aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn/asm/s390x-gf2m.pl
blob: 9d18d40e778467677d45549b83755d0b53d0a40b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# May 2011
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
# the time being... gcc 4.3 appeared to generate poor code, therefore
# the effort. And indeed, the module delivers 55%-90%(*) improvement
# on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit
# key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196.
# This is for 64-bit build. In 32-bit "highgprs" case improvement is
# even higher, for example on z990 it was measured 80%-150%. ECDSA
# sign is modest 9%-12% faster. Keep in mind that these coefficients
# are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is
# burnt in it...
#
# (*)	gcc 4.1 was observed to deliver better results than gcc 4.3,
#	so that improvement coefficients can vary from one specific
#	setup to another.

$flavour = shift;

if ($flavour =~ /3[12]/) {
        $SIZE_T=4;
        $g="";
} else {
        $SIZE_T=8;
        $g="g";
}

while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";

$stdframe=16*$SIZE_T+4*8;

$rp="%r2";
$a1="%r3";
$a0="%r4";
$b1="%r5";
$b0="%r6";

$ra="%r14";
$sp="%r15";

@T=("%r0","%r1");
@i=("%r12","%r13");

($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11));
($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8;

$code.=<<___;
.text

.type	_mul_1x1,\@function
.align	16
_mul_1x1:
	lgr	$a1,$a
	sllg	$a2,$a,1
	sllg	$a4,$a,2
	sllg	$a8,$a,3

	srag	$lo,$a1,63			# broadcast 63rd bit
	nihh	$a1,0x1fff
	srag	@i[0],$a2,63			# broadcast 62nd bit
	nihh	$a2,0x3fff
	srag	@i[1],$a4,63			# broadcast 61st bit
	nihh	$a4,0x7fff
	ngr	$lo,$b
	ngr	@i[0],$b
	ngr	@i[1],$b

	lghi	@T[0],0
	lgr	$a12,$a1
	stg	@T[0],`$stdframe+0*8`($sp)	# tab[0]=0
	xgr	$a12,$a2
	stg	$a1,`$stdframe+1*8`($sp)	# tab[1]=a1
	 lgr	$a48,$a4
	stg	$a2,`$stdframe+2*8`($sp)	# tab[2]=a2
	 xgr	$a48,$a8
	stg	$a12,`$stdframe+3*8`($sp)	# tab[3]=a1^a2
	 xgr	$a1,$a4

	stg	$a4,`$stdframe+4*8`($sp)	# tab[4]=a4
	xgr	$a2,$a4
	stg	$a1,`$stdframe+5*8`($sp)	# tab[5]=a1^a4
	xgr	$a12,$a4
	stg	$a2,`$stdframe+6*8`($sp)	# tab[6]=a2^a4
	 xgr	$a1,$a48
	stg	$a12,`$stdframe+7*8`($sp)	# tab[7]=a1^a2^a4
	 xgr	$a2,$a48

	stg	$a8,`$stdframe+8*8`($sp)	# tab[8]=a8
	xgr	$a12,$a48
	stg	$a1,`$stdframe+9*8`($sp)	# tab[9]=a1^a8
	 xgr	$a1,$a4
	stg	$a2,`$stdframe+10*8`($sp)	# tab[10]=a2^a8
	 xgr	$a2,$a4
	stg	$a12,`$stdframe+11*8`($sp)	# tab[11]=a1^a2^a8

	xgr	$a12,$a4
	stg	$a48,`$stdframe+12*8`($sp)	# tab[12]=a4^a8
	 srlg	$hi,$lo,1
	stg	$a1,`$stdframe+13*8`($sp)	# tab[13]=a1^a4^a8
	 sllg	$lo,$lo,63
	stg	$a2,`$stdframe+14*8`($sp)	# tab[14]=a2^a4^a8
	 srlg	@T[0],@i[0],2
	stg	$a12,`$stdframe+15*8`($sp)	# tab[15]=a1^a2^a4^a8

