aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/ec/ec2_smpl.c
blob: 0a05a7aeea61c66e774122f05c44b78cdc168f63 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
/*
 * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/err.h>

#include "internal/bn_int.h"
#include "ec_lcl.h"

#ifndef OPENSSL_NO_EC2M

/*
 * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
 * are handled by EC_GROUP_new.
 */
int ec_GF2m_simple_group_init(EC_GROUP *group)
{
    group->field = BN_new();
    group->a = BN_new();
    group->b = BN_new();

    if (group->field == NULL || group->a == NULL || group->b == NULL) {
        BN_free(group->field);
        BN_free(group->a);
        BN_free(group->b);
        return 0;
    }
    return 1;
}

/*
 * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
 * handled by EC_GROUP_free.
 */
void ec_GF2m_simple_group_finish(EC_GROUP *group)
{
    BN_free(group->field);
    BN_free(group->a);
    BN_free(group->b);
}

/*
 * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
 * members are handled by EC_GROUP_clear_free.
 */
void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
{
    BN_clear_free(group->field);
    BN_clear_free(group->a);
    BN_clear_free(group->b);
    group->poly[0] = 0;
    group->poly[1] = 0;
    group->poly[2] = 0;
    group->poly[3] = 0;
    group->poly[4] = 0;
    group->poly[5] = -1;
}

/*
 * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
 * handled by EC_GROUP_copy.
 */
int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
    if (!BN_copy(dest->field, src->field))
        return 0;
    if (!BN_copy(dest->a, src->a))
        return 0;
    if (!BN_copy(dest->b, src->b))
        return 0;
    dest->poly[0] = src->poly[0];
    dest->poly[1] = src->poly[1];
    dest->poly[2] = src->poly[2];
    dest->poly[3] = src->poly[3];
    dest->poly[4] = src->poly[4];
    dest->poly[5] = src->poly[5];
    if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
        NULL)
        return 0;
    if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
        NULL)
        return 0;
    bn_set_all_zero(dest->a);
    bn_set_all_zero(dest->b);
    return 1;
}

/* Set the curve parameters of an EC_GROUP structure. */
int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
                                   const BIGNUM *p, const BIGNUM *a,
                                   const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0, i;

    /* group->field */
    if (!BN_copy(group->field, p))
        goto err;
    i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
    if ((i != 5) && (i != 3)) {
        ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
        goto err;
    }

    /* group->a */
    if (!BN_GF2m_mod_arr(group->a, a, group->poly))
        goto err;
    if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
        == NULL)
        goto err;
    bn_set_all_zero(group->a);

    /* group->b */
    if (!BN_GF2m_mod_arr(group->b, b, group->poly))
        goto err;
    if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
        == NULL)
        goto err;
    bn_set_all_zero(group->b);

    ret = 1;
 err:
    return ret;
}

/*
 * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
 * then there values will not be set but the method will return with success.
 */
int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
                                   BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;

    if (p != NULL) {
        if (!BN_copy(p, group->field))
            return 0;
    }

    if (a != NULL) {
        if (!BN_copy(a, group->a))
            goto err;
    }

    if (b != NULL) {
        if (!BN_copy(b, group->b))
            goto err;
    }

    ret = 1;

 err:
    return ret;
}

/*
 * Gets the degree of the field.  For a curve over GF(2^m) this is the value
 * m.
 */
int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
{
    return BN_num_bits(group->field) - 1;
}

/*
 * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
 * elliptic curve <=> b != 0 (mod p)
 */
int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
                                            BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *b;
    BN_CTX *new_ctx = NULL;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL) {
            ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
                  ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }
    BN_CTX_start(ctx);
    b = BN_CTX_get(ctx);
    if (b == NULL)
        goto err;

    if (!BN_GF2m_mod_arr(b, group->b, group->poly))
        goto err;

    /*
     * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
     * curve <=> b != 0 (mod p)
     */
    if (BN_is_zero(b))
        goto err;

    ret = 1;

 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/* Initializes an EC_POINT. */
int ec_GF2m_simple_point_init(EC_POINT *point)
{
    point->X = BN_new();
    point->Y = BN_new();
    point->Z = BN_new();

    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
        BN_free(point->X);
        BN_free(point->Y);
        BN_free(point->Z);
        return 0;
    }
    return 1;
}

