aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/Target.cpp
blob: d82e654b9c4c52b907829947a0584c9778fb48cb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
//===- Target.cpp ---------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Machine-specific things, such as applying relocations, creation of
// GOT or PLT entries, etc., are handled in this file.
//
// Refer the ELF spec for the single letter variables, S, A or P, used
// in this file.
//
// Some functions defined in this file has "relaxTls" as part of their names.
// They do peephole optimization for TLS variables by rewriting instructions.
// They are not part of the ABI but optional optimization, so you can skip
// them if you are not interested in how TLS variables are optimized.
// See the following paper for the details.
//
//   Ulrich Drepper, ELF Handling For Thread-Local Storage
//   http://www.akkadia.org/drepper/tls.pdf
//
//===----------------------------------------------------------------------===//

#include "Target.h"
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Thunks.h"
#include "Writer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

TargetInfo *Target;

static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
static void or32be(uint8_t *P, int32_t V) { write32be(P, read32be(P) | V); }

std::string toString(uint32_t Type) {
  return getELFRelocationTypeName(Config->EMachine, Type);
}

template <class ELFT> static std::string getErrorLoc(uint8_t *Loc) {
  for (InputSectionData *D : Symtab<ELFT>::X->Sections) {
    auto *IS = dyn_cast_or_null<InputSection<ELFT>>(D);
    if (!IS || !IS->OutSec)
      continue;

    uint8_t *ISLoc = cast<OutputSection<ELFT>>(IS->OutSec)->Loc + IS->OutSecOff;
    if (ISLoc <= Loc && Loc < ISLoc + IS->getSize())
      return IS->getLocation(Loc - ISLoc) + ": ";
  }
  return "";
}

static std::string getErrorLocation(uint8_t *Loc) {
  switch (Config->EKind) {
  case ELF32LEKind:
    return getErrorLoc<ELF32LE>(Loc);
  case ELF32BEKind:
    return getErrorLoc<ELF32BE>(Loc);
  case ELF64LEKind:
    return getErrorLoc<ELF64LE>(Loc);
  case ELF64BEKind:
    return getErrorLoc<ELF64BE>(Loc);
  default:
    llvm_unreachable("unknown ELF type");
  }
}

template <unsigned N>
static void checkInt(uint8_t *Loc, int64_t V, uint32_t Type) {
  if (!isInt<N>(V))
    error(getErrorLocation(Loc) + "relocation " + toString(Type) +
          " out of range");
}

template <unsigned N>
static void checkUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
  if (!isUInt<N>(V))
    error(getErrorLocation(Loc) + "relocation " + toString(Type) +
          " out of range");
}

template <unsigned N>
static void checkIntUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
  if (!isInt<N>(V) && !isUInt<N>(V))
    error(getErrorLocation(Loc) + "relocation " + toString(Type) +
          " out of range");
}

template <unsigned N>
static void checkAlignment(uint8_t *Loc, uint64_t V, uint32_t Type) {
  if ((V & (N - 1)) != 0)
    error(getErrorLocation(Loc) + "improper alignment for relocation " +
          toString(Type));
}

namespace {
class X86TargetInfo final : public TargetInfo {
public:
  X86TargetInfo();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
  uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
  void writeGotPltHeader(uint8_t *Buf) const override;
  uint32_t getDynRel(uint32_t Type) const override;
  bool isTlsLocalDynamicRel(uint32_t Type) const override;
  bool isTlsGlobalDynamicRel(uint32_t Type) const override;
  bool isTlsInitialExecRel(uint32_t Type) const override;
  void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writePltHeader(uint8_t *Buf) const override;
  void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;

  RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                          RelExpr Expr) const override;
  void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};

template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
public:
  X86_64TargetInfo();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
  bool isPicRel(uint32_t Type) const override;
  bool isTlsLocalDynamicRel(uint32_t Type) const override;
  bool isTlsGlobalDynamicRel(uint32_t Type) const override;
  bool isTlsInitialExecRel(uint32_t Type) const override;
  void writeGotPltHeader(uint8_t *Buf) const override;
  void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writePltHeader(uint8_t *Buf) const override;
  void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;

  RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                          RelExpr Expr) const override;
  void relaxGot(uint8_t *Loc, uint64_t Val) const override;
  void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;

private:
  void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
                     uint8_t ModRm) const;
};

class PPCTargetInfo final : public TargetInfo {
public:
  PPCTargetInfo();
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
};

class PPC64TargetInfo final : public TargetInfo {
public:
  PPC64TargetInfo();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
  void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};

class AArch64TargetInfo final : public TargetInfo {
public:
  AArch64TargetInfo();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
  bool isPicRel(uint32_t Type) const override;
  bool isTlsInitialExecRel(uint32_t Type) const override;
  void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writePltHeader(uint8_t *Buf) const override;
  void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  bool usesOnlyLowPageBits(uint32_t Type) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                          RelExpr Expr) const override;
  void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};

class AMDGPUTargetInfo final : public TargetInfo {
public:
  AMDGPUTargetInfo();
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
};

class ARMTargetInfo final : public TargetInfo {
public:
  ARMTargetInfo();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
  bool isPicRel(uint32_t Type) const override;
  uint32_t getDynRel(uint32_t Type) const override;
  uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
  bool isTlsLocalDynamicRel(uint32_t Type) const override;
  bool isTlsGlobalDynamicRel(uint32_t Type) const override;
  bool isTlsInitialExecRel(uint32_t Type) const override;
  void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writePltHeader(uint8_t *Buf) const override;
  void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, const InputFile &File,
                       const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};

template <class ELFT> class MipsTargetInfo final : public TargetInfo {
public:
  MipsTargetInfo();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
  uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
  bool isPicRel(uint32_t Type) const override;
  uint32_t getDynRel(uint32_t Type) const override;
  bool isTlsLocalDynamicRel(uint32_t Type) const override;
  bool isTlsGlobalDynamicRel(uint32_t Type) const override;
  void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writePltHeader(uint8_t *Buf) const override;
  void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, const InputFile &File,
                       const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  bool usesOnlyLowPageBits(uint32_t Type) const override;
};
} // anonymous namespace

TargetInfo *createTarget() {
  switch (Config->EMachine) {
  case EM_386:
  case EM_IAMCU:
    return make<X86TargetInfo>();
  case EM_AARCH64:
    return make<AArch64TargetInfo>();
  case EM_AMDGPU:
    return make<AMDGPUTargetInfo>();
  case EM_ARM:
    return make<ARMTargetInfo>();
  case EM_MIPS:
    switch (Config->EKind) {
    case ELF32LEKind:
      return make<MipsTargetInfo<ELF32LE>>();
    case ELF32BEKind:
      return make<MipsTargetInfo<ELF32BE>>();
    case ELF64LEKind:
      return make<MipsTargetInfo<ELF64LE>>();
    case ELF64BEKind:
      return make<MipsTargetInfo<ELF64BE>>();
    default:
      fatal("unsupported MIPS target");
    }
  case EM_PPC:
    return make<PPCTargetInfo>();
  case EM_PPC64:
    return make<PPC64TargetInfo>();
  case EM_X86_64:
    if (Config->EKind == ELF32LEKind)
      return make<X86_64TargetInfo<ELF32LE>>();
    return make<X86_64TargetInfo<ELF64LE>>();
  }
  fatal("unknown target machine");
}

TargetInfo::~TargetInfo() {}

uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
                                       uint32_t Type) const {
  return 0;
}

bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }

RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
                                 const InputFile &File,
                                 const SymbolBody &S) const {
  return Expr;
}

bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }

bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }

bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { return false; }

void TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
  writeGotPlt(Buf, S);
}

RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                                    RelExpr Expr) const {
  return Expr;
}

void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
  llvm_unreachable("Should not have claimed to be relaxable");
}

void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  llvm_unreachable("Should not have claimed to be relaxable");
}

void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  llvm_unreachable("Should not have claimed to be relaxable");
}

void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  llvm_unreachable("Should not have claimed to be relaxable");
}

void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  llvm_unreachable("Should not have claimed to be relaxable");
}