	lghi	$mask,`0xf<<3`
	sllg	$a1,@i[0],62
	 sllg	@i[0],$b,3
	srlg	@T[1],@i[1],3
	 ngr	@i[0],$mask
	sllg	$a2,@i[1],61
	 srlg	@i[1],$b,4-3
	xgr	$hi,@T[0]
	 ngr	@i[1],$mask
	xgr	$lo,$a1
	xgr	$hi,@T[1]
	xgr	$lo,$a2

	xg	$lo,$stdframe(@i[0],$sp)
	srlg	@i[0],$b,8-3
	ngr	@i[0],$mask
___
for($n=1;$n<14;$n++) {
$code.=<<___;
	lg	@T[1],$stdframe(@i[1],$sp)
	srlg	@i[1],$b,`($n+2)*4`-3
	sllg	@T[0],@T[1],`$n*4`
	ngr	@i[1],$mask
	srlg	@T[1],@T[1],`64-$n*4`
	xgr	$lo,@T[0]
	xgr	$hi,@T[1]
___
	push(@i,shift(@i)); push(@T,shift(@T));
}
$code.=<<___;
	lg	@T[1],$stdframe(@i[1],$sp)
	sllg	@T[0],@T[1],`$n*4`
	srlg	@T[1],@T[1],`64-$n*4`
	xgr	$lo,@T[0]
	xgr	$hi,@T[1]

	lg	@T[0],$stdframe(@i[0],$sp)
	sllg	@T[1],@T[0],`($n+1)*4`
	srlg	@T[0],@T[0],`64-($n+1)*4`
	xgr	$lo,@T[1]
	xgr	$hi,@T[0]

	br	$ra
.size	_mul_1x1,.-_mul_1x1

.globl	bn_GF2m_mul_2x2
.type	bn_GF2m_mul_2x2,\@function
.align	16
bn_GF2m_mul_2x2:
	stm${g}	%r3,%r15,3*$SIZE_T($sp)

	lghi	%r1,-$stdframe-128
	la	%r0,0($sp)
	la	$sp,0(%r1,$sp)			# alloca
	st${g}	%r0,0($sp)			# back chain
___
if ($SIZE_T==8) {
my @r=map("%r$_",(6..9));
$code.=<<___;
	bras	$ra,_mul_1x1			# a1·b1
	stmg	$lo,$hi,16($rp)

	lg	$a,`$stdframe+128+4*$SIZE_T`($sp)
	lg	$b,`$stdframe+128+6*$SIZE_T`($sp)
	bras	$ra,_mul_1x1			# a0·b0
	stmg	$lo,$hi,0($rp)

	lg	$a,`$stdframe+128+3*$SIZE_T`($sp)
	lg	$b,`$stdframe+128+5*$SIZE_T`($sp)
	xg	$a,`$stdframe+128+4*$SIZE_T`($sp)
	xg	$b,`$stdframe+128+6*$SIZE_T`($sp)
	bras	$ra,_mul_1x1			# (a0+a1)·(b0+b1)
	lmg	@r[0],@r[3],0($rp)

	xgr	$lo,$hi
	xgr	$hi,@r[1]
	xgr	$lo,@r[0]
	xgr	$hi,@r[2]
	xgr	$lo,@r[3]	
	xgr	$hi,@r[3]
	xgr	$lo,$hi
	stg	$hi,16($rp)
	stg	$lo,8($rp)
___
} else {
$code.=<<___;
	sllg	%r3,%r3,32
	sllg	%r5,%r5,32
	or	%r3,%r4
	or	%r5,%r6
	bras	$ra,_mul_1x1
	rllg	$lo,$lo,32
	rllg	$hi,$hi,32
	stmg	$lo,$hi,0($rp)
___
}
$code.=<<___;
	lm${g}	%r6,%r15,`$stdframe+128+6*$SIZE_T`($sp)
	br	$ra
.size	bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
.string	"GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___

$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT;