aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/SymbolTable.cpp
blob: 79097e176e68a9caadfb901de9cda7c4084e2986 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
//===- SymbolTable.cpp ----------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//

#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "Symbols.h"
#include "llvm/ADT/STLExtras.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;

using namespace lld;
using namespace lld::elf;

// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
template <class ELFT> static bool isCompatible(InputFile *F) {
  if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
    return true;

  if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) {
    if (Config->EMachine != EM_MIPS)
      return true;
    if (isMipsN32Abi(F) == Config->MipsN32Abi)
      return true;
  }

  if (!Config->Emulation.empty())
    error(toString(F) + " is incompatible with " + Config->Emulation);
  else
    error(toString(F) + " is incompatible with " + toString(Config->FirstElf));
  return false;
}

// Add symbols in File to the symbol table.
template <class ELFT> void SymbolTable<ELFT>::addFile(InputFile *File) {
  if (!isCompatible<ELFT>(File))
    return;

  // Binary file
  if (auto *F = dyn_cast<BinaryFile>(File)) {
    BinaryFiles.push_back(F);
    F->parse<ELFT>();
    return;
  }

  // .a file
  if (auto *F = dyn_cast<ArchiveFile>(File)) {
    F->parse<ELFT>();
    return;
  }

  // Lazy object file
  if (auto *F = dyn_cast<LazyObjectFile>(File)) {
    F->parse<ELFT>();
    return;
  }

  if (Config->Trace)
    outs() << toString(File) << "\n";

  // .so file
  if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
    // DSOs are uniquified not by filename but by soname.
    F->parseSoName();
    if (ErrorCount || !SoNames.insert(F->getSoName()).second)
      return;
    SharedFiles.push_back(F);
    F->parseRest();
    return;
  }

  // LLVM bitcode file
  if (auto *F = dyn_cast<BitcodeFile>(File)) {
    BitcodeFiles.push_back(F);
    F->parse<ELFT>(ComdatGroups);
    return;
  }

  // Regular object file
  auto *F = cast<ObjectFile<ELFT>>(File);
  ObjectFiles.push_back(F);
  F->parse(ComdatGroups);
}

// This function is where all the optimizations of link-time
// optimization happens. When LTO is in use, some input files are
// not in native object file format but in the LLVM bitcode format.
// This function compiles bitcode files into a few big native files
// using LLVM functions and replaces bitcode symbols with the results.
// Because all bitcode files that consist of a program are passed
// to the compiler at once, it can do whole-program optimization.
template <class ELFT> void SymbolTable<ELFT>::addCombinedLTOObject() {
  if (BitcodeFiles.empty())
    return;

  // Compile bitcode files and replace bitcode symbols.
  LTO.reset(new BitcodeCompiler);
  for (BitcodeFile *F : BitcodeFiles)
    LTO->add(*F);

  for (InputFile *File : LTO->compile()) {
    ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(File);
    DenseSet<CachedHashStringRef> DummyGroups;
    Obj->parse(DummyGroups);
    ObjectFiles.push_back(Obj);
  }
}

template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
                                                     uint8_t Visibility,
                                                     uint8_t Binding) {
  Symbol *Sym =
      addRegular(Name, Visibility, STT_NOTYPE, 0, 0, Binding, nullptr, nullptr);
  return cast<DefinedRegular<ELFT>>(Sym->body());
}

// Add Name as an "ignored" symbol. An ignored symbol is a regular
// linker-synthesized defined symbol, but is only defined if needed.
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
                                                    uint8_t Visibility) {
  SymbolBody *S = find(Name);
  if (!S || !S->isUndefined())
    return nullptr;
  return addAbsolute(Name, Visibility);
}

// Set a flag for --trace-symbol so that we can print out a log message
// if a new symbol with the same name is inserted into the symbol table.
template <class ELFT> void SymbolTable<ELFT>::trace(StringRef Name) {
  Symtab.insert({CachedHashStringRef(Name), {-1, true}});
}

// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
// Used to implement --wrap.
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
  SymbolBody *B = find(Name);
  if (!B)
    return;
  Symbol *Sym = B->symbol();
  Symbol *Real = addUndefined(Saver.save("__real_" + Name));
  Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));

  // We rename symbols by replacing the old symbol's SymbolBody with the new
  // symbol's SymbolBody. This causes all SymbolBody pointers referring to the
  // old symbol to instead refer to the new symbol.
  memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
  memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
}

static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
  if (VA == STV_DEFAULT)
    return VB;
  if (VB == STV_DEFAULT)
    return VA;
  return std::min(VA, VB);
}