X86TargetInfo::X86TargetInfo() {
  CopyRel = R_386_COPY;
  GotRel = R_386_GLOB_DAT;
  PltRel = R_386_JUMP_SLOT;
  IRelativeRel = R_386_IRELATIVE;
  RelativeRel = R_386_RELATIVE;
  TlsGotRel = R_386_TLS_TPOFF;
  TlsModuleIndexRel = R_386_TLS_DTPMOD32;
  TlsOffsetRel = R_386_TLS_DTPOFF32;
  GotEntrySize = 4;
  GotPltEntrySize = 4;
  PltEntrySize = 16;
  PltHeaderSize = 16;
  TlsGdRelaxSkip = 2;
}

RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
  switch (Type) {
  default:
    return R_ABS;
  case R_386_TLS_GD:
    return R_TLSGD;
  case R_386_TLS_LDM:
    return R_TLSLD;
  case R_386_PLT32:
    return R_PLT_PC;
  case R_386_PC16:
  case R_386_PC32:
    return R_PC;
  case R_386_GOTPC:
    return R_GOTONLY_PC_FROM_END;
  case R_386_TLS_IE:
    return R_GOT;
  case R_386_GOT32:
  case R_386_GOT32X:
  case R_386_TLS_GOTIE:
    return R_GOT_FROM_END;
  case R_386_GOTOFF:
    return R_GOTREL_FROM_END;
  case R_386_TLS_LE:
    return R_TLS;
  case R_386_TLS_LE_32:
    return R_NEG_TLS;
  }
}

RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                                       RelExpr Expr) const {
  switch (Expr) {
  default:
    return Expr;
  case R_RELAX_TLS_GD_TO_IE:
    return R_RELAX_TLS_GD_TO_IE_END;
  case R_RELAX_TLS_GD_TO_LE:
    return R_RELAX_TLS_GD_TO_LE_NEG;
  }
}

void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
  write32le(Buf, In<ELF32LE>::Dynamic->getVA());
}

void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
  // Entries in .got.plt initially points back to the corresponding
  // PLT entries with a fixed offset to skip the first instruction.
  write32le(Buf, S.getPltVA<ELF32LE>() + 6);
}

void X86TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
  // An x86 entry is the address of the ifunc resolver function.
  write32le(Buf, S.getVA<ELF32LE>());
}

uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
  if (Type == R_386_TLS_LE)
    return R_386_TLS_TPOFF;
  if (Type == R_386_TLS_LE_32)
    return R_386_TLS_TPOFF32;
  return Type;
}

bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
  return Type == R_386_TLS_GD;
}

bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
  return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
}

bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
  return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
}

void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
  // Executable files and shared object files have
  // separate procedure linkage tables.
  if (Config->Pic) {
    const uint8_t V[] = {
        0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
        0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
        0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
    };
    memcpy(Buf, V, sizeof(V));
    return;
  }

  const uint8_t PltData[] = {
      0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
      0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
  };
  memcpy(Buf, PltData, sizeof(PltData));
  uint32_t Got = In<ELF32LE>::GotPlt->getVA();
  write32le(Buf + 2, Got + 4);
  write32le(Buf + 8, Got + 8);
}

void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
                             uint64_t PltEntryAddr, int32_t Index,
                             unsigned RelOff) const {
  const uint8_t Inst[] = {
      0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
      0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
      0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
  };
  memcpy(Buf, Inst, sizeof(Inst));

  // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
  Buf[1] = Config->Pic ? 0xa3 : 0x25;
  uint32_t Got = In<ELF32LE>::GotPlt->getVA();
  write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
  write32le(Buf + 7, RelOff);
  write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}

uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
                                          uint32_t Type) const {
  switch (Type) {
  default:
    return 0;
  case R_386_16:
  case R_386_PC16:
    return read16le(Buf);
  case R_386_32:
  case R_386_GOT32:
  case R_386_GOT32X:
  case R_386_GOTOFF:
  case R_386_GOTPC:
  case R_386_PC32:
  case R_386_PLT32:
  case R_386_TLS_LE:
    return read32le(Buf);
  }
}

void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  checkInt<32>(Loc, Val, Type);

  // R_386_PC16 and R_386_16 are not part of the current i386 psABI. They are
  // used by 16-bit x86 objects, like boot loaders.
  if (Type == R_386_16 || Type == R_386_PC16) {
    write16le(Loc, Val);
    return;
  }
  write32le(Loc, Val);
}

void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
                                   uint64_t Val) const {
  // Convert
  //   leal x@tlsgd(, %ebx, 1),
  //   call __tls_get_addr@plt
  // to
  //   movl %gs:0,%eax
  //   subl $x@ntpoff,%eax
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
  relocateOne(Loc + 5, R_386_32, Val);
}

void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
                                   uint64_t Val) const {
  // Convert
  //   leal x@tlsgd(, %ebx, 1),
  //   call __tls_get_addr@plt
  // to
  //   movl %gs:0, %eax
  //   addl x@gotntpoff(%ebx), %eax
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
  relocateOne(Loc + 5, R_386_32, Val);
}

// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
                                   uint64_t Val) const {
  // Ulrich's document section 6.2 says that @gotntpoff can
  // be used with MOVL or ADDL instructions.
  // @indntpoff is similar to @gotntpoff, but for use in
  // position dependent code.
  uint8_t Reg = (Loc[-1] >> 3) & 7;

  if (Type == R_386_TLS_IE) {
    if (Loc[-1] == 0xa1) {
      // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
      // This case is different from the generic case below because
      // this is a 5 byte instruction while below is 6 bytes.
      Loc[-1] = 0xb8;
    } else if (Loc[-2] == 0x8b) {
      // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
      Loc[-2] = 0xc7;
      Loc[-1] = 0xc0 | Reg;
    } else {
      // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
      Loc[-2] = 0x81;
      Loc[-1] = 0xc0 | Reg;
    }
  } else {
    assert(Type == R_386_TLS_GOTIE);
    if (Loc[-2] == 0x8b) {
      // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
      Loc[-2] = 0xc7;
      Loc[-1] = 0xc0 | Reg;
    } else {
      // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
      Loc[-2] = 0x8d;
      Loc[-1] = 0x80 | (Reg << 3) | Reg;
    }
  }
  relocateOne(Loc, R_386_TLS_LE, Val);
}

void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
                                   uint64_t Val) const {
  if (Type == R_386_TLS_LDO_32) {
    relocateOne(Loc, R_386_TLS_LE, Val);
    return;
  }

  // Convert
  //   leal foo(%reg),%eax
  //   call ___tls_get_addr
  // to
  //   movl %gs:0,%eax
  //   nop
  //   leal 0(%esi,1),%esi
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
      0x90,                               // nop
      0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
  };
  memcpy(Loc - 2, Inst, sizeof(Inst));
}

template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
  CopyRel = R_X86_64_COPY;
  GotRel = R_X86_64_GLOB_DAT;
  PltRel = R_X86_64_JUMP_SLOT;
  RelativeRel = R_X86_64_RELATIVE;
  IRelativeRel = R_X86_64_IRELATIVE;
  TlsGotRel = R_X86_64_TPOFF64;
  TlsModuleIndexRel = R_X86_64_DTPMOD64;
  TlsOffsetRel = R_X86_64_DTPOFF64;
  GotEntrySize = 8;
  GotPltEntrySize = 8;
  PltEntrySize = 16;
  PltHeaderSize = 16;
  TlsGdRelaxSkip = 2;
  // Align to the large page size (known as a superpage or huge page).
  // FreeBSD automatically promotes large, superpage-aligned allocations.
  DefaultImageBase = 0x200000;
}

template <class ELFT>
RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
                                           const SymbolBody &S) const {
  switch (Type) {
  default:
    return R_ABS;
  case R_X86_64_TPOFF32:
    return R_TLS;
  case R_X86_64_TLSLD:
    return R_TLSLD_PC;
  case R_X86_64_TLSGD:
    return R_TLSGD_PC;
  case R_X86_64_SIZE32:
  case R_X86_64_SIZE64:
    return R_SIZE;
  case R_X86_64_PLT32:
    return R_PLT_PC;
  case R_X86_64_PC32:
  case R_X86_64_PC64:
    return R_PC;
  case R_X86_64_GOT32:
  case R_X86_64_GOT64:
    return R_GOT_FROM_END;
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_GOTTPOFF:
    return R_GOT_PC;
  case R_X86_64_NONE:
    return R_HINT;
  }
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
  // The first entry holds the value of _DYNAMIC. It is not clear why that is
  // required, but it is documented in the psabi and the glibc dynamic linker
  // seems to use it (note that this is relevant for linking ld.so, not any
  // other program).
  write64le(Buf, In<ELFT>::Dynamic->getVA());
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
                                         const SymbolBody &S) const {
  // See comments in X86TargetInfo::writeGotPlt.
  write32le(Buf, S.getPltVA<ELFT>() + 6);
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
  const uint8_t PltData[] = {
      0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
      0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
  };
  memcpy(Buf, PltData, sizeof(PltData));
  uint64_t Got = In<ELFT>::GotPlt->getVA();
  uint64_t Plt = In<ELFT>::Plt->getVA();
  write32le(Buf + 2, Got - Plt + 2); // GOT+8
  write32le(Buf + 8, Got - Plt + 4); // GOT+16
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
                                      uint64_t PltEntryAddr, int32_t Index,
                                      unsigned RelOff) const {
  const uint8_t Inst[] = {
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
      0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
      0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
  };
  memcpy(Buf, Inst, sizeof(Inst));

