aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/Relocations.cpp
blob: ea7477e038427d6bc99612ce67bb2683e3eee037 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
//===- Relocations.cpp ----------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains platform-independent functions to process relocations.
// I'll describe the overview of this file here.
//
// Simple relocations are easy to handle for the linker. For example,
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
// with the relative offsets to the target symbols. It would just be
// reading records from relocation sections and applying them to output.
//
// But not all relocations are that easy to handle. For example, for
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
// symbols if they don't exist, and fix up locations with GOT entry
// offsets from the beginning of GOT section. So there is more than
// fixing addresses in relocation processing.
//
// ELF defines a large number of complex relocations.
//
// The functions in this file analyze relocations and do whatever needs
// to be done. It includes, but not limited to, the following.
//
//  - create GOT/PLT entries
//  - create new relocations in .dynsym to let the dynamic linker resolve
//    them at runtime (since ELF supports dynamic linking, not all
//    relocations can be resolved at link-time)
//  - create COPY relocs and reserve space in .bss
//  - replace expensive relocs (in terms of runtime cost) with cheap ones
//  - error out infeasible combinations such as PIC and non-relative relocs
//
// Note that the functions in this file don't actually apply relocations
// because it doesn't know about the output file nor the output file buffer.
// It instead stores Relocation objects to InputSection's Relocations
// vector to let it apply later in InputSection::writeTo.
//
//===----------------------------------------------------------------------===//

#include "Relocations.h"
#include "Config.h"
#include "Memory.h"
#include "OutputSections.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"

#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

// Construct a message in the following format.
//
// >>> defined in /home/alice/src/foo.o
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
// >>>               /home/alice/src/bar.o:(.text+0x1)
template <class ELFT>
static std::string getLocation(InputSectionBase &S, const SymbolBody &Sym,
                               uint64_t Off) {
  std::string Msg =
      "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
  std::string Src = S.getSrcMsg<ELFT>(Off);
  if (!Src.empty())
    Msg += Src + "\n>>>               ";
  return Msg + S.getObjMsg<ELFT>(Off);
}

static bool isPreemptible(const SymbolBody &Body, uint32_t Type) {
  // In case of MIPS GP-relative relocations always resolve to a definition
  // in a regular input file, ignoring the one-definition rule. So we,
  // for example, should not attempt to create a dynamic relocation even
  // if the target symbol is preemptible. There are two two MIPS GP-relative
  // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
  // can be against a preemptible symbol.
  // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
  // relocation types occupy eight bit. In case of N64 ABI we extract first
  // relocation from 3-in-1 packet because only the first relocation can
  // be against a real symbol.
  if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16)
    return false;
  return Body.isPreemptible();
}

// This function is similar to the `handleTlsRelocation`. MIPS does not
// support any relaxations for TLS relocations so by factoring out MIPS
// handling in to the separate function we can simplify the code and do not
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
// Mips has a custom MipsGotSection that handles the writing of GOT entries
// without dynamic relocations.
template <class ELFT>
static unsigned handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body,
                                        InputSectionBase &C, uint64_t Offset,
                                        int64_t Addend, RelExpr Expr) {
  if (Expr == R_MIPS_TLSLD) {
    if (InX::MipsGot->addTlsIndex() && Config->Pic)
      In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot,
                                   InX::MipsGot->getTlsIndexOff(), false,
                                   nullptr, 0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }

  if (Expr == R_MIPS_TLSGD) {
    if (InX::MipsGot->addDynTlsEntry(Body) && Body.isPreemptible()) {
      uint64_t Off = InX::MipsGot->getGlobalDynOffset(Body);
      In<ELFT>::RelaDyn->addReloc(
          {Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Body, 0});
      if (Body.isPreemptible())
        In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot,
                                     Off + Config->Wordsize, false, &Body, 0});
    }
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }
  return 0;
}

// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
// support any relaxations for TLS relocations. ARM is logically similar to Mips
// in how it handles TLS, but Mips uses its own custom GOT which handles some
// of the cases that ARM uses GOT relocations for.
//
// We look for TLS global dynamic and local dynamic relocations, these may
// require the generation of a pair of GOT entries that have associated
// dynamic relocations. When the results of the dynamic relocations can be
// resolved at static link time we do so. This is necessary for static linking
// as there will be no dynamic loader to resolve them at load-time.
//
// The pair of GOT entries created are of the form
// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
// GOT[e1] Offset of symbol in TLS block
template <class ELFT>
static unsigned handleARMTlsRelocation(uint32_t Type, SymbolBody &Body,
                                       InputSectionBase &C, uint64_t Offset,
                                       int64_t Addend, RelExpr Expr) {
  // The Dynamic TLS Module Index Relocation for a symbol defined in an
  // executable is always 1. If the target Symbol is not preemtible then
  // we know the offset into the TLS block at static link time.
  bool NeedDynId = Body.isPreemptible() || Config->Shared;
  bool NeedDynOff = Body.isPreemptible();

  auto AddTlsReloc = [&](uint64_t Off, uint32_t Type, SymbolBody *Dest,
                         bool Dyn) {
    if (Dyn)
      In<ELFT>::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0});
    else
      InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
  };

  // Local Dynamic is for access to module local TLS variables, while still
  // being suitable for being dynamically loaded via dlopen.
  // GOT[e0] is the module index, with a special value of 0 for the current
  // module. GOT[e1] is unused. There only needs to be one module index entry.
  if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
    AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
                NeedDynId ? nullptr : &Body, NeedDynId);
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }

  // Global Dynamic is the most general purpose access model. When we know
  // the module index and offset of symbol in TLS block we can fill these in
  // using static GOT relocations.
  if (Expr == R_TLSGD_PC) {
    if (InX::Got->addDynTlsEntry(Body)) {
      uint64_t Off = InX::Got->getGlobalDynOffset(Body);
      AddTlsReloc(Off, Target->TlsModuleIndexRel, &Body, NeedDynId);
      AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Body,
                  NeedDynOff);
    }
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }
  return 0;
}

// Returns the number of relocations processed.
template <class ELFT>
static unsigned
handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C,
                    typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
  if (!(C.Flags & SHF_ALLOC))
    return 0;

  if (!Body.isTls())
    return 0;

  if (Config->EMachine == EM_ARM)
    return handleARMTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr);
  if (Config->EMachine == EM_MIPS)
    return handleMipsTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr);

  bool IsPreemptible = isPreemptible(Body, Type);
  if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
      Config->Shared) {
    if (InX::Got->addDynTlsEntry(Body)) {
      uint64_t Off = InX::Got->getGlobalDynOffset(Body);
      In<ELFT>::RelaDyn->addReloc(
          {Target->TlsDescRel, InX::Got, Off, !IsPreemptible, &Body, 0});
    }
    if (Expr != R_TLSDESC_CALL)
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }

  if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
    // Local-Dynamic relocs can be relaxed to Local-Exec.
    if (!Config->Shared) {
      C.Relocations.push_back(
          {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
      return 2;
    }
    if (InX::Got->addTlsIndex())
      In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got,
                                   InX::Got->getTlsIndexOff(), false, nullptr,
                                   0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }

  // Local-Dynamic relocs can be relaxed to Local-Exec.
  if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
    C.Relocations.push_back(
        {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
    return 1;
  }

  if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
                     R_TLSGD_PC>(Expr)) {
    if (Config->Shared) {
      if (InX::Got->addDynTlsEntry(Body)) {
        uint64_t Off = InX::Got->getGlobalDynOffset(Body);
        In<ELFT>::RelaDyn->addReloc(
            {Target->TlsModuleIndexRel, InX::Got, Off, false, &Body, 0});

        // If the symbol is preemptible we need the dynamic linker to write
        // the offset too.
        uint64_t OffsetOff = Off + Config->Wordsize;
        if (IsPreemptible)
          In<ELFT>::RelaDyn->addReloc(
              {Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Body, 0});
        else
          InX::Got->Relocations.push_back(
              {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Body});
      }
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
      return 1;
    }

    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
    // depending on the symbol being locally defined or not.
    if (IsPreemptible) {
      C.Relocations.push_back(
          {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
           Offset, Addend, &Body});
      if (!Body.isInGot()) {
        InX::Got->addEntry(Body);
        In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, InX::Got,
                                     Body.getGotOffset(), false, &Body, 0});
      }
    } else {
      C.Relocations.push_back(
          {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
                Offset, Addend, &Body});
    }
    return Target->TlsGdRelaxSkip;
  }