/* Frees an EC_POINT. */
void ec_GF2m_simple_point_finish(EC_POINT *point)
{
    BN_free(point->X);
    BN_free(point->Y);
    BN_free(point->Z);
}

/* Clears and frees an EC_POINT. */
void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
{
    BN_clear_free(point->X);
    BN_clear_free(point->Y);
    BN_clear_free(point->Z);
    point->Z_is_one = 0;
}

/*
 * Copy the contents of one EC_POINT into another.  Assumes dest is
 * initialized.
 */
int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
{
    if (!BN_copy(dest->X, src->X))
        return 0;
    if (!BN_copy(dest->Y, src->Y))
        return 0;
    if (!BN_copy(dest->Z, src->Z))
        return 0;
    dest->Z_is_one = src->Z_is_one;
    dest->curve_name = src->curve_name;

    return 1;
}

/*
 * Set an EC_POINT to the point at infinity. A point at infinity is
 * represented by having Z=0.
 */
int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
                                         EC_POINT *point)
{
    point->Z_is_one = 0;
    BN_zero(point->Z);
    return 1;
}

/*
 * Set the coordinates of an EC_POINT using affine coordinates. Note that
 * the simple implementation only uses affine coordinates.
 */
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
                                                EC_POINT *point,
                                                const BIGNUM *x,
                                                const BIGNUM *y, BN_CTX *ctx)
{
    int ret = 0;
    if (x == NULL || y == NULL) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
              ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }

    if (!BN_copy(point->X, x))
        goto err;
    BN_set_negative(point->X, 0);
    if (!BN_copy(point->Y, y))
        goto err;
    BN_set_negative(point->Y, 0);
    if (!BN_copy(point->Z, BN_value_one()))
        goto err;
    BN_set_negative(point->Z, 0);
    point->Z_is_one = 1;
    ret = 1;

 err:
    return ret;
}

/*
 * Gets the affine coordinates of an EC_POINT. Note that the simple
 * implementation only uses affine coordinates.
 */
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
                                                const EC_POINT *point,
                                                BIGNUM *x, BIGNUM *y,
                                                BN_CTX *ctx)
{
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (BN_cmp(point->Z, BN_value_one())) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return 0;
    }
    if (x != NULL) {
        if (!BN_copy(x, point->X))
            goto err;
        BN_set_negative(x, 0);
    }
    if (y != NULL) {
        if (!BN_copy(y, point->Y))
            goto err;
        BN_set_negative(y, 0);
    }
    ret = 1;

 err:
    return ret;
}

/*
 * Computes a + b and stores the result in r.  r could be a or b, a could be
 * b. Uses algorithm A.10.2 of IEEE P1363.
 */
int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                       const EC_POINT *b, BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, a)) {
        if (!EC_POINT_copy(r, b))
            return 0;
        return 1;
    }

    if (EC_POINT_is_at_infinity(group, b)) {
        if (!EC_POINT_copy(r, a))
            return 0;
        return 1;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    x0 = BN_CTX_get(ctx);
    y0 = BN_CTX_get(ctx);
    x1 = BN_CTX_get(ctx);
    y1 = BN_CTX_get(ctx);
    x2 = BN_CTX_get(ctx);
    y2 = BN_CTX_get(ctx);
    s = BN_CTX_get(ctx);
    t = BN_CTX_get(ctx);
    if (t == NULL)
        goto err;

    if (a->Z_is_one) {
        if (!BN_copy(x0, a->X))
            goto err;
        if (!BN_copy(y0, a->Y))
            goto err;
    } else {
        if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
            goto err;
    }
    if (b->Z_is_one) {
        if (!BN_copy(x1, b->X))
            goto err;
        if (!BN_copy(y1, b->Y))
            goto err;
    } else {
        if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
            goto err;
    }