  write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
  write32le(Buf + 7, Index);
  write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}

template <class ELFT>
bool X86_64TargetInfo<ELFT>::isPicRel(uint32_t Type) const {
  return Type != R_X86_64_PC32 && Type != R_X86_64_32;
}

template <class ELFT>
bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
  return Type == R_X86_64_GOTTPOFF;
}

template <class ELFT>
bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
  return Type == R_X86_64_TLSGD;
}

template <class ELFT>
bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
  return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
         Type == R_X86_64_TLSLD;
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
                                            uint64_t Val) const {
  // Convert
  //   .byte 0x66
  //   leaq x@tlsgd(%rip), %rdi
  //   .word 0x6666
  //   rex64
  //   call __tls_get_addr@plt
  // to
  //   mov %fs:0x0,%rax
  //   lea x@tpoff,%rax
  const uint8_t Inst[] = {
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
      0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
  };
  memcpy(Loc - 4, Inst, sizeof(Inst));
  // The original code used a pc relative relocation and so we have to
  // compensate for the -4 in had in the addend.
  relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
                                            uint64_t Val) const {
  // Convert
  //   .byte 0x66
  //   leaq x@tlsgd(%rip), %rdi
  //   .word 0x6666
  //   rex64
  //   call __tls_get_addr@plt
  // to
  //   mov %fs:0x0,%rax
  //   addq x@tpoff,%rax
  const uint8_t Inst[] = {
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
      0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
  };
  memcpy(Loc - 4, Inst, sizeof(Inst));
  // Both code sequences are PC relatives, but since we are moving the constant
  // forward by 8 bytes we have to subtract the value by 8.
  relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
}

// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
template <class ELFT>
void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
                                            uint64_t Val) const {
  uint8_t *Inst = Loc - 3;
  uint8_t Reg = Loc[-1] >> 3;
  uint8_t *RegSlot = Loc - 1;

  // Note that ADD with RSP or R12 is converted to ADD instead of LEA
  // because LEA with these registers needs 4 bytes to encode and thus
  // wouldn't fit the space.

  if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
    memcpy(Inst, "\x48\x81\xc4", 3);
  } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
    memcpy(Inst, "\x49\x81\xc4", 3);
  } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
    memcpy(Inst, "\x4d\x8d", 2);
    *RegSlot = 0x80 | (Reg << 3) | Reg;
  } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
    memcpy(Inst, "\x48\x8d", 2);
    *RegSlot = 0x80 | (Reg << 3) | Reg;
  } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
    memcpy(Inst, "\x49\xc7", 2);
    *RegSlot = 0xc0 | Reg;
  } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
    memcpy(Inst, "\x48\xc7", 2);
    *RegSlot = 0xc0 | Reg;
  } else {
    error(getErrorLocation(Loc - 3) +
          "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
  }

  // The original code used a PC relative relocation.
  // Need to compensate for the -4 it had in the addend.
  relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
                                            uint64_t Val) const {
  // Convert
  //   leaq bar@tlsld(%rip), %rdi
  //   callq __tls_get_addr@PLT
  //   leaq bar@dtpoff(%rax), %rcx
  // to
  //   .word 0x6666
  //   .byte 0x66
  //   mov %fs:0,%rax
  //   leaq bar@tpoff(%rax), %rcx
  if (Type == R_X86_64_DTPOFF64) {
    write64le(Loc, Val);
    return;
  }
  if (Type == R_X86_64_DTPOFF32) {
    relocateOne(Loc, R_X86_64_TPOFF32, Val);
    return;
  }

  const uint8_t Inst[] = {
      0x66, 0x66,                                          // .word 0x6666
      0x66,                                                // .byte 0x66
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
                                         uint64_t Val) const {
  switch (Type) {
  case R_X86_64_32:
    checkUInt<32>(Loc, Val, Type);
    write32le(Loc, Val);
    break;
  case R_X86_64_32S:
  case R_X86_64_TPOFF32:
  case R_X86_64_GOT32:
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_PC32:
  case R_X86_64_GOTTPOFF:
  case R_X86_64_PLT32:
  case R_X86_64_TLSGD:
  case R_X86_64_TLSLD:
  case R_X86_64_DTPOFF32:
  case R_X86_64_SIZE32:
    checkInt<32>(Loc, Val, Type);
    write32le(Loc, Val);
    break;
  case R_X86_64_64:
  case R_X86_64_DTPOFF64:
  case R_X86_64_GLOB_DAT:
  case R_X86_64_PC64:
  case R_X86_64_SIZE64:
  case R_X86_64_GOT64:
    write64le(Loc, Val);
    break;
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

template <class ELFT>
RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
                                                const uint8_t *Data,
                                                RelExpr RelExpr) const {
  if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
    return RelExpr;
  const uint8_t Op = Data[-2];
  const uint8_t ModRm = Data[-1];
  // FIXME: When PIC is disabled and foo is defined locally in the
  // lower 32 bit address space, memory operand in mov can be converted into
  // immediate operand. Otherwise, mov must be changed to lea. We support only
  // latter relaxation at this moment.
  if (Op == 0x8b)
    return R_RELAX_GOT_PC;
  // Relax call and jmp.
  if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
    return R_RELAX_GOT_PC;

  // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
  // If PIC then no relaxation is available.
  // We also don't relax test/binop instructions without REX byte,
  // they are 32bit operations and not common to have.
  assert(Type == R_X86_64_REX_GOTPCRELX);
  return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
}

// A subset of relaxations can only be applied for no-PIC. This method
// handles such relaxations. Instructions encoding information was taken from:
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
//    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
template <class ELFT>
void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
                                           uint8_t Op, uint8_t ModRm) const {
  const uint8_t Rex = Loc[-3];
  // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
  if (Op == 0x85) {
    // See "TEST-Logical Compare" (4-428 Vol. 2B),
    // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).

    // ModR/M byte has form XX YYY ZZZ, where
    // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
    // XX has different meanings:
    // 00: The operand's memory address is in reg1.
    // 01: The operand's memory address is reg1 + a byte-sized displacement.
    // 10: The operand's memory address is reg1 + a word-sized displacement.
    // 11: The operand is reg1 itself.
    // If an instruction requires only one operand, the unused reg2 field
    // holds extra opcode bits rather than a register code
    // 0xC0 == 11 000 000 binary.
    // 0x38 == 00 111 000 binary.
    // We transfer reg2 to reg1 here as operand.
    // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
    Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.

    // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
    // See "TEST-Logical Compare" (4-428 Vol. 2B).
    Loc[-2] = 0xf7;

    // Move R bit to the B bit in REX byte.
    // REX byte is encoded as 0100WRXB, where
    // 0100 is 4bit fixed pattern.
    // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
    //   default operand size is used (which is 32-bit for most but not all
    //   instructions).
    // REX.R This 1-bit value is an extension to the MODRM.reg field.
    // REX.X This 1-bit value is an extension to the SIB.index field.
    // REX.B This 1-bit value is an extension to the MODRM.rm field or the
    // SIB.base field.
    // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
    Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
    relocateOne(Loc, R_X86_64_PC32, Val);
    return;
  }

  // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
  // or xor operations.

  // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
  // Logic is close to one for test instruction above, but we also
  // write opcode extension here, see below for details.
  Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.

