aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/Symbols.h
blob: d43568fe295c7755971943fcaa186ec777d3a864 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
//===- Symbols.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various types of Symbols.
//
//===----------------------------------------------------------------------===//

#ifndef LLD_ELF_SYMBOLS_H
#define LLD_ELF_SYMBOLS_H

#include "InputFiles.h"
#include "InputSection.h"
#include "lld/Common/LLVM.h"
#include "lld/Common/Strings.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ELF.h"

namespace lld {
std::string toString(const elf::Symbol &);

// There are two different ways to convert an Archive::Symbol to a string:
// One for Microsoft name mangling and one for Itanium name mangling.
// Call the functions toCOFFString and toELFString, not just toString.
std::string toELFString(const llvm::object::Archive::Symbol &);

namespace elf {
class CommonSymbol;
class Defined;
class InputFile;
class LazyArchive;
class LazyObject;
class SharedSymbol;
class Symbol;
class Undefined;

// This is a StringRef-like container that doesn't run strlen().
//
// ELF string tables contain a lot of null-terminated strings. Most of them
// are not necessary for the linker because they are names of local symbols,
// and the linker doesn't use local symbol names for name resolution. So, we
// use this class to represents strings read from string tables.
struct StringRefZ {
  StringRefZ(const char *s) : data(s), size(-1) {}
  StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}

  const char *data;
  const uint32_t size;
};

// The base class for real symbol classes.
class Symbol {
public:
  enum Kind {
    PlaceholderKind,
    DefinedKind,
    CommonKind,
    SharedKind,
    UndefinedKind,
    LazyArchiveKind,
    LazyObjectKind,
  };

  Kind kind() const { return static_cast<Kind>(symbolKind); }

  // The file from which this symbol was created.
  InputFile *file;

protected:
  const char *nameData;
  mutable uint32_t nameSize;

public:
  uint32_t dynsymIndex = 0;
  uint32_t gotIndex = -1;
  uint32_t pltIndex = -1;

  uint32_t globalDynIndex = -1;

  // This field is a index to the symbol's version definition.
  uint32_t verdefIndex = -1;

  // Version definition index.
  uint16_t versionId;

  // An index into the .branch_lt section on PPC64.
  uint16_t ppc64BranchltIndex = -1;

  // Symbol binding. This is not overwritten by replace() to track
  // changes during resolution. In particular:
  //  - An undefined weak is still weak when it resolves to a shared library.
  //  - An undefined weak will not fetch archive members, but we have to
  //    remember it is weak.
  uint8_t binding;

  // The following fields have the same meaning as the ELF symbol attributes.
  uint8_t type;    // symbol type
  uint8_t stOther; // st_other field value

  uint8_t symbolKind;

  // Symbol visibility. This is the computed minimum visibility of all
  // observed non-DSO symbols.
  unsigned visibility : 2;

  // True if the symbol was used for linking and thus need to be added to the
  // output file's symbol table. This is true for all symbols except for
  // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
  // are unreferenced except by other bitcode objects.
  unsigned isUsedInRegularObj : 1;

  // Used by a Defined symbol with protected or default visibility, to record
  // whether it is required to be exported into .dynsym. This is set when any of
  // the following conditions hold:
  //
  // - If there is an interposable symbol from a DSO.
  // - If -shared or --export-dynamic is specified, any symbol in an object
  //   file/bitcode sets this property, unless suppressed by LTO
  //   canBeOmittedFromSymbolTable().
  unsigned exportDynamic : 1;

  // True if the symbol is in the --dynamic-list file. A Defined symbol with
  // protected or default visibility with this property is required to be
  // exported into .dynsym.
  unsigned inDynamicList : 1;

  // False if LTO shouldn't inline whatever this symbol points to. If a symbol
  // is overwritten after LTO, LTO shouldn't inline the symbol because it
  // doesn't know the final contents of the symbol.
  unsigned canInline : 1;

  // Used by Undefined and SharedSymbol to track if there has been at least one
  // undefined reference to the symbol. The binding may change to STB_WEAK if
  // the first undefined reference from a non-shared object is weak.
  unsigned referenced : 1;