// Find an existing symbol or create and insert a new one.
template <class ELFT>
std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef Name) {
  auto P = Symtab.insert(
      {CachedHashStringRef(Name), SymIndex((int)SymVector.size(), false)});
  SymIndex &V = P.first->second;
  bool IsNew = P.second;

  if (V.Idx == -1) {
    IsNew = true;
    V = SymIndex((int)SymVector.size(), true);
  }

  Symbol *Sym;
  if (IsNew) {
    Sym = new (BAlloc) Symbol;
    Sym->InVersionScript = false;
    Sym->Binding = STB_WEAK;
    Sym->Visibility = STV_DEFAULT;
    Sym->IsUsedInRegularObj = false;
    Sym->ExportDynamic = false;
    Sym->Traced = V.Traced;
    Sym->VersionId = Config->DefaultSymbolVersion;
    SymVector.push_back(Sym);
  } else {
    Sym = SymVector[V.Idx];
  }
  return {Sym, IsNew};
}

// Construct a string in the form of "Sym in File1 and File2".
// Used to construct an error message.
static std::string conflictMsg(SymbolBody *Existing, InputFile *NewFile) {
  return "'" + toString(*Existing) + "' in " + toString(Existing->File) +
         " and " + toString(NewFile);
}

// Find an existing symbol or create and insert a new one, then apply the given
// attributes.
template <class ELFT>
std::pair<Symbol *, bool>
SymbolTable<ELFT>::insert(StringRef Name, uint8_t Type, uint8_t Visibility,
                          bool CanOmitFromDynSym, InputFile *File) {
  bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind;
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) = insert(Name);

  // Merge in the new symbol's visibility.
  S->Visibility = getMinVisibility(S->Visibility, Visibility);
  if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
    S->ExportDynamic = true;
  if (IsUsedInRegularObj)
    S->IsUsedInRegularObj = true;
  if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
      ((Type == STT_TLS) != S->body()->isTls()))
    error("TLS attribute mismatch for symbol " + conflictMsg(S->body(), File));

  return {S, WasInserted};
}

template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
  return addUndefined(Name, /*IsLocal=*/false, STB_GLOBAL, STV_DEFAULT,
                      /*Type*/ 0,
                      /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
}

static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; }

template <class ELFT>
Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, bool IsLocal,
                                        uint8_t Binding, uint8_t StOther,
                                        uint8_t Type, bool CanOmitFromDynSym,
                                        InputFile *File) {
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) =
      insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, File);
  if (WasInserted) {
    S->Binding = Binding;
    replaceBody<Undefined>(S, Name, IsLocal, StOther, Type, File);
    return S;
  }
  if (Binding != STB_WEAK) {
    if (S->body()->isShared() || S->body()->isLazy())
      S->Binding = Binding;
    if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
      SS->file()->IsUsed = true;
  }
  if (auto *L = dyn_cast<Lazy>(S->body())) {
    // An undefined weak will not fetch archive members, but we have to remember
    // its type. See also comment in addLazyArchive.
    if (S->isWeak())
      L->Type = Type;
    else if (InputFile *F = L->fetch())
      addFile(F);
  }
  return S;
}

// We have a new defined symbol with the specified binding. Return 1 if the new
// symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
// strong defined symbols.
static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
  if (WasInserted)
    return 1;
  SymbolBody *Body = S->body();
  if (Body->isLazy() || Body->isUndefined() || Body->isShared())
    return 1;
  if (Binding == STB_WEAK)
    return -1;
  if (S->isWeak())
    return 1;
  return 0;
}

// We have a new non-common defined symbol with the specified binding. Return 1
// if the new symbol should win, -1 if the new symbol should lose, or 0 if there
// is a conflict. If the new symbol wins, also update the binding.
template <typename ELFT>
static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding,
                                   bool IsAbsolute, typename ELFT::uint Value) {
  if (int Cmp = compareDefined(S, WasInserted, Binding)) {
    if (Cmp > 0)
      S->Binding = Binding;
    return Cmp;
  }
  SymbolBody *B = S->body();
  if (isa<DefinedCommon>(B)) {
    // Non-common symbols take precedence over common symbols.
    if (Config->WarnCommon)
      warn("common " + S->body()->getName() + " is overridden");
    return 1;
  } else if (auto *R = dyn_cast<DefinedRegular<ELFT>>(B)) {
    if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute &&
        R->Value == Value)
      return -1;
  }
  return 0;
}

template <class ELFT>
Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
                                     uint64_t Alignment, uint8_t Binding,
                                     uint8_t StOther, uint8_t Type,
                                     InputFile *File) {
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther),
                                    /*CanOmitFromDynSym*/ false, File);
  int Cmp = compareDefined(S, WasInserted, Binding);
  if (Cmp > 0) {
    S->Binding = Binding;
    replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
  } else if (Cmp == 0) {
    auto *C = dyn_cast<DefinedCommon>(S->body());
    if (!C) {
      // Non-common symbols take precedence over common symbols.
      if (Config->WarnCommon)
        warn("common " + S->body()->getName() + " is overridden");
      return S;
    }

    if (Config->WarnCommon)
      warn("multiple common of " + S->body()->getName());

    Alignment = C->Alignment = std::max(C->Alignment, Alignment);
    if (Size > C->Size)
      replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
  }
  return S;
}

static void print(const Twine &Msg) {
  if (Config->AllowMultipleDefinition)
    warn(Msg);
  else
    error(Msg);
}

static void reportDuplicate(SymbolBody *Existing, InputFile *NewFile) {
  print("duplicate symbol " + conflictMsg(Existing, NewFile));
}

template <class ELFT>
static void reportDuplicate(SymbolBody *Existing,
                            InputSectionBase<ELFT> *ErrSec,
                            typename ELFT::uint ErrOffset) {
  DefinedRegular<ELFT> *D = dyn_cast<DefinedRegular<ELFT>>(Existing);
  if (!D || !D->Section || !ErrSec) {
    reportDuplicate(Existing, ErrSec ? ErrSec->getFile() : nullptr);
    return;
  }

  std::string OldLoc = D->Section->getLocation(D->Value);
  std::string NewLoc = ErrSec->getLocation(ErrOffset);

  print(NewLoc + ": duplicate symbol '" + toString(*Existing) + "'");
  print(OldLoc + ": previous definition was here");
}

template <typename ELFT>
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t StOther,
                                      uint8_t Type, uintX_t Value, uintX_t Size,
                                      uint8_t Binding,
                                      InputSectionBase<ELFT> *Section,
                                      InputFile *File) {
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther),
                                    /*CanOmitFromDynSym*/ false, File);
  int Cmp = compareDefinedNonCommon<ELFT>(S, WasInserted, Binding,
                                          Section == nullptr, Value);
  if (Cmp > 0)
    replaceBody<DefinedRegular<ELFT>>(S, Name, /*IsLocal=*/false, StOther, Type,
                                      Value, Size, Section, File);
  else if (Cmp == 0)
    reportDuplicate(S->body(), Section, Value);
  return S;
}

template <typename ELFT>
Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
                                        const OutputSectionBase *Section,
                                        uintX_t Value, uint8_t StOther) {
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) = insert(N, STT_NOTYPE, getVisibility(StOther),
                                    /*CanOmitFromDynSym*/ false, nullptr);
  int Cmp = compareDefinedNonCommon<ELFT>(S, WasInserted, STB_GLOBAL,
                                          /*IsAbsolute*/ false, /*Value*/ 0);
  if (Cmp > 0)
    replaceBody<DefinedSynthetic>(S, N, Value, Section);
  else if (Cmp == 0)
    reportDuplicate(S->body(), nullptr);
  return S;
}

template <typename ELFT>
void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
                                  const Elf_Sym &Sym,
                                  const typename ELFT::Verdef *Verdef) {
  // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
  // as the visibility, which will leave the visibility in the symbol table
  // unchanged.
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) =
      insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true, F);
  // Make sure we preempt DSO symbols with default visibility.
  if (Sym.getVisibility() == STV_DEFAULT) {
    S->ExportDynamic = true;
    // Exporting preempting symbols takes precedence over linker scripts.
    if (S->VersionId == VER_NDX_LOCAL)
      S->VersionId = VER_NDX_GLOBAL;
  }
  if (WasInserted || isa<Undefined>(S->body())) {
    replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
    if (!S->isWeak())
      F->IsUsed = true;
  }
}

template <class ELFT>
Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, uint8_t Binding,
                                      uint8_t StOther, uint8_t Type,
                                      bool CanOmitFromDynSym, BitcodeFile *F) {
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) =
      insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, F);
  int Cmp = compareDefinedNonCommon<ELFT>(S, WasInserted, Binding,
                                          /*IsAbs*/ false, /*Value*/ 0);
  if (Cmp > 0)
    replaceBody<DefinedRegular<ELFT>>(S, Name, /*IsLocal=*/false, StOther, Type,
                                      0, 0, nullptr, F);
  else if (Cmp == 0)
    reportDuplicate(S->body(), F);
  return S;
}

template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
  auto It = Symtab.find(CachedHashStringRef(Name));
  if (It == Symtab.end())
    return nullptr;
  SymIndex V = It->second;
  if (V.Idx == -1)
    return nullptr;
  return SymVector[V.Idx]->body();
}

template <class ELFT>
void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F,
                                       const object::Archive::Symbol Sym) {
  Symbol *S;
  bool WasInserted;
  StringRef Name = Sym.getName();
  std::tie(S, WasInserted) = insert(Name);
  if (WasInserted) {
    replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
    return;
  }
  if (!S->body()->isUndefined())
    return;

  // Weak undefined symbols should not fetch members from archives. If we were
  // to keep old symbol we would not know that an archive member was available
  // if a strong undefined symbol shows up afterwards in the link. If a strong
  // undefined symbol never shows up, this lazy symbol will get to the end of
  // the link and must be treated as the weak undefined one. We already marked
  // this symbol as used when we added it to the symbol table, but we also need
  // to preserve its type. FIXME: Move the Type field to Symbol.
  if (S->isWeak()) {
    replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
    return;
  }
  std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym);
  if (!MBInfo.first.getBuffer().empty())
    addFile(createObjectFile(MBInfo.first, F->getName(), MBInfo.second));
}

template <class ELFT>
void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
  Symbol *S;
  bool WasInserted;
  std::tie(S, WasInserted) = insert(Name);
  if (WasInserted) {
    replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
    return;
  }
  if (!S->body()->isUndefined())
    return;

  // See comment for addLazyArchive above.
  if (S->isWeak()) {
    replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
  } else {
    MemoryBufferRef MBRef = Obj.getBuffer();
    if (!MBRef.getBuffer().empty())
      addFile(createObjectFile(MBRef));
  }
}

// Process undefined (-u) flags by loading lazy symbols named by those flags.
template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
  for (StringRef S : Config->Undefined)
    if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
      if (InputFile *File = L->fetch())
        addFile(File);
}

// This function takes care of the case in which shared libraries depend on
// the user program (not the other way, which is usual). Shared libraries
// may have undefined symbols, expecting that the user program provides
// the definitions for them. An example is BSD's __progname symbol.
// We need to put such symbols to the main program's .dynsym so that
// shared libraries can find them.
// Except this, we ignore undefined symbols in DSOs.
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
  for (SharedFile<ELFT> *File : SharedFiles)
    for (StringRef U : File->getUndefinedSymbols())
      if (SymbolBody *Sym = find(U))
        if (Sym->isDefined())
          Sym->symbol()->ExportDynamic = true;
}

// Initialize DemangledSyms with a map from demangled symbols to symbol
// objects. Used to handle "extern C++" directive in version scripts.
//
// The map will contain all demangled symbols. That can be very large,
// and in LLD we generally want to avoid do anything for each symbol.
// Then, why are we doing this? Here's why.
//
// Users can use "extern C++ {}" directive to match against demangled
// C++ symbols. For example, you can write a pattern such as
// "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
// other than trying to match a pattern against all demangled symbols.
// So, if "extern C++" feature is used, we need to demangle all known
// symbols.
template <class ELFT>
StringMap<std::vector<SymbolBody *>> &SymbolTable<ELFT>::getDemangledSyms() {
  if (!DemangledSyms) {
    DemangledSyms.emplace();
    for (Symbol *Sym : SymVector) {
      SymbolBody *B = Sym->body();
      if (B->isUndefined())
        continue;
      if (Optional<std::string> S = demangle(B->getName()))
        (*DemangledSyms)[*S].push_back(B);
      else
        (*DemangledSyms)[B->getName()].push_back(B);
    }
  }
  return *DemangledSyms;
}

template <class ELFT>
std::vector<SymbolBody *> SymbolTable<ELFT>::findByVersion(SymbolVersion Ver) {
  if (Ver.IsExternCpp)
    return getDemangledSyms().lookup(Ver.Name);
  if (SymbolBody *B = find(Ver.Name))
    if (!B->isUndefined())
      return {B};
  return {};
}

template <class ELFT>
std::vector<SymbolBody *>
SymbolTable<ELFT>::findAllByVersion(SymbolVersion Ver) {
  std::vector<SymbolBody *> Res;
  StringMatcher M(Ver.Name);

  if (Ver.IsExternCpp) {
    for (auto &P : getDemangledSyms())
      if (M.match(P.first()))
        Res.insert(Res.end(), P.second.begin(), P.second.end());
    return Res;
  }

  for (Symbol *Sym : SymVector) {
    SymbolBody *B = Sym->body();
    if (!B->isUndefined() && M.match(B->getName()))
      Res.push_back(B);
  }
  return Res;
}