  // Primary opcode is 0x81, opcode extension is one of:
  // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
  // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
  // This value was wrote to MODRM.reg in a line above.
  // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
  // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
  // descriptions about each operation.
  Loc[-2] = 0x81;
  Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
  relocateOne(Loc, R_X86_64_PC32, Val);
}

template <class ELFT>
void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
  const uint8_t Op = Loc[-2];
  const uint8_t ModRm = Loc[-1];

  // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
  if (Op == 0x8b) {
    Loc[-2] = 0x8d;
    relocateOne(Loc, R_X86_64_PC32, Val);
    return;
  }

  if (Op != 0xff) {
    // We are relaxing a rip relative to an absolute, so compensate
    // for the old -4 addend.
    assert(!Config->Pic);
    relaxGotNoPic(Loc, Val + 4, Op, ModRm);
    return;
  }

  // Convert call/jmp instructions.
  if (ModRm == 0x15) {
    // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
    // Instead we convert to "addr32 call foo" where addr32 is an instruction
    // prefix. That makes result expression to be a single instruction.
    Loc[-2] = 0x67; // addr32 prefix
    Loc[-1] = 0xe8; // call
    relocateOne(Loc, R_X86_64_PC32, Val);
    return;
  }

  // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
  // jmp doesn't return, so it is fine to use nop here, it is just a stub.
  assert(ModRm == 0x25);
  Loc[-2] = 0xe9; // jmp
  Loc[3] = 0x90;  // nop
  relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
}

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t applyPPCLo(uint64_t V) { return V; }
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }

PPCTargetInfo::PPCTargetInfo() {}

void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  switch (Type) {
  case R_PPC_ADDR16_HA:
    write16be(Loc, applyPPCHa(Val));
    break;
  case R_PPC_ADDR16_LO:
    write16be(Loc, applyPPCLo(Val));
    break;
  case R_PPC_ADDR32:
  case R_PPC_REL32:
    write32be(Loc, Val);
    break;
  case R_PPC_REL24:
    or32be(Loc, Val & 0x3FFFFFC);
    break;
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
  switch (Type) {
  case R_PPC_REL24:
  case R_PPC_REL32:
    return R_PC;
  default:
    return R_ABS;
  }
}

PPC64TargetInfo::PPC64TargetInfo() {
  PltRel = GotRel = R_PPC64_GLOB_DAT;
  RelativeRel = R_PPC64_RELATIVE;
  GotEntrySize = 8;
  GotPltEntrySize = 8;
  PltEntrySize = 32;
  PltHeaderSize = 0;

  // We need 64K pages (at least under glibc/Linux, the loader won't
  // set different permissions on a finer granularity than that).
  DefaultMaxPageSize = 65536;

  // The PPC64 ELF ABI v1 spec, says:
  //
  //   It is normally desirable to put segments with different characteristics
  //   in separate 256 Mbyte portions of the address space, to give the
  //   operating system full paging flexibility in the 64-bit address space.
  //
  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
  // use 0x10000000 as the starting address.
  DefaultImageBase = 0x10000000;
}

static uint64_t PPC64TocOffset = 0x8000;

uint64_t getPPC64TocBase() {
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
  // TOC starts where the first of these sections starts. We always create a
  // .got when we see a relocation that uses it, so for us the start is always
  // the .got.
  uint64_t TocVA = In<ELF64BE>::Got->getVA();

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
  // code (crt1.o) assumes that you can get from the TOC base to the
  // start of the .toc section with only a single (signed) 16-bit relocation.
  return TocVA + PPC64TocOffset;
}

RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
  switch (Type) {
  default:
    return R_ABS;
  case R_PPC64_TOC16:
  case R_PPC64_TOC16_DS:
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_HI:
  case R_PPC64_TOC16_LO:
  case R_PPC64_TOC16_LO_DS:
    return R_GOTREL;
  case R_PPC64_TOC:
    return R_PPC_TOC;
  case R_PPC64_REL24:
    return R_PPC_PLT_OPD;
  }
}

void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
                               uint64_t PltEntryAddr, int32_t Index,
                               unsigned RelOff) const {
  uint64_t Off = GotEntryAddr - getPPC64TocBase();

  // FIXME: What we should do, in theory, is get the offset of the function
  // descriptor in the .opd section, and use that as the offset from %r2 (the
  // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
  // be a pointer to the function descriptor in the .opd section. Using
  // this scheme is simpler, but requires an extra indirection per PLT dispatch.

  write32be(Buf, 0xf8410028);                       // std %r2, 40(%r1)
  write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
  write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
  write32be(Buf + 12, 0xe96c0000);                  // ld %r11,0(%r12)
  write32be(Buf + 16, 0x7d6903a6);                  // mtctr %r11
  write32be(Buf + 20, 0xe84c0008);                  // ld %r2,8(%r12)
  write32be(Buf + 24, 0xe96c0010);                  // ld %r11,16(%r12)
  write32be(Buf + 28, 0x4e800420);                  // bctr
}

static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
  uint64_t V = Val - PPC64TocOffset;
  switch (Type) {
  case R_PPC64_TOC16:
    return {R_PPC64_ADDR16, V};
  case R_PPC64_TOC16_DS:
    return {R_PPC64_ADDR16_DS, V};
  case R_PPC64_TOC16_HA:
    return {R_PPC64_ADDR16_HA, V};
  case R_PPC64_TOC16_HI:
    return {R_PPC64_ADDR16_HI, V};
  case R_PPC64_TOC16_LO:
    return {R_PPC64_ADDR16_LO, V};
  case R_PPC64_TOC16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, V};
  default:
    return {Type, Val};
  }
}

void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
                                  uint64_t Val) const {
  // For a TOC-relative relocation, proceed in terms of the corresponding
  // ADDR16 relocation type.
  std::tie(Type, Val) = toAddr16Rel(Type, Val);

  switch (Type) {
  case R_PPC64_ADDR14: {
    checkAlignment<4>(Loc, Val, Type);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t AALK = Loc[3];
    write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
    break;
  }
  case R_PPC64_ADDR16:
    checkInt<16>(Loc, Val, Type);
    write16be(Loc, Val);
    break;
  case R_PPC64_ADDR16_DS:
    checkInt<16>(Loc, Val, Type);
    write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
    break;
  case R_PPC64_ADDR16_HA:
  case R_PPC64_REL16_HA:
    write16be(Loc, applyPPCHa(Val));
    break;
  case R_PPC64_ADDR16_HI:
  case R_PPC64_REL16_HI:
    write16be(Loc, applyPPCHi(Val));
    break;
  case R_PPC64_ADDR16_HIGHER:
    write16be(Loc, applyPPCHigher(Val));
    break;
  case R_PPC64_ADDR16_HIGHERA:
    write16be(Loc, applyPPCHighera(Val));
    break;
  case R_PPC64_ADDR16_HIGHEST:
    write16be(Loc, applyPPCHighest(Val));
    break;
  case R_PPC64_ADDR16_HIGHESTA:
    write16be(Loc, applyPPCHighesta(Val));
    break;
  case R_PPC64_ADDR16_LO:
    write16be(Loc, applyPPCLo(Val));
    break;
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_REL16_LO:
    write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
    break;
  case R_PPC64_ADDR32:
  case R_PPC64_REL32:
    checkInt<32>(Loc, Val, Type);
    write32be(Loc, Val);
    break;
  case R_PPC64_ADDR64:
  case R_PPC64_REL64:
  case R_PPC64_TOC:
    write64be(Loc, Val);
    break;
  case R_PPC64_REL24: {
    uint32_t Mask = 0x03FFFFFC;
    checkInt<24>(Loc, Val, Type);
    write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
    break;
  }
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

AArch64TargetInfo::AArch64TargetInfo() {
  CopyRel = R_AARCH64_COPY;
  RelativeRel = R_AARCH64_RELATIVE;
  IRelativeRel = R_AARCH64_IRELATIVE;
  GotRel = R_AARCH64_GLOB_DAT;
  PltRel = R_AARCH64_JUMP_SLOT;
  TlsDescRel = R_AARCH64_TLSDESC;
  TlsGotRel = R_AARCH64_TLS_TPREL64;
  GotEntrySize = 8;
  GotPltEntrySize = 8;
  PltEntrySize = 16;
  PltHeaderSize = 32;
  DefaultMaxPageSize = 65536;

  // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
  // 1 of the tls structures and the tcb size is 16.
  TcbSize = 16;
}

RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
                                      const SymbolBody &S) const {
  switch (Type) {
  default:
    return R_ABS;
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    return R_TLSDESC_PAGE;
  case R_AARCH64_TLSDESC_LD64_LO12_NC:
  case R_AARCH64_TLSDESC_ADD_LO12_NC:
    return R_TLSDESC;
  case R_AARCH64_TLSDESC_CALL:
    return R_TLSDESC_CALL;
  case R_AARCH64_TLSLE_ADD_TPREL_HI12:
  case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
    return R_TLS;
  case R_AARCH64_CALL26:
  case R_AARCH64_CONDBR19:
  case R_AARCH64_JUMP26:
  case R_AARCH64_TSTBR14:
    return R_PLT_PC;
  case R_AARCH64_PREL16:
  case R_AARCH64_PREL32:
  case R_AARCH64_PREL64:
  case R_AARCH64_ADR_PREL_LO21:
    return R_PC;
  case R_AARCH64_ADR_PREL_PG_HI21:
    return R_PAGE_PC;
  case R_AARCH64_LD64_GOT_LO12_NC:
  case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
    return R_GOT;
  case R_AARCH64_ADR_GOT_PAGE:
  case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
    return R_GOT_PAGE_PC;
  }
}

RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                                           RelExpr Expr) const {
  if (Expr == R_RELAX_TLS_GD_TO_IE) {
    if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
      return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
    return R_RELAX_TLS_GD_TO_IE_ABS;
  }
  return Expr;
}

bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
  switch (Type) {
  default:
    return false;
  case R_AARCH64_ADD_ABS_LO12_NC:
  case R_AARCH64_LD64_GOT_LO12_NC:
  case R_AARCH64_LDST128_ABS_LO12_NC:
  case R_AARCH64_LDST16_ABS_LO12_NC:
  case R_AARCH64_LDST32_ABS_LO12_NC:
  case R_AARCH64_LDST64_ABS_LO12_NC:
  case R_AARCH64_LDST8_ABS_LO12_NC:
  case R_AARCH64_TLSDESC_ADD_LO12_NC:
  case R_AARCH64_TLSDESC_LD64_LO12_NC:
  case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
    return true;
  }
}

bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
  return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
         Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
}

bool AArch64TargetInfo::isPicRel(uint32_t Type) const {
  return Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64;
}

void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
  write64le(Buf, In<ELF64LE>::Plt->getVA());
}

// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
uint64_t getAArch64Page(uint64_t Expr) {
  return Expr & (~static_cast<uint64_t>(0xFFF));
}

void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
  const uint8_t PltData[] = {
      0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
      0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
      0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
      0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
      0x20, 0x02, 0x1f, 0xd6, // br	x17
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5  // nop
  };
  memcpy(Buf, PltData, sizeof(PltData));

  uint64_t Got = In<ELF64LE>::GotPlt->getVA();
  uint64_t Plt = In<ELF64LE>::Plt->getVA();
  relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
              getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
  relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
  relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
}

void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
                                 uint64_t PltEntryAddr, int32_t Index,
                                 unsigned RelOff) const {
  const uint8_t Inst[] = {
      0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
      0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
      0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
      0x20, 0x02, 0x1f, 0xd6  // br   x17
  };
  memcpy(Buf, Inst, sizeof(Inst));

  relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
              getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
  relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
  relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
}

static void write32AArch64Addr(uint8_t *L, uint64_t Imm) {
  uint32_t ImmLo = (Imm & 0x3) << 29;
  uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
  uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}

// Return the bits [Start, End] from Val shifted Start bits.
// For instance, getBits(0xF0, 4, 8) returns 0xF.
static uint64_t getBits(uint64_t Val, int Start, int End) {
  uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
  return (Val >> Start) & Mask;
}

// Update the immediate field in a AARCH64 ldr, str, and add instruction.
static void or32AArch64Imm(uint8_t *L, uint64_t Imm) {
  or32le(L, (Imm & 0xFFF) << 10);
}

void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
                                    uint64_t Val) const {
  switch (Type) {
  case R_AARCH64_ABS16:
  case R_AARCH64_PREL16:
    checkIntUInt<16>(Loc, Val, Type);
    write16le(Loc, Val);
    break;
  case R_AARCH64_ABS32:
  case R_AARCH64_PREL32:
    checkIntUInt<32>(Loc, Val, Type);
    write32le(Loc, Val);
    break;
  case R_AARCH64_ABS64:
  case R_AARCH64_GLOB_DAT:
  case R_AARCH64_PREL64:
    write64le(Loc, Val);
    break;
  case R_AARCH64_ADD_ABS_LO12_NC:
    or32AArch64Imm(Loc, Val);
    break;
  case R_AARCH64_ADR_GOT_PAGE:
  case R_AARCH64_ADR_PREL_PG_HI21:
  case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    checkInt<33>(Loc, Val, Type);
    write32AArch64Addr(Loc, Val >> 12);
    break;
  case R_AARCH64_ADR_PREL_LO21:
    checkInt<21>(Loc, Val, Type);
    write32AArch64Addr(Loc, Val);
    break;
  case R_AARCH64_CALL26:
  case R_AARCH64_JUMP26:
    checkInt<28>(Loc, Val, Type);
    or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
    break;
  case R_AARCH64_CONDBR19:
    checkInt<21>(Loc, Val, Type);
    or32le(Loc, (Val & 0x1FFFFC) << 3);
    break;
  case R_AARCH64_LD64_GOT_LO12_NC:
  case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
  case R_AARCH64_TLSDESC_LD64_LO12_NC:
    checkAlignment<8>(Loc, Val, Type);
    or32le(Loc, (Val & 0xFF8) << 7);
    break;
  case R_AARCH64_LDST8_ABS_LO12_NC:
    or32AArch64Imm(Loc, getBits(Val, 0, 11));
    break;
  case R_AARCH64_LDST16_ABS_LO12_NC:
    or32AArch64Imm(Loc, getBits(Val, 1, 11));
    break;
  case R_AARCH64_LDST32_ABS_LO12_NC:
    or32AArch64Imm(Loc, getBits(Val, 2, 11));
    break;
  case R_AARCH64_LDST64_ABS_LO12_NC:
    or32AArch64Imm(Loc, getBits(Val, 3, 11));
    break;
  case R_AARCH64_LDST128_ABS_LO12_NC:
    or32AArch64Imm(Loc, getBits(Val, 4, 11));
    break;
  case R_AARCH64_MOVW_UABS_G0_NC:
    or32le(Loc, (Val & 0xFFFF) << 5);
    break;
  case R_AARCH64_MOVW_UABS_G1_NC:
    or32le(Loc, (Val & 0xFFFF0000) >> 11);
    break;
  case R_AARCH64_MOVW_UABS_G2_NC:
    or32le(Loc, (Val & 0xFFFF00000000) >> 27);
    break;
  case R_AARCH64_MOVW_UABS_G3:
    or32le(Loc, (Val & 0xFFFF000000000000) >> 43);
    break;
  case R_AARCH64_TSTBR14:
    checkInt<16>(Loc, Val, Type);
    or32le(Loc, (Val & 0xFFFC) << 3);
    break;
  case R_AARCH64_TLSLE_ADD_TPREL_HI12:
    checkInt<24>(Loc, Val, Type);
    or32AArch64Imm(Loc, Val >> 12);
    break;
  case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
  case R_AARCH64_TLSDESC_ADD_LO12_NC:
    or32AArch64Imm(Loc, Val);
    break;
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
                                       uint64_t Val) const {
  // TLSDESC Global-Dynamic relocation are in the form:
  //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
  //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
  //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
  //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
  //   blr     x1
  // And it can optimized to:
  //   movz    x0, #0x0, lsl #16
  //   movk    x0, #0x10
  //   nop
  //   nop
  checkUInt<32>(Loc, Val, Type);

  switch (Type) {
  case R_AARCH64_TLSDESC_ADD_LO12_NC:
  case R_AARCH64_TLSDESC_CALL:
    write32le(Loc, 0xd503201f); // nop
    return;
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
    return;
  case R_AARCH64_TLSDESC_LD64_LO12_NC:
    write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
    return;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
                                       uint64_t Val) const {
  // TLSDESC Global-Dynamic relocation are in the form:
  //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
  //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
  //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
  //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
  //   blr     x1
  // And it can optimized to:
  //   adrp    x0, :gottprel:v
  //   ldr     x0, [x0, :gottprel_lo12:v]
  //   nop
  //   nop

  switch (Type) {
  case R_AARCH64_TLSDESC_ADD_LO12_NC:
  case R_AARCH64_TLSDESC_CALL:
    write32le(Loc, 0xd503201f); // nop
    break;
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    write32le(Loc, 0x90000000); // adrp
    relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
    break;
  case R_AARCH64_TLSDESC_LD64_LO12_NC:
    write32le(Loc, 0xf9400000); // ldr
    relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
                                       uint64_t Val) const {
  checkUInt<32>(Loc, Val, Type);

  if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
    // Generate MOVZ.
    uint32_t RegNo = read32le(Loc) & 0x1f;
    write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
    return;
  }
  if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
    // Generate MOVK.
    uint32_t RegNo = read32le(Loc) & 0x1f;
    write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
    return;
  }
  llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
}

AMDGPUTargetInfo::AMDGPUTargetInfo() {
  RelativeRel = R_AMDGPU_REL64;
  GotRel = R_AMDGPU_ABS64;
  GotEntrySize = 8;
}

void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
                                   uint64_t Val) const {
  switch (Type) {
  case R_AMDGPU_ABS32:
  case R_AMDGPU_GOTPCREL:
  case R_AMDGPU_GOTPCREL32_LO:
  case R_AMDGPU_REL32:
  case R_AMDGPU_REL32_LO:
    write32le(Loc, Val);
    break;
  case R_AMDGPU_ABS64:
    write64le(Loc, Val);
    break;
  case R_AMDGPU_GOTPCREL32_HI:
  case R_AMDGPU_REL32_HI:
    write32le(Loc, Val >> 32);
    break;
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
  switch (Type) {
  case R_AMDGPU_ABS32:
  case R_AMDGPU_ABS64:
    return R_ABS;
  case R_AMDGPU_REL32:
  case R_AMDGPU_REL32_LO:
  case R_AMDGPU_REL32_HI:
    return R_PC;
  case R_AMDGPU_GOTPCREL:
  case R_AMDGPU_GOTPCREL32_LO:
  case R_AMDGPU_GOTPCREL32_HI:
    return R_GOT_PC;
  default:
    fatal("do not know how to handle relocation " + Twine(Type));
  }
}

ARMTargetInfo::ARMTargetInfo() {
  CopyRel = R_ARM_COPY;
  RelativeRel = R_ARM_RELATIVE;
  IRelativeRel = R_ARM_IRELATIVE;
  GotRel = R_ARM_GLOB_DAT;
  PltRel = R_ARM_JUMP_SLOT;
  TlsGotRel = R_ARM_TLS_TPOFF32;
  TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
  TlsOffsetRel = R_ARM_TLS_DTPOFF32;
  GotEntrySize = 4;
  GotPltEntrySize = 4;
  PltEntrySize = 16;
  PltHeaderSize = 20;
  // ARM uses Variant 1 TLS
  TcbSize = 8;
  NeedsThunks = true;
}

RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
  switch (Type) {
  default:
    return R_ABS;
  case R_ARM_THM_JUMP11:
    return R_PC;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    return R_PLT_PC;
  case R_ARM_GOTOFF32:
    // (S + A) - GOT_ORG
    return R_GOTREL;
  case R_ARM_GOT_BREL:
    // GOT(S) + A - GOT_ORG
    return R_GOT_OFF;
  case R_ARM_GOT_PREL:
  case R_ARM_TLS_IE32:
    // GOT(S) + A - P
    return R_GOT_PC;
  case R_ARM_TARGET1:
    return Config->Target1Rel ? R_PC : R_ABS;
  case R_ARM_TARGET2:
    if (Config->Target2 == Target2Policy::Rel)
      return R_PC;
    if (Config->Target2 == Target2Policy::Abs)
      return R_ABS;
    return R_GOT_PC;
  case R_ARM_TLS_GD32:
    return R_TLSGD_PC;
  case R_ARM_TLS_LDM32:
    return R_TLSLD_PC;
  case R_ARM_BASE_PREL:
    // B(S) + A - P
    // FIXME: currently B(S) assumed to be .got, this may not hold for all
    // platforms.
    return R_GOTONLY_PC;
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_REL32:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
    return R_PC;
  case R_ARM_NONE:
    return R_HINT;
  case R_ARM_TLS_LE32:
    return R_TLS;
  }
}

bool ARMTargetInfo::isPicRel(uint32_t Type) const {
  return (Type == R_ARM_TARGET1 && !Config->Target1Rel) ||
         (Type == R_ARM_ABS32);
}

uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
  if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
    return R_ARM_ABS32;
  if (Type == R_ARM_ABS32)
    return Type;
  // Keep it going with a dummy value so that we can find more reloc errors.
  return R_ARM_ABS32;
}

void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
  write32le(Buf, In<ELF32LE>::Plt->getVA());
}

void ARMTargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
  // An ARM entry is the address of the ifunc resolver function.
  write32le(Buf, S.getVA<ELF32LE>());
}

void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
  const uint8_t PltData[] = {
      0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
      0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
      0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
      0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
      0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
  };
  memcpy(Buf, PltData, sizeof(PltData));
  uint64_t GotPlt = In<ELF32LE>::GotPlt->getVA();
  uint64_t L1 = In<ELF32LE>::Plt->getVA() + 8;
  write32le(Buf + 16, GotPlt - L1 - 8);
}

void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
                             uint64_t PltEntryAddr, int32_t Index,
                             unsigned RelOff) const {
  // FIXME: Using simple code sequence with simple relocations.
  // There is a more optimal sequence but it requires support for the group
  // relocations. See ELF for the ARM Architecture Appendix A.3
  const uint8_t PltData[] = {
      0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
      0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
      0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
      0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
  };
  memcpy(Buf, PltData, sizeof(PltData));
  uint64_t L1 = PltEntryAddr + 4;
  write32le(Buf + 12, GotEntryAddr - L1 - 8);
}

RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
                                    const InputFile &File,
                                    const SymbolBody &S) const {
  // If S is an undefined weak symbol in an executable we don't need a Thunk.
  // In a DSO calls to undefined symbols, including weak ones get PLT entries
  // which may need a thunk.
  if (S.isUndefined() && !S.isLocal() && S.symbol()->isWeak()
      && !Config->Shared)
    return Expr;
  // A state change from ARM to Thumb and vice versa must go through an
  // interworking thunk if the relocation type is not R_ARM_CALL or
  // R_ARM_THM_CALL.
  switch (RelocType) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
    // Source is ARM, all PLT entries are ARM so no interworking required.
    // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
    if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
      return R_THUNK_PC;
    break;
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    // Source is Thumb, all PLT entries are ARM so interworking is required.
    // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
    if (Expr == R_PLT_PC)
      return R_THUNK_PLT_PC;
    if ((S.getVA<ELF32LE>() & 1) == 0)
      return R_THUNK_PC;
    break;
  }
  return Expr;
}