    if (BN_GF2m_cmp(x0, x1)) {
        if (!BN_GF2m_add(t, x0, x1))
            goto err;
        if (!BN_GF2m_add(s, y0, y1))
            goto err;
        if (!group->meth->field_div(group, s, s, t, ctx))
            goto err;
        if (!group->meth->field_sqr(group, x2, s, ctx))
            goto err;
        if (!BN_GF2m_add(x2, x2, group->a))
            goto err;
        if (!BN_GF2m_add(x2, x2, s))
            goto err;
        if (!BN_GF2m_add(x2, x2, t))
            goto err;
    } else {
        if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
            if (!EC_POINT_set_to_infinity(group, r))
                goto err;
            ret = 1;
            goto err;
        }
        if (!group->meth->field_div(group, s, y1, x1, ctx))
            goto err;
        if (!BN_GF2m_add(s, s, x1))
            goto err;

        if (!group->meth->field_sqr(group, x2, s, ctx))
            goto err;
        if (!BN_GF2m_add(x2, x2, s))
            goto err;
        if (!BN_GF2m_add(x2, x2, group->a))
            goto err;
    }

    if (!BN_GF2m_add(y2, x1, x2))
        goto err;
    if (!group->meth->field_mul(group, y2, y2, s, ctx))
        goto err;
    if (!BN_GF2m_add(y2, y2, x2))
        goto err;
    if (!BN_GF2m_add(y2, y2, y1))
        goto err;

    if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
        goto err;

    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*
 * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm
 * A.10.2 of IEEE P1363.
 */
int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                       BN_CTX *ctx)
{
    return ec_GF2m_simple_add(group, r, a, a, ctx);
}

int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
        /* point is its own inverse */
        return 1;

    if (!EC_POINT_make_affine(group, point, ctx))
        return 0;
    return BN_GF2m_add(point->Y, point->X, point->Y);
}

/* Indicates whether the given point is the point at infinity. */
int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
                                  const EC_POINT *point)
{
    return BN_is_zero(point->Z);
}

/*-
 * Determines whether the given EC_POINT is an actual point on the curve defined
 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 *      y^2 + x*y = x^3 + a*x^2 + b.
 */
int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                               BN_CTX *ctx)
{
    int ret = -1;
    BN_CTX *new_ctx = NULL;
    BIGNUM *lh, *y2;
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);

    if (EC_POINT_is_at_infinity(group, point))
        return 1;

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;

    /* only support affine coordinates */
    if (!point->Z_is_one)
        return -1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    y2 = BN_CTX_get(ctx);
    lh = BN_CTX_get(ctx);
    if (lh == NULL)
        goto err;

    /*-
     * We have a curve defined by a Weierstrass equation
     *      y^2 + x*y = x^3 + a*x^2 + b.
     *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
     *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
     */
    if (!BN_GF2m_add(lh, point->X, group->a))
        goto err;
    if (!field_mul(group, lh, lh, point->X, ctx))
        goto err;
    if (!BN_GF2m_add(lh, lh, point->Y))
        goto err;
    if (!field_mul(group, lh, lh, point->X, ctx))
        goto err;
    if (!BN_GF2m_add(lh, lh, group->b))
        goto err;
    if (!field_sqr(group, y2, point->Y, ctx))
        goto err;
    if (!BN_GF2m_add(lh, lh, y2))
        goto err;
    ret = BN_is_zero(lh);

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*-
 * Indicates whether two points are equal.
 * Return values:
 *  -1   error
 *   0   equal (in affine coordinates)
 *   1   not equal
 */
int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
                       const EC_POINT *b, BN_CTX *ctx)
{
    BIGNUM *aX, *aY, *bX, *bY;
    BN_CTX *new_ctx = NULL;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, a)) {
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
    }

    if (EC_POINT_is_at_infinity(group, b))
        return 1;

    if (a->Z_is_one && b->Z_is_one) {
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    aX = BN_CTX_get(ctx);
    aY = BN_CTX_get(ctx);
    bX = BN_CTX_get(ctx);
    bY = BN_CTX_get(ctx);
    if (bY == NULL)
        goto err;

    if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
        goto err;
    if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
        goto err;
    ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/* Forces the given EC_POINT to internally use affine coordinates. */
int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
                               BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *x, *y;
    int ret = 0;

    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
        return 1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    if (y == NULL)
        goto err;

    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
        goto err;
    if (!BN_copy(point->X, x))
        goto err;
    if (!BN_copy(point->Y, y))
        goto err;
    if (!BN_one(point->Z))
        goto err;
    point->Z_is_one = 1;

    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*
 * Forces each of the EC_POINTs in the given array to use affine coordinates.
 */
int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
                                      EC_POINT *points[], BN_CTX *ctx)
{
    size_t i;

    for (i = 0; i < num; i++) {
        if (!group->meth->make_affine(group, points[i], ctx))
            return 0;
    }

    return 1;
}

/* Wrapper to simple binary polynomial field multiplication implementation. */
int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
}

/* Wrapper to simple binary polynomial field squaring implementation. */
int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
                             const BIGNUM *a, BN_CTX *ctx)
{
    return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
}

/* Wrapper to simple binary polynomial field division implementation. */
int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    return BN_GF2m_mod_div(r, a, b, group->field, ctx);
}

/*-
 * Lopez-Dahab ladder, pre step.
 * See e.g. "Guide to ECC" Alg 3.40.
 * Modified to blind s and r independently.
 * s:= p, r := 2p
 */
static
int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
                              EC_POINT *r, EC_POINT *s,
                              EC_POINT *p, BN_CTX *ctx)
{
    /* if p is not affine, something is wrong */
    if (p->Z_is_one == 0)
        return 0;

    /* s blinding: make sure lambda (s->Z here) is not zero */
    do {
        if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
            return 0;
        }
    } while (BN_is_zero(s->Z));

    /* if field_encode defined convert between representations */
    if ((group->meth->field_encode != NULL
         && !group->meth->field_encode(group, s->Z, s->Z, ctx))
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
        return 0;

    /* r blinding: make sure lambda (r->Y here for storage) is not zero */
    do {
        if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
            return 0;
        }
    } while (BN_is_zero(r->Y));

    if ((group->meth->field_encode != NULL
         && !group->meth->field_encode(group, r->Y, r->Y, ctx))
        || !group->meth->field_sqr(group, r->Z, p->X, ctx)
        || !group->meth->field_sqr(group, r->X, r->Z, ctx)
        || !BN_GF2m_add(r->X, r->X, group->b)
        || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
        return 0;

    s->Z_is_one = 0;
    r->Z_is_one = 0;

    return 1;
}

/*-
 * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
 * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
 * s := r + s, r := 2r
 */
static
int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
                               EC_POINT *r, EC_POINT *s,
                               EC_POINT *p, BN_CTX *ctx)
{
    if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
        || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
        || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
        || !group->meth->field_sqr(group, r->Z, r->X, ctx)
        || !BN_GF2m_add(s->Z, r->Y, s->X)
        || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
        || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
        || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
        || !BN_GF2m_add(s->X, s->X, r->Y)
        || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
        || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
        || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
        || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
        || !BN_GF2m_add(r->X, r->Y, s->Y))
        return 0;

    return 1;
}

/*-
 * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
 * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
 * without Precomputation" (Lopez and Dahab, CHES 1999),
 * Appendix Alg Mxy.
 */
static
int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
                               EC_POINT *r, EC_POINT *s,
                               EC_POINT *p, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *t0, *t1, *t2 = NULL;

    if (BN_is_zero(r->Z))
        return EC_POINT_set_to_infinity(group, r);

    if (BN_is_zero(s->Z)) {
        if (!EC_POINT_copy(r, p)
            || !EC_POINT_invert(group, r, ctx)) {
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
            return 0;
        }
        return 1;
    }

    BN_CTX_start(ctx);
    t0 = BN_CTX_get(ctx);
    t1 = BN_CTX_get(ctx);
    t2 = BN_CTX_get(ctx);
    if (t2 == NULL) {
        ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
        || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
        || !BN_GF2m_add(t1, r->X, t1)
        || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
        || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
        || !BN_GF2m_add(t2, t2, s->X)
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
        || !group->meth->field_sqr(group, t2, p->X, ctx)
        || !BN_GF2m_add(t2, p->Y, t2)
        || !group->meth->field_mul(group, t2, t2, t0, ctx)
        || !BN_GF2m_add(t1, t2, t1)
        || !group->meth->field_mul(group, t2, p->X, t0, ctx)
        || !group->meth->field_inv(group, t2, t2, ctx)
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
        || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
        || !BN_GF2m_add(t2, p->X, r->X)
        || !group->meth->field_mul(group, t2, t2, t1, ctx)
        || !BN_GF2m_add(r->Y, p->Y, t2)
        || !BN_one(r->Z))
        goto err;

    r->Z_is_one = 1;