  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
  // defined.
  if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
      !Config->Shared && !IsPreemptible) {
    C.Relocations.push_back(
        {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body});
    return 1;
  }

  if (Expr == R_TLSDESC_CALL)
    return 1;
  return 0;
}

static uint32_t getMipsPairType(uint32_t Type, const SymbolBody &Sym) {
  switch (Type) {
  case R_MIPS_HI16:
    return R_MIPS_LO16;
  case R_MIPS_GOT16:
    return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
  case R_MIPS_PCHI16:
    return R_MIPS_PCLO16;
  case R_MICROMIPS_HI16:
    return R_MICROMIPS_LO16;
  default:
    return R_MIPS_NONE;
  }
}

// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
static bool isAbsolute(const SymbolBody &Body) {
  if (Body.isUndefined())
    return !Body.isLocal() && Body.symbol()->isWeak();
  if (const auto *DR = dyn_cast<DefinedRegular>(&Body))
    return DR->Section == nullptr; // Absolute symbol.
  return false;
}

static bool isAbsoluteValue(const SymbolBody &Body) {
  return isAbsolute(Body) || Body.isTls();
}

// Returns true if Expr refers a PLT entry.
static bool needsPlt(RelExpr Expr) {
  return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr);
}

// Returns true if Expr refers a GOT entry. Note that this function
// returns false for TLS variables even though they need GOT, because
// TLS variables uses GOT differently than the regular variables.
static bool needsGot(RelExpr Expr) {
  return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
                        R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
                        R_GOT_FROM_END>(Expr);
}

// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr Expr) {
  return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
                        R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
}

// Returns true if a given relocation can be computed at link-time.
//
// For instance, we know the offset from a relocation to its target at
// link-time if the relocation is PC-relative and refers a
// non-interposable function in the same executable. This function
// will return true for such relocation.
//
// If this function returns false, that means we need to emit a
// dynamic relocation so that the relocation will be fixed at load-time.
template <class ELFT>
static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
                                     const SymbolBody &Body,
                                     InputSectionBase &S, uint64_t RelOff) {
  // These expressions always compute a constant
  if (isRelExprOneOf<R_SIZE, R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
                     R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
                     R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_PLT_PC,
                     R_TLSGD_PC, R_TLSGD, R_PPC_PLT_OPD, R_TLSDESC_CALL,
                     R_TLSDESC_PAGE, R_HINT>(E))
    return true;

  // These never do, except if the entire file is position dependent or if
  // only the low bits are used.
  if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
    return Target->usesOnlyLowPageBits(Type) || !Config->Pic;

  if (isPreemptible(Body, Type))
    return false;
  if (!Config->Pic)
    return true;

  // For the target and the relocation, we want to know if they are
  // absolute or relative.
  bool AbsVal = isAbsoluteValue(Body);
  bool RelE = isRelExpr(E);
  if (AbsVal && !RelE)
    return true;
  if (!AbsVal && RelE)
    return true;
  if (!AbsVal && !RelE)
    return Target->usesOnlyLowPageBits(Type);

  // Relative relocation to an absolute value. This is normally unrepresentable,
  // but if the relocation refers to a weak undefined symbol, we allow it to
  // resolve to the image base. This is a little strange, but it allows us to
  // link function calls to such symbols. Normally such a call will be guarded
  // with a comparison, which will load a zero from the GOT.
  // Another special case is MIPS _gp_disp symbol which represents offset
  // between start of a function and '_gp' value and defined as absolute just
  // to simplify the code.
  assert(AbsVal && RelE);
  if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
    return true;

  error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
        toString(Body) + getLocation<ELFT>(S, Body, RelOff));
  return true;
}

static RelExpr toPlt(RelExpr Expr) {
  if (Expr == R_PPC_OPD)
    return R_PPC_PLT_OPD;
  if (Expr == R_PC)
    return R_PLT_PC;
  if (Expr == R_PAGE_PC)
    return R_PLT_PAGE_PC;
  if (Expr == R_ABS)
    return R_PLT;
  return Expr;
}

static RelExpr fromPlt(RelExpr Expr) {
  // We decided not to use a plt. Optimize a reference to the plt to a
  // reference to the symbol itself.
  if (Expr == R_PLT_PC)
    return R_PC;
  if (Expr == R_PPC_PLT_OPD)
    return R_PPC_OPD;
  if (Expr == R_PLT)
    return R_ABS;
  return Expr;
}

// Returns true if a given shared symbol is in a read-only segment in a DSO.
template <class ELFT> static bool isReadOnly(SharedSymbol *SS) {
  typedef typename ELFT::Phdr Elf_Phdr;
  uint64_t Value = SS->getValue<ELFT>();

  // Determine if the symbol is read-only by scanning the DSO's program headers.
  auto *File = cast<SharedFile<ELFT>>(SS->File);
  for (const Elf_Phdr &Phdr : check(File->getObj().program_headers()))
    if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
        !(Phdr.p_flags & ELF::PF_W) && Value >= Phdr.p_vaddr &&
        Value < Phdr.p_vaddr + Phdr.p_memsz)
      return true;
  return false;
}

// Returns symbols at the same offset as a given symbol, including SS itself.
//
// If two or more symbols are at the same offset, and at least one of
// them are copied by a copy relocation, all of them need to be copied.
// Otherwise, they would refer different places at runtime.
template <class ELFT>
static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) {
  typedef typename ELFT::Sym Elf_Sym;

  auto *File = cast<SharedFile<ELFT>>(SS->File);
  uint64_t Shndx = SS->getShndx<ELFT>();
  uint64_t Value = SS->getValue<ELFT>();

  std::vector<SharedSymbol *> Ret;
  for (const Elf_Sym &S : File->getGlobalSymbols()) {
    if (S.st_shndx != Shndx || S.st_value != Value)
      continue;
    StringRef Name = check(S.getName(File->getStringTable()));
    SymbolBody *Sym = Symtab<ELFT>::X->find(Name);
    if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
      Ret.push_back(Alias);
  }
  return Ret;
}

// Reserve space in .bss or .bss.rel.ro for copy relocation.
//
// The copy relocation is pretty much a hack. If you use a copy relocation
// in your program, not only the symbol name but the symbol's size, RW/RO
// bit and alignment become part of the ABI. In addition to that, if the
// symbol has aliases, the aliases become part of the ABI. That's subtle,
// but if you violate that implicit ABI, that can cause very counter-
// intuitive consequences.
//
// So, what is the copy relocation? It's for linking non-position
// independent code to DSOs. In an ideal world, all references to data
// exported by DSOs should go indirectly through GOT. But if object files
// are compiled as non-PIC, all data references are direct. There is no
// way for the linker to transform the code to use GOT, as machine
// instructions are already set in stone in object files. This is where
// the copy relocation takes a role.
//
// A copy relocation instructs the dynamic linker to copy data from a DSO
// to a specified address (which is usually in .bss) at load-time. If the
// static linker (that's us) finds a direct data reference to a DSO
// symbol, it creates a copy relocation, so that the symbol can be
// resolved as if it were in .bss rather than in a DSO.
//
// As you can see in this function, we create a copy relocation for the
// dynamic linker, and the relocation contains not only symbol name but
// various other informtion about the symbol. So, such attributes become a
// part of the ABI.
//
// Note for application developers: I can give you a piece of advice if
// you are writing a shared library. You probably should export only
// functions from your library. You shouldn't export variables.
//
// As an example what can happen when you export variables without knowing
// the semantics of copy relocations, assume that you have an exported
// variable of type T. It is an ABI-breaking change to add new members at
// end of T even though doing that doesn't change the layout of the
// existing members. That's because the space for the new members are not
// reserved in .bss unless you recompile the main program. That means they
// are likely to overlap with other data that happens to be laid out next
// to the variable in .bss. This kind of issue is sometimes very hard to
// debug. What's a solution? Instead of exporting a varaible V from a DSO,
// define an accessor getV().
template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) {
  // Copy relocation against zero-sized symbol doesn't make sense.
  uint64_t SymSize = SS->template getSize<ELFT>();
  if (SymSize == 0)
    fatal("cannot create a copy relocation for symbol " + toString(*SS));

  // See if this symbol is in a read-only segment. If so, preserve the symbol's
  // memory protection by reserving space in the .bss.rel.ro section.
  bool IsReadOnly = isReadOnly<ELFT>(SS);
  BssSection *Sec = IsReadOnly ? InX::BssRelRo : InX::Bss;
  uint64_t Off = Sec->reserveSpace(SymSize, SS->getAlignment<ELFT>());