  // True if this symbol is specified by --trace-symbol option.
  unsigned traced : 1;

  inline void replace(const Symbol &newSym);

  bool includeInDynsym() const;
  uint8_t computeBinding() const;
  bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }

  bool isUndefined() const { return symbolKind == UndefinedKind; }
  bool isCommon() const { return symbolKind == CommonKind; }
  bool isDefined() const { return symbolKind == DefinedKind; }
  bool isShared() const { return symbolKind == SharedKind; }
  bool isPlaceholder() const { return symbolKind == PlaceholderKind; }

  bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }

  bool isLazy() const {
    return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
  }

  // True if this is an undefined weak symbol. This only works once
  // all input files have been added.
  bool isUndefWeak() const {
    // See comment on lazy symbols for details.
    return isWeak() && (isUndefined() || isLazy());
  }

  StringRef getName() const {
    if (nameSize == (uint32_t)-1)
      nameSize = strlen(nameData);
    return {nameData, nameSize};
  }

  void setName(StringRef s) {
    nameData = s.data();
    nameSize = s.size();
  }

  void parseSymbolVersion();

  bool isInGot() const { return gotIndex != -1U; }
  bool isInPlt() const { return pltIndex != -1U; }
  bool isInPPC64Branchlt() const { return ppc64BranchltIndex != 0xffff; }

  uint64_t getVA(int64_t addend = 0) const;

  uint64_t getGotOffset() const;
  uint64_t getGotVA() const;
  uint64_t getGotPltOffset() const;
  uint64_t getGotPltVA() const;
  uint64_t getPltVA() const;
  uint64_t getPPC64LongBranchTableVA() const;
  uint64_t getPPC64LongBranchOffset() const;
  uint64_t getSize() const;
  OutputSection *getOutputSection() const;

  // The following two functions are used for symbol resolution.
  //
  // You are expected to call mergeProperties for all symbols in input
  // files so that attributes that are attached to names rather than
  // indivisual symbol (such as visibility) are merged together.
  //
  // Every time you read a new symbol from an input, you are supposed
  // to call resolve() with the new symbol. That function replaces
  // "this" object as a result of name resolution if the new symbol is
  // more appropriate to be included in the output.
  //
  // For example, if "this" is an undefined symbol and a new symbol is
  // a defined symbol, "this" is replaced with the new symbol.
  void mergeProperties(const Symbol &other);
  void resolve(const Symbol &other);

  // If this is a lazy symbol, fetch an input file and add the symbol
  // in the file to the symbol table. Calling this function on
  // non-lazy object causes a runtime error.
  void fetch() const;

private:
  static bool isExportDynamic(Kind k, uint8_t visibility) {
    if (k == SharedKind)
      return visibility == llvm::ELF::STV_DEFAULT;
    return config->shared || config->exportDynamic;
  }

  void resolveUndefined(const Undefined &other);
  void resolveCommon(const CommonSymbol &other);
  void resolveDefined(const Defined &other);
  template <class LazyT> void resolveLazy(const LazyT &other);
  void resolveShared(const SharedSymbol &other);

  int compare(const Symbol *other) const;

  inline size_t getSymbolSize() const;

protected:
  Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
         uint8_t stOther, uint8_t type)
      : file(file), nameData(name.data), nameSize(name.size), binding(binding),
        type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
        isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
        exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
        canInline(false), referenced(false), traced(false), needsPltAddr(false),
        isInIplt(false), gotInIgot(false), isPreemptible(false),
        used(!config->gcSections), needsTocRestore(false),
        scriptDefined(false) {}

public:
  // True the symbol should point to its PLT entry.
  // For SharedSymbol only.
  unsigned needsPltAddr : 1;

  // True if this symbol is in the Iplt sub-section of the Plt and the Igot
  // sub-section of the .got.plt or .got.
  unsigned isInIplt : 1;

  // True if this symbol needs a GOT entry and its GOT entry is actually in
  // Igot. This will be true only for certain non-preemptible ifuncs.
  unsigned gotInIgot : 1;

  // True if this symbol is preemptible at load time.
  unsigned isPreemptible : 1;

  // True if an undefined or shared symbol is used from a live section.
  unsigned used : 1;

  // True if a call to this symbol needs to be followed by a restore of the
  // PPC64 toc pointer.
  unsigned needsTocRestore : 1;

  // True if this symbol is defined by a linker script.
  unsigned scriptDefined : 1;

  // The partition whose dynamic symbol table contains this symbol's definition.
  uint8_t partition = 1;

  bool isSection() const { return type == llvm::ELF::STT_SECTION; }
  bool isTls() const { return type == llvm::ELF::STT_TLS; }
  bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
  bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
  bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
  bool isFile() const { return type == llvm::ELF::STT_FILE; }
};