void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
                                uint64_t Val) const {
  switch (Type) {
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GLOB_DAT:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_RELATIVE:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_LE32:
  case R_ARM_TLS_TPOFF32:
    write32le(Loc, Val);
    break;
  case R_ARM_TLS_DTPMOD32:
    write32le(Loc, 1);
    break;
  case R_ARM_PREL31:
    checkInt<31>(Loc, Val, Type);
    write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
    break;
  case R_ARM_CALL:
    // R_ARM_CALL is used for BL and BLX instructions, depending on the
    // value of bit 0 of Val, we must select a BL or BLX instruction
    if (Val & 1) {
      // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
      checkInt<26>(Loc, Val, Type);
      write32le(Loc, 0xfa000000 |                    // opcode
                         ((Val & 2) << 23) |         // H
                         ((Val >> 2) & 0x00ffffff)); // imm24
      break;
    }
    if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
      // BLX (always unconditional) instruction to an ARM Target, select an
      // unconditional BL.
      write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
  // fall through as BL encoding is shared with B
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    checkInt<26>(Loc, Val, Type);
    write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
    break;
  case R_ARM_THM_JUMP11:
    checkInt<12>(Loc, Val, Type);
    write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
    break;
  case R_ARM_THM_JUMP19:
    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
    checkInt<21>(Loc, Val, Type);
    write16le(Loc,
              (read16le(Loc) & 0xfbc0) |   // opcode cond
                  ((Val >> 10) & 0x0400) | // S
                  ((Val >> 12) & 0x003f)); // imm6
    write16le(Loc + 2,
              0x8000 |                    // opcode
                  ((Val >> 8) & 0x0800) | // J2
                  ((Val >> 5) & 0x2000) | // J1
                  ((Val >> 1) & 0x07ff)); // imm11
    break;
  case R_ARM_THM_CALL:
    // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
    // value of bit 0 of Val, we must select a BL or BLX instruction
    if ((Val & 1) == 0) {
      // Ensure BLX destination is 4-byte aligned. As BLX instruction may
      // only be two byte aligned. This must be done before overflow check
      Val = alignTo(Val, 4);
    }
    // Bit 12 is 0 for BLX, 1 for BL
    write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
  // Fall through as rest of encoding is the same as B.W
  case R_ARM_THM_JUMP24:
    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
    // FIXME: Use of I1 and I2 require v6T2ops
    checkInt<25>(Loc, Val, Type);
    write16le(Loc,
              0xf000 |                     // opcode
                  ((Val >> 14) & 0x0400) | // S
                  ((Val >> 12) & 0x03ff)); // imm10
    write16le(Loc + 2,
              (read16le(Loc + 2) & 0xd000) |                  // opcode
                  (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
                  (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
                  ((Val >> 1) & 0x07ff));                     // imm11
    break;
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVW_PREL_NC:
    write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
                       (Val & 0x0fff));
    break;
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVT_PREL:
    checkInt<32>(Loc, Val, Type);
    write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
                       (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
    break;
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVT_PREL:
    // Encoding T1: A = imm4:i:imm3:imm8
    checkInt<32>(Loc, Val, Type);
    write16le(Loc,
              0xf2c0 |                     // opcode
                  ((Val >> 17) & 0x0400) | // i
                  ((Val >> 28) & 0x000f)); // imm4
    write16le(Loc + 2,
              (read16le(Loc + 2) & 0x8f00) | // opcode
                  ((Val >> 12) & 0x7000) |   // imm3
                  ((Val >> 16) & 0x00ff));   // imm8
    break;
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVW_PREL_NC:
    // Encoding T3: A = imm4:i:imm3:imm8
    write16le(Loc,
              0xf240 |                     // opcode
                  ((Val >> 1) & 0x0400) |  // i
                  ((Val >> 12) & 0x000f)); // imm4
    write16le(Loc + 2,
              (read16le(Loc + 2) & 0x8f00) | // opcode
                  ((Val << 4) & 0x7000) |    // imm3
                  (Val & 0x00ff));           // imm8
    break;
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
                                          uint32_t Type) const {
  switch (Type) {
  default:
    return 0;
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LE32:
    return SignExtend64<32>(read32le(Buf));
  case R_ARM_PREL31:
    return SignExtend64<31>(read32le(Buf));
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    return SignExtend64<26>(read32le(Buf) << 2);
  case R_ARM_THM_JUMP11:
    return SignExtend64<12>(read16le(Buf) << 1);
  case R_ARM_THM_JUMP19: {
    // Encoding T3: A = S:J2:J1:imm10:imm6:0
    uint16_t Hi = read16le(Buf);
    uint16_t Lo = read16le(Buf + 2);
    return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
                            ((Lo & 0x0800) << 8) |  // J2
                            ((Lo & 0x2000) << 5) |  // J1
                            ((Hi & 0x003f) << 12) | // imm6
                            ((Lo & 0x07ff) << 1));  // imm11:0
  }
  case R_ARM_THM_CALL:
  case R_ARM_THM_JUMP24: {
    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
    // FIXME: I1 and I2 require v6T2ops
    uint16_t Hi = read16le(Buf);
    uint16_t Lo = read16le(Buf + 2);
    return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S
                            (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
                            (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
                            ((Hi & 0x003ff) << 12) |                   // imm0
                            ((Lo & 0x007ff) << 1)); // imm11:0
  }
  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
  // MOVT is in the range -32768 <= A < 32768
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL: {
    uint64_t Val = read32le(Buf) & 0x000f0fff;
    return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
  }
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL: {
    // Encoding T3: A = imm4:i:imm3:imm8
    uint16_t Hi = read16le(Buf);
    uint16_t Lo = read16le(Buf + 2);
    return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
                            ((Hi & 0x0400) << 1) |  // i
                            ((Lo & 0x7000) >> 4) |  // imm3
                            (Lo & 0x00ff));         // imm8
  }
  }
}

bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
  return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32;
}

bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
  return Type == R_ARM_TLS_GD32;
}

bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const {
  return Type == R_ARM_TLS_IE32;
}

template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
  GotPltHeaderEntriesNum = 2;
  DefaultMaxPageSize = 65536;
  GotEntrySize = sizeof(typename ELFT::uint);
  GotPltEntrySize = sizeof(typename ELFT::uint);
  PltEntrySize = 16;
  PltHeaderSize = 32;
  CopyRel = R_MIPS_COPY;
  PltRel = R_MIPS_JUMP_SLOT;
  NeedsThunks = true;
  if (ELFT::Is64Bits) {
    RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
    TlsGotRel = R_MIPS_TLS_TPREL64;
    TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
    TlsOffsetRel = R_MIPS_TLS_DTPREL64;
  } else {
    RelativeRel = R_MIPS_REL32;
    TlsGotRel = R_MIPS_TLS_TPREL32;
    TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
    TlsOffsetRel = R_MIPS_TLS_DTPREL32;
  }
}

template <class ELFT>
RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
                                         const SymbolBody &S) const {
  // See comment in the calculateMipsRelChain.
  if (ELFT::Is64Bits || Config->MipsN32Abi)
    Type &= 0xff;
  switch (Type) {
  default:
    return R_ABS;
  case R_MIPS_JALR:
    return R_HINT;
  case R_MIPS_GPREL16:
  case R_MIPS_GPREL32:
    return R_MIPS_GOTREL;
  case R_MIPS_26:
    return R_PLT;
  case R_MIPS_HI16:
  case R_MIPS_LO16:
  case R_MIPS_GOT_OFST:
    // R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate
    // offset between start of function and 'gp' value which by default
    // equal to the start of .got section. In that case we consider these
    // relocations as relative.
    if (&S == ElfSym<ELFT>::MipsGpDisp)
      return R_PC;
    return R_ABS;
  case R_MIPS_PC32:
  case R_MIPS_PC16:
  case R_MIPS_PC19_S2:
  case R_MIPS_PC21_S2:
  case R_MIPS_PC26_S2:
  case R_MIPS_PCHI16:
  case R_MIPS_PCLO16:
    return R_PC;
  case R_MIPS_GOT16:
    if (S.isLocal())
      return R_MIPS_GOT_LOCAL_PAGE;
  // fallthrough
  case R_MIPS_CALL16:
  case R_MIPS_GOT_DISP:
  case R_MIPS_TLS_GOTTPREL:
    return R_MIPS_GOT_OFF;
  case R_MIPS_CALL_HI16:
  case R_MIPS_CALL_LO16:
  case R_MIPS_GOT_HI16:
  case R_MIPS_GOT_LO16:
    return R_MIPS_GOT_OFF32;
  case R_MIPS_GOT_PAGE:
    return R_MIPS_GOT_LOCAL_PAGE;
  case R_MIPS_TLS_GD:
    return R_MIPS_TLSGD;
  case R_MIPS_TLS_LDM:
    return R_MIPS_TLSLD;
  }
}

template <class ELFT> bool MipsTargetInfo<ELFT>::isPicRel(uint32_t Type) const {
  return Type == R_MIPS_32 || Type == R_MIPS_64;
}

template <class ELFT>
uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
  return RelativeRel;
}

template <class ELFT>
bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
  return Type == R_MIPS_TLS_LDM;
}

template <class ELFT>
bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
  return Type == R_MIPS_TLS_GD;
}

template <class ELFT>
void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
  write32<ELFT::TargetEndianness>(Buf, In<ELFT>::Plt->getVA());
}

template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
static int64_t getPcRelocAddend(const uint8_t *Loc) {
  uint32_t Instr = read32<E>(Loc);
  uint32_t Mask = 0xffffffff >> (32 - BSIZE);
  return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
}

template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
  uint32_t Mask = 0xffffffff >> (32 - BSIZE);
  uint32_t Instr = read32<E>(Loc);
  if (SHIFT > 0)
    checkAlignment<(1 << SHIFT)>(Loc, V, Type);
  checkInt<BSIZE + SHIFT>(Loc, V, Type);
  write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
}

template <endianness E> static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
  uint32_t Instr = read32<E>(Loc);
  uint16_t Res = ((V + 0x8000) >> 16) & 0xffff;
  write32<E>(Loc, (Instr & 0xffff0000) | Res);
}

