(<T>* A, <T>* B)
{
  <T> tmp = *A; *A = *B; *B = tmp;
}

/* This should be replaced by a standard ANSI macro. */
#define BYTES_PER_WORD 8
#define BYTES_PER_LONG 4

/* The next 4 #defines implement a very fast in-line stack abstraction. */

#define STACK_SIZE (BYTES_PER_WORD * BYTES_PER_LONG)
#define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
#define POP(LOW,HIGH)  do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
#define STACK_NOT_EMPTY (stack < top)                

/* Discontinue quicksort algorithm when partition gets below this size.
   This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4


/* Order size using quicksort.  This implementation incorporates
   four optimizations discussed in Sedgewick:
   
   1. Non-recursive, using an explicit stack of pointer that
      store the next array partition to sort.  To save time, this
      maximum amount of space required to store an array of
      MAX_INT is allocated on the stack.  Assuming a 32-bit integer,
      this needs only 32 * sizeof (stack_node) == 136 bits.  Pretty
      cheap, actually.

   2. Chose the pivot element using a median-of-three decision tree.
      This reduces the probability of selecting a bad pivot value and 
      eliminates certain extraneous comparisons.

   3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
      insertion sort to order the MAX_THRESH items within each partition.  
      This is a big win, since insertion sort is faster for small, mostly
      sorted array segements.
   
   4. The larger of the two sub-partitions is always pushed onto the
      stack first, with the algorithm then concentrating on the
      smaller partition.  This *guarantees* no more than log (n)
      stack size is needed! */
      
static int gsort (<T> *base_ptr, int total_elems, <T>Comparator cmp)
{
/* Stack node declarations used to store unfulfilled partition obligations. */
  struct stack_node {  <T> *lo;  <T> *hi; };
  <T>   pivot_buffer;
  int   max_thresh   = MAX_THRESH;

  if (total_elems > MAX_THRESH)
    {
      <T>       *lo = base_ptr;
      <T>       *hi = lo + (total_elems - 1);
      <T>       *left_ptr;
      <T>       *right_ptr;
      stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
      stack_node *top = stack + 1;

      while (STACK_NOT_EMPTY)
        {
          {
            <T> *pivot = &pivot_buffer;
            {
              /* Select median value from among LO, MID, and HI. Rearrange
                 LO and HI so the three values are sorted. This lowers the 
                 probability of picking a pathological pivot value and 
                 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */

              <T> *mid = lo + ((hi - lo) >> 1);

              if ((*cmp) (*mid, *lo) < 0)
                SWAP (mid, lo);
              if ((*cmp) (*hi, *mid) < 0)
              {
                SWAP (mid, hi);
                if ((*cmp) (*mid, *lo) < 0)
                  SWAP (mid, lo);
              }
              *pivot = *mid;
              pivot = &pivot_buffer;
            }
            left_ptr  = lo + 1;
            right_ptr = hi - 1; 

            /* Here's the famous ``collapse the walls'' section of quicksort.  
               Gotta like those tight inner loops!  They are the main reason 
               that this algorithm runs much faster than others. */
            do 
              {
                while ((*cmp) (*left_ptr, *pivot) < 0)
                  left_ptr += 1;

                while ((*cmp) (*pivot, *right_ptr) < 0)
                  right_ptr -= 1;

                if (left_ptr < right_ptr) 
                  {
                    SWAP (left_ptr, right_ptr);
                    left_ptr += 1;
                    right_ptr -= 1;
                  }
                else if (left_ptr == right_ptr) 
                  {
                    left_ptr += 1;
                    right_ptr -= 1;
                    break;
                  }
              } 
            while (left_ptr <= right_ptr);

          }

          /* Set up pointers for next iteration.  First determine whether
             left and right partitions are below the threshold size. If so, 
             ignore one or both.  Otherwise, push the larger partition's
             bounds on the stack and continue sorting the smaller one. */

          if ((right_ptr - lo) <= max_thresh)
            {
              if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */
                POP (lo, hi); 
              else              /* Ignore small left partition. */  
                lo = left_ptr;
            }
          else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */
            hi = right_ptr;
          else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */
            {                   
              PUSH (lo, right_ptr);
              lo = left_ptr;
            }
          else                  /* Push larger right partition indices. */
            {                   
              PUSH (left_ptr, hi);
              hi = right_ptr;
            }
        }
    }

  /* Once the BASE_PTR array is partially sorted by quicksort the rest
     is completely sorted using insertion sort, since this is efficient 
     for partitions below MAX_THRESH size. BASE_PTR points to the beginning 
     of the array to sort, and END_PTR points at the very last element in
     the array (*not* one beyond it!). */


  {
    <T> *end_ptr = base_ptr + 1 * (total_elems - 1);
    <T> *run_ptr;
    <T> *tmp_ptr = base_ptr;
    <T> *thresh  = (end_ptr < (base_ptr + max_thresh))? 
      end_ptr : (base_ptr + max_thresh);

    /* Find smallest element in first threshold and place it at the
       array's beginning.  This is the smallest array element,
       and the operation speeds up insertion sort's inner loop. */

    for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr += 1)
      if ((*cmp) (*run_ptr, *tmp_ptr) < 0)
        tmp_ptr = run_ptr;

    if (tmp_ptr != base_ptr)
      SWAP (tmp_ptr, base_ptr);

    /* Insertion sort, running from left-hand-side up to `right-hand-side.' 
       Pretty much straight out of the original GNU qsort routine. */

    for (run_ptr = base_ptr + 1; (tmp_ptr = run_ptr += 1) <= end_ptr; )
      {

        while ((*cmp) (*run_ptr, *(tmp_ptr -= 1)) < 0)
          ;

        if ((tmp_ptr += 1) != run_ptr)
          {
            <T> *trav;

            for (trav = run_ptr + 1; --trav >= run_ptr;)
              {
                <T> c = *trav;
                <T> *hi, *lo;

                for (hi = lo = trav; (lo -= 1) >= tmp_ptr; hi = lo)
                  *hi = *lo;
                *hi = c;
              }
          }

      }
  }
  return 1;
}