// Represents a symbol that is defined in the current output file.
class Defined : public Symbol {
public:
  Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
          uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
      : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
        size(size), section(section) {}

  static bool classof(const Symbol *s) { return s->isDefined(); }

  uint64_t value;
  uint64_t size;
  SectionBase *section;
};

// Represents a common symbol.
//
// On Unix, it is traditionally allowed to write variable definitions
// without initialization expressions (such as "int foo;") to header
// files. Such definition is called "tentative definition".
//
// Using tentative definition is usually considered a bad practice
// because you should write only declarations (such as "extern int
// foo;") to header files. Nevertheless, the linker and the compiler
// have to do something to support bad code by allowing duplicate
// definitions for this particular case.
//
// Common symbols represent variable definitions without initializations.
// The compiler creates common symbols when it sees varaible definitions
// without initialization (you can suppress this behavior and let the
// compiler create a regular defined symbol by -fno-common).
//
// The linker allows common symbols to be replaced by regular defined
// symbols. If there are remaining common symbols after name resolution is
// complete, they are converted to regular defined symbols in a .bss
// section. (Therefore, the later passes don't see any CommonSymbols.)
class CommonSymbol : public Symbol {
public:
  CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
               uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
      : Symbol(CommonKind, file, name, binding, stOther, type),
        alignment(alignment), size(size) {}

  static bool classof(const Symbol *s) { return s->isCommon(); }

  uint32_t alignment;
  uint64_t size;
};

class Undefined : public Symbol {
public:
  Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
            uint8_t type, uint32_t discardedSecIdx = 0)
      : Symbol(UndefinedKind, file, name, binding, stOther, type),
        discardedSecIdx(discardedSecIdx) {}

  static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }

  // The section index if in a discarded section, 0 otherwise.
  uint32_t discardedSecIdx;
};

class SharedSymbol : public Symbol {
public:
  static bool classof(const Symbol *s) { return s->kind() == SharedKind; }

  SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
               uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
               uint32_t alignment, uint32_t verdefIndex)
      : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
        size(size), alignment(alignment) {
    this->verdefIndex = verdefIndex;
    // GNU ifunc is a mechanism to allow user-supplied functions to
    // resolve PLT slot values at load-time. This is contrary to the
    // regular symbol resolution scheme in which symbols are resolved just
    // by name. Using this hook, you can program how symbols are solved
    // for you program. For example, you can make "memcpy" to be resolved
    // to a SSE-enabled version of memcpy only when a machine running the
    // program supports the SSE instruction set.
    //
    // Naturally, such symbols should always be called through their PLT
    // slots. What GNU ifunc symbols point to are resolver functions, and
    // calling them directly doesn't make sense (unless you are writing a
    // loader).
    //
    // For DSO symbols, we always call them through PLT slots anyway.
    // So there's no difference between GNU ifunc and regular function
    // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
    if (this->type == llvm::ELF::STT_GNU_IFUNC)
      this->type = llvm::ELF::STT_FUNC;
  }

  SharedFile &getFile() const { return *cast<SharedFile>(file); }

  uint64_t value; // st_value
  uint64_t size;  // st_size
  uint32_t alignment;
};

// LazyArchive and LazyObject represent a symbols that is not yet in the link,
// but we know where to find it if needed. If the resolver finds both Undefined
// and Lazy for the same name, it will ask the Lazy to load a file.
//
// A special complication is the handling of weak undefined symbols. They should
// not load a file, but we have to remember we have seen both the weak undefined
// and the lazy. We represent that with a lazy symbol with a weak binding. This
// means that code looking for undefined symbols normally also has to take lazy
// symbols into consideration.

// This class represents a symbol defined in an archive file. It is
// created from an archive file header, and it knows how to load an
// object file from an archive to replace itself with a defined
// symbol.
class LazyArchive : public Symbol {
public:
  LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
      : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
        sym(s) {}

  static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }

  MemoryBufferRef getMemberBuffer();

  const llvm::object::Archive::Symbol sym;
};

// LazyObject symbols represents symbols in object files between
// --start-lib and --end-lib options.
class LazyObject : public Symbol {
public:
  LazyObject(InputFile &file, StringRef name)
      : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}

  static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
};

// Some linker-generated symbols need to be created as
// Defined symbols.
struct ElfSym {
  // __bss_start
  static Defined *bss;

  // etext and _etext
  static Defined *etext1;
  static Defined *etext2;

  // edata and _edata
  static Defined *edata1;
  static Defined *edata2;

  // end and _end
  static Defined *end1;
  static Defined *end2;

  // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
  // be at some offset from the base of the .got section, usually 0 or
  // the end of the .got.
  static Defined *globalOffsetTable;

  // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
  static Defined *mipsGp;
  static Defined *mipsGpDisp;
  static Defined *mipsLocalGp;

  // __rel{,a}_iplt_{start,end} symbols.
  static Defined *relaIpltStart;
  static Defined *relaIpltEnd;

  // __global_pointer$ for RISC-V.
  static Defined *riscvGlobalPointer;

  // _TLS_MODULE_BASE_ on targets that support TLSDESC.
  static Defined *tlsModuleBase;
};

// A buffer class that is large enough to hold any Symbol-derived
// object. We allocate memory using this class and instantiate a symbol
// using the placement new.
union SymbolUnion {
  alignas(Defined) char a[sizeof(Defined)];
  alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
  alignas(Undefined) char c[sizeof(Undefined)];
  alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
  alignas(LazyArchive) char e[sizeof(LazyArchive)];
  alignas(LazyObject) char f[sizeof(LazyObject)];
};

// It is important to keep the size of SymbolUnion small for performance and
// memory usage reasons. 80 bytes is a soft limit based on the size of Defined
// on a 64-bit system.
static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");

template <typename T> struct AssertSymbol {
  static_assert(std::is_trivially_destructible<T>(),
                "Symbol types must be trivially destructible");
  static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
  static_assert(alignof(T) <= alignof(SymbolUnion),
                "SymbolUnion not aligned enough");
};

static inline void assertSymbols() {
  AssertSymbol<Defined>();
  AssertSymbol<CommonSymbol>();
  AssertSymbol<Undefined>();
  AssertSymbol<SharedSymbol>();
  AssertSymbol<LazyArchive>();
  AssertSymbol<LazyObject>();
}

void printTraceSymbol(const Symbol *sym);

size_t Symbol::getSymbolSize() const {
  switch (kind()) {
  case CommonKind:
    return sizeof(CommonSymbol);
  case DefinedKind:
    return sizeof(Defined);
  case LazyArchiveKind:
    return sizeof(LazyArchive);
  case LazyObjectKind:
    return sizeof(LazyObject);
  case SharedKind:
    return sizeof(SharedSymbol);
  case UndefinedKind:
    return sizeof(Undefined);
  case PlaceholderKind:
    return sizeof(Symbol);
  }
  llvm_unreachable("unknown symbol kind");
}

// replace() replaces "this" object with a given symbol by memcpy'ing
// it over to "this". This function is called as a result of name
// resolution, e.g. to replace an undefind symbol with a defined symbol.
void Symbol::replace(const Symbol &newSym) {
  using llvm::ELF::STT_TLS;

  // Symbols representing thread-local variables must be referenced by
  // TLS-aware relocations, and non-TLS symbols must be reference by
  // non-TLS relocations, so there's a clear distinction between TLS
  // and non-TLS symbols. It is an error if the same symbol is defined
  // as a TLS symbol in one file and as a non-TLS symbol in other file.
  if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() &&
      (type == STT_TLS) != (newSym.type == STT_TLS))
    error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
          toString(newSym.file) + "\n>>> defined in " + toString(file));

  Symbol old = *this;
  memcpy(this, &newSym, newSym.getSymbolSize());

  // old may be a placeholder. The referenced fields must be initialized in
  // SymbolTable::insert.
  versionId = old.versionId;
  visibility = old.visibility;
  isUsedInRegularObj = old.isUsedInRegularObj;
  exportDynamic = old.exportDynamic;
  inDynamicList = old.inDynamicList;
  canInline = old.canInline;
  referenced = old.referenced;
  traced = old.traced;
  isPreemptible = old.isPreemptible;
  scriptDefined = old.scriptDefined;
  partition = old.partition;

  // Symbol length is computed lazily. If we already know a symbol length,
  // propagate it.
  if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
    nameSize = old.nameSize;

  // Print out a log message if --trace-symbol was specified.
  // This is for debugging.
  if (traced)
    printTraceSymbol(this);
}

void maybeWarnUnorderableSymbol(const Symbol *sym);
} // namespace elf
} // namespace lld

#endif