template <endianness E> static void writeMipsHigher(uint8_t *Loc, uint64_t V) {
  uint32_t Instr = read32<E>(Loc);
  uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff;
  write32<E>(Loc, (Instr & 0xffff0000) | Res);
}

template <endianness E> static void writeMipsHighest(uint8_t *Loc, uint64_t V) {
  uint32_t Instr = read32<E>(Loc);
  uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff;
  write32<E>(Loc, (Instr & 0xffff0000) | Res);
}

template <endianness E> static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
  uint32_t Instr = read32<E>(Loc);
  write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
}

template <class ELFT> static bool isMipsR6() {
  const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
  uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH;
  return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6;
}

template <class ELFT>
void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
  const endianness E = ELFT::TargetEndianness;
  if (Config->MipsN32Abi) {
    write32<E>(Buf, 0x3c0e0000);      // lui   $14, %hi(&GOTPLT[0])
    write32<E>(Buf + 4, 0x8dd90000);  // lw    $25, %lo(&GOTPLT[0])($14)
    write32<E>(Buf + 8, 0x25ce0000);  // addiu $14, $14, %lo(&GOTPLT[0])
    write32<E>(Buf + 12, 0x030ec023); // subu  $24, $24, $14
  } else {
    write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0])
    write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28)
    write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0])
    write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28
  }
  write32<E>(Buf + 16, 0x03e07825); // move  $15, $31
  write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2
  write32<E>(Buf + 24, 0x0320f809); // jalr  $25
  write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2
  uint64_t Got = In<ELFT>::GotPlt->getVA();
  writeMipsHi16<E>(Buf, Got);
  writeMipsLo16<E>(Buf + 4, Got);
  writeMipsLo16<E>(Buf + 8, Got);
}

template <class ELFT>
void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
                                    uint64_t PltEntryAddr, int32_t Index,
                                    unsigned RelOff) const {
  const endianness E = ELFT::TargetEndianness;
  write32<E>(Buf, 0x3c0f0000);     // lui   $15, %hi(.got.plt entry)
  write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
                                   // jr    $25
  write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008);
  write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
  writeMipsHi16<E>(Buf, GotEntryAddr);
  writeMipsLo16<E>(Buf + 4, GotEntryAddr);
  writeMipsLo16<E>(Buf + 12, GotEntryAddr);
}

template <class ELFT>
RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type,
                                           const InputFile &File,
                                           const SymbolBody &S) const {
  // Any MIPS PIC code function is invoked with its address in register $t9.
  // So if we have a branch instruction from non-PIC code to the PIC one
  // we cannot make the jump directly and need to create a small stubs
  // to save the target function address.
  // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (Type != R_MIPS_26)
    return Expr;
  auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
  if (!F)
    return Expr;
  // If current file has PIC code, LA25 stub is not required.
  if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
    return Expr;
  auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
  // LA25 is required if target file has PIC code
  // or target symbol is a PIC symbol.
  return D && D->isMipsPIC() ? R_THUNK_ABS : Expr;
}

template <class ELFT>
uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
                                                 uint32_t Type) const {
  const endianness E = ELFT::TargetEndianness;
  switch (Type) {
  default:
    return 0;
  case R_MIPS_32:
  case R_MIPS_GPREL32:
  case R_MIPS_TLS_DTPREL32:
  case R_MIPS_TLS_TPREL32:
    return read32<E>(Buf);
  case R_MIPS_26:
    // FIXME (simon): If the relocation target symbol is not a PLT entry
    // we should use another expression for calculation:
    // ((A << 2) | (P & 0xf0000000)) >> 2
    return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2);
  case R_MIPS_GPREL16:
  case R_MIPS_LO16:
  case R_MIPS_PCLO16:
  case R_MIPS_TLS_DTPREL_HI16:
  case R_MIPS_TLS_DTPREL_LO16:
  case R_MIPS_TLS_TPREL_HI16:
  case R_MIPS_TLS_TPREL_LO16:
    return SignExtend64<16>(read32<E>(Buf));
  case R_MIPS_PC16:
    return getPcRelocAddend<E, 16, 2>(Buf);
  case R_MIPS_PC19_S2:
    return getPcRelocAddend<E, 19, 2>(Buf);
  case R_MIPS_PC21_S2:
    return getPcRelocAddend<E, 21, 2>(Buf);
  case R_MIPS_PC26_S2:
    return getPcRelocAddend<E, 26, 2>(Buf);
  case R_MIPS_PC32:
    return getPcRelocAddend<E, 32, 0>(Buf);
  }
}

static std::pair<uint32_t, uint64_t>
calculateMipsRelChain(uint8_t *Loc, uint32_t Type, uint64_t Val) {
  // MIPS N64 ABI packs multiple relocations into the single relocation
  // record. In general, all up to three relocations can have arbitrary
  // types. In fact, Clang and GCC uses only a few combinations. For now,
  // we support two of them. That is allow to pass at least all LLVM
  // test suite cases.
  // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
  // <any relocation> / R_MIPS_64 / R_MIPS_NONE
  // The first relocation is a 'real' relocation which is calculated
  // using the corresponding symbol's value. The second and the third
  // relocations used to modify result of the first one: extend it to
  // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
  // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
  uint32_t Type2 = (Type >> 8) & 0xff;
  uint32_t Type3 = (Type >> 16) & 0xff;
  if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
    return std::make_pair(Type, Val);
  if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
    return std::make_pair(Type2, Val);
  if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
    return std::make_pair(Type3, -Val);
  error(getErrorLocation(Loc) + "unsupported relocations combination " +
        Twine(Type));
  return std::make_pair(Type & 0xff, Val);
}

template <class ELFT>
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
                                       uint64_t Val) const {
  const endianness E = ELFT::TargetEndianness;
  // Thread pointer and DRP offsets from the start of TLS data area.
  // https://www.linux-mips.org/wiki/NPTL
  if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 ||
      Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64)
    Val -= 0x8000;
  else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 ||
           Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64)
    Val -= 0x7000;
  if (ELFT::Is64Bits || Config->MipsN32Abi)
    std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val);
  switch (Type) {
  case R_MIPS_32:
  case R_MIPS_GPREL32:
  case R_MIPS_TLS_DTPREL32:
  case R_MIPS_TLS_TPREL32:
    write32<E>(Loc, Val);
    break;
  case R_MIPS_64:
  case R_MIPS_TLS_DTPREL64:
  case R_MIPS_TLS_TPREL64:
    write64<E>(Loc, Val);
    break;
  case R_MIPS_26:
    write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff));
    break;
  case R_MIPS_GOT_DISP:
  case R_MIPS_GOT_PAGE:
  case R_MIPS_GOT16:
  case R_MIPS_GPREL16:
  case R_MIPS_TLS_GD:
  case R_MIPS_TLS_LDM:
    checkInt<16>(Loc, Val, Type);
  // fallthrough
  case R_MIPS_CALL16:
  case R_MIPS_CALL_LO16:
  case R_MIPS_GOT_LO16:
  case R_MIPS_GOT_OFST:
  case R_MIPS_LO16:
  case R_MIPS_PCLO16:
  case R_MIPS_TLS_DTPREL_LO16:
  case R_MIPS_TLS_GOTTPREL:
  case R_MIPS_TLS_TPREL_LO16:
    writeMipsLo16<E>(Loc, Val);
    break;
  case R_MIPS_CALL_HI16:
  case R_MIPS_GOT_HI16:
  case R_MIPS_HI16:
  case R_MIPS_PCHI16:
  case R_MIPS_TLS_DTPREL_HI16:
  case R_MIPS_TLS_TPREL_HI16:
    writeMipsHi16<E>(Loc, Val);
    break;
  case R_MIPS_HIGHER:
    writeMipsHigher<E>(Loc, Val);
    break;
  case R_MIPS_HIGHEST:
    writeMipsHighest<E>(Loc, Val);
    break;
  case R_MIPS_JALR:
    // Ignore this optimization relocation for now
    break;
  case R_MIPS_PC16:
    applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
    break;
  case R_MIPS_PC19_S2:
    applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
    break;
  case R_MIPS_PC21_S2:
    applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
    break;
  case R_MIPS_PC26_S2:
    applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
    break;
  case R_MIPS_PC32:
    applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
    break;
  default:
    error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
  }
}

template <class ELFT>
bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
  return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
}
}
}