// If there's only one anonymous version definition in a version
// script file, the script does not actually define any symbol version,
// but just specifies symbols visibilities. We assume that the script was
// in the form of { global: foo; bar; local *; }. So, local is default.
// In this function, we make specified symbols global.
template <class ELFT> void SymbolTable<ELFT>::handleAnonymousVersion() {
  for (SymbolVersion &Ver : Config->VersionScriptGlobals) {
    if (Ver.HasWildcard) {
      for (SymbolBody *B : findAllByVersion(Ver))
        B->symbol()->VersionId = VER_NDX_GLOBAL;
      continue;
    }
    for (SymbolBody *B : findByVersion(Ver))
      B->symbol()->VersionId = VER_NDX_GLOBAL;
  }
}

// Set symbol versions to symbols. This function handles patterns
// containing no wildcard characters.
template <class ELFT>
void SymbolTable<ELFT>::assignExactVersion(SymbolVersion Ver, uint16_t VersionId,
                                           StringRef VersionName) {
  if (Ver.HasWildcard)
    return;

  // Get a list of symbols which we need to assign the version to.
  std::vector<SymbolBody *> Syms = findByVersion(Ver);
  if (Syms.empty()) {
    if (Config->NoUndefinedVersion)
      error("version script assignment of '" + VersionName + "' to symbol '" +
            Ver.Name + "' failed: symbol not defined");
    return;
  }

  // Assign the version.
  for (SymbolBody *B : Syms) {
    Symbol *Sym = B->symbol();
    if (Sym->InVersionScript)
      warn("duplicate symbol '" + Ver.Name + "' in version script");
    Sym->VersionId = VersionId;
    Sym->InVersionScript = true;
  }
}

template <class ELFT>
void SymbolTable<ELFT>::assignWildcardVersion(SymbolVersion Ver,
                                              uint16_t VersionId) {
  if (!Ver.HasWildcard)
    return;
  std::vector<SymbolBody *> Syms = findAllByVersion(Ver);

  // Exact matching takes precendence over fuzzy matching,
  // so we set a version to a symbol only if no version has been assigned
  // to the symbol. This behavior is compatible with GNU.
  for (SymbolBody *B : Syms)
    if (B->symbol()->VersionId == Config->DefaultSymbolVersion)
      B->symbol()->VersionId = VersionId;
}

// This function processes version scripts by updating VersionId
// member of symbols.
template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
  // Symbol themselves might know their versions because symbols
  // can contain versions in the form of <name>@<version>.
  // Let them parse their names.
  if (!Config->VersionDefinitions.empty())
    for (Symbol *Sym : SymVector)
      Sym->body()->parseSymbolVersion();

  // Handle edge cases first.
  if (!Config->VersionScriptGlobals.empty()) {
    handleAnonymousVersion();
    return;
  }

  if (Config->VersionDefinitions.empty())
    return;

  // Now we have version definitions, so we need to set version ids to symbols.
  // Each version definition has a glob pattern, and all symbols that match
  // with the pattern get that version.

  // First, we assign versions to exact matching symbols,
  // i.e. version definitions not containing any glob meta-characters.
  for (SymbolVersion &Ver : Config->VersionScriptLocals)
    assignExactVersion(Ver, VER_NDX_LOCAL, "local");
  for (VersionDefinition &V : Config->VersionDefinitions)
    for (SymbolVersion &Ver : V.Globals)
      assignExactVersion(Ver, V.Id, V.Name);

  // Next, we assign versions to fuzzy matching symbols,
  // i.e. version definitions containing glob meta-characters.
  // Note that because the last match takes precedence over previous matches,
  // we iterate over the definitions in the reverse order.
  for (SymbolVersion &Ver : Config->VersionScriptLocals)
    assignWildcardVersion(Ver, VER_NDX_LOCAL);
  for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions))
    for (SymbolVersion &Ver : V.Globals)
      assignWildcardVersion(Ver, V.Id);
}

template class elf::SymbolTable<ELF32LE>;
template class elf::SymbolTable<ELF32BE>;
template class elf::SymbolTable<ELF64LE>;
template class elf::SymbolTable<ELF64BE>;