    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
    BN_set_negative(r->X, 0);
    BN_set_negative(r->Y, 0);

    ret = 1;

 err:
    BN_CTX_end(ctx);
    return ret;
}

static
int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
                              const BIGNUM *scalar, size_t num,
                              const EC_POINT *points[],
                              const BIGNUM *scalars[],
                              BN_CTX *ctx)
{
    int ret = 0;
    EC_POINT *t = NULL;

    /*-
     * We limit use of the ladder only to the following cases:
     * - r := scalar * G
     *   Fixed point mul: scalar != NULL && num == 0;
     * - r := scalars[0] * points[0]
     *   Variable point mul: scalar == NULL && num == 1;
     * - r := scalar * G + scalars[0] * points[0]
     *   used, e.g., in ECDSA verification: scalar != NULL && num == 1
     *
     * In any other case (num > 1) we use the default wNAF implementation.
     *
     * We also let the default implementation handle degenerate cases like group
     * order or cofactor set to 0.
     */
    if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
        return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);

    if (scalar != NULL && num == 0)
        /* Fixed point multiplication */
        return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);

    if (scalar == NULL && num == 1)
        /* Variable point multiplication */
        return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);

    /*-
     * Double point multiplication:
     *  r := scalar * G + scalars[0] * points[0]
     */

    if ((t = EC_POINT_new(group)) == NULL) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
        return 0;
    }

    if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
        || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
        || !EC_POINT_add(group, r, t, r, ctx))
        goto err;

    ret = 1;

 err:
    EC_POINT_free(t);
    return ret;
}

/*-
 * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
 * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
 * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
 */
static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
                                    const BIGNUM *a, BN_CTX *ctx)
{
    int ret;

    if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
        ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
    return ret;
}

const EC_METHOD *EC_GF2m_simple_method(void)
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_characteristic_two_field,
        ec_GF2m_simple_group_init,
        ec_GF2m_simple_group_finish,
        ec_GF2m_simple_group_clear_finish,
        ec_GF2m_simple_group_copy,
        ec_GF2m_simple_group_set_curve,
        ec_GF2m_simple_group_get_curve,
        ec_GF2m_simple_group_get_degree,
        ec_group_simple_order_bits,
        ec_GF2m_simple_group_check_discriminant,
        ec_GF2m_simple_point_init,
        ec_GF2m_simple_point_finish,
        ec_GF2m_simple_point_clear_finish,
        ec_GF2m_simple_point_copy,
        ec_GF2m_simple_point_set_to_infinity,
        0, /* set_Jprojective_coordinates_GFp */
        0, /* get_Jprojective_coordinates_GFp */
        ec_GF2m_simple_point_set_affine_coordinates,
        ec_GF2m_simple_point_get_affine_coordinates,
        0, /* point_set_compressed_coordinates */
        0, /* point2oct */
        0, /* oct2point */
        ec_GF2m_simple_add,
        ec_GF2m_simple_dbl,
        ec_GF2m_simple_invert,
        ec_GF2m_simple_is_at_infinity,
        ec_GF2m_simple_is_on_curve,
        ec_GF2m_simple_cmp,
        ec_GF2m_simple_make_affine,
        ec_GF2m_simple_points_make_affine,
        ec_GF2m_simple_points_mul,
        0, /* precompute_mult */
        0, /* have_precompute_mult */
        ec_GF2m_simple_field_mul,
        ec_GF2m_simple_field_sqr,
        ec_GF2m_simple_field_div,
        ec_GF2m_simple_field_inv,
        0, /* field_encode */
        0, /* field_decode */
        0, /* field_set_to_one */
        ec_key_simple_priv2oct,
        ec_key_simple_oct2priv,
        0, /* set private */
        ec_key_simple_generate_key,
        ec_key_simple_check_key,
        ec_key_simple_generate_public_key,
        0, /* keycopy */
        0, /* keyfinish */
        ecdh_simple_compute_key,
        0, /* field_inverse_mod_ord */
        0, /* blind_coordinates */
        ec_GF2m_simple_ladder_pre,
        ec_GF2m_simple_ladder_step,
        ec_GF2m_simple_ladder_post
    };

    return &ret;
}

#endif