  // Look through the DSO's dynamic symbol table for aliases and create a
  // dynamic symbol for each one. This causes the copy relocation to correctly
  // interpose any aliases.
  for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) {
    Sym->NeedsCopy = true;
    Sym->CopyRelSec = Sec;
    Sym->CopyRelSecOff = Off;
    Sym->symbol()->IsUsedInRegularObj = true;
  }

  In<ELFT>::RelaDyn->addReloc({Target->CopyRel, Sec, Off, false, SS, 0});
}

template <class ELFT>
static RelExpr adjustExpr(SymbolBody &Body, RelExpr Expr, uint32_t Type,
                          const uint8_t *Data, InputSectionBase &S,
                          typename ELFT::uint RelOff) {
  if (Body.isGnuIFunc()) {
    Expr = toPlt(Expr);
  } else if (!isPreemptible(Body, Type)) {
    if (needsPlt(Expr))
      Expr = fromPlt(Expr);
    if (Expr == R_GOT_PC && !isAbsoluteValue(Body))
      Expr = Target->adjustRelaxExpr(Type, Data, Expr);
  }

  bool IsWrite = !Config->ZText || (S.Flags & SHF_WRITE);
  if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, S, RelOff))
    return Expr;

  // This relocation would require the dynamic linker to write a value to read
  // only memory. We can hack around it if we are producing an executable and
  // the refered symbol can be preemepted to refer to the executable.
  if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
    error("can't create dynamic relocation " + toString(Type) + " against " +
          (Body.getName().empty() ? "local symbol in readonly segment"
                                  : "symbol: " + toString(Body)) +
          getLocation<ELFT>(S, Body, RelOff));
    return Expr;
  }

  if (Body.getVisibility() != STV_DEFAULT) {
    error("cannot preempt symbol: " + toString(Body) +
          getLocation<ELFT>(S, Body, RelOff));
    return Expr;
  }

  if (Body.isObject()) {
    // Produce a copy relocation.
    auto *B = cast<SharedSymbol>(&Body);
    if (!B->NeedsCopy) {
      if (Config->ZNocopyreloc)
        error("unresolvable relocation " + toString(Type) +
              " against symbol '" + toString(*B) +
              "'; recompile with -fPIC or remove '-z nocopyreloc'" +
              getLocation<ELFT>(S, Body, RelOff));

      addCopyRelSymbol<ELFT>(B);
    }
    return Expr;
  }

  if (Body.isFunc()) {
    // This handles a non PIC program call to function in a shared library. In
    // an ideal world, we could just report an error saying the relocation can
    // overflow at runtime. In the real world with glibc, crt1.o has a
    // R_X86_64_PC32 pointing to libc.so.
    //
    // The general idea on how to handle such cases is to create a PLT entry and
    // use that as the function value.
    //
    // For the static linking part, we just return a plt expr and everything
    // else will use the the PLT entry as the address.
    //
    // The remaining problem is making sure pointer equality still works. We
    // need the help of the dynamic linker for that. We let it know that we have
    // a direct reference to a so symbol by creating an undefined symbol with a
    // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
    // the value of the symbol we created. This is true even for got entries, so
    // pointer equality is maintained. To avoid an infinite loop, the only entry
    // that points to the real function is a dedicated got entry used by the
    // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
    // R_386_JMP_SLOT, etc).
    Body.NeedsPltAddr = true;
    return toPlt(Expr);
  }

  error("symbol '" + toString(Body) + "' defined in " + toString(Body.File) +
        " has no type");
  return Expr;
}

// Returns an addend of a given relocation. If it is RELA, an addend
// is in a relocation itself. If it is REL, we need to read it from an
// input section.
template <class ELFT, class RelTy>
static int64_t computeAddend(const RelTy &Rel, const uint8_t *Buf) {
  uint32_t Type = Rel.getType(Config->IsMips64EL);
  int64_t A = RelTy::IsRela
                  ? getAddend<ELFT>(Rel)
                  : Target->getImplicitAddend(Buf + Rel.r_offset, Type);

  if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
    A += getPPC64TocBase();
  return A;
}

// MIPS has an odd notion of "paired" relocations to calculate addends.
// For example, if a relocation is of R_MIPS_HI16, there must be a
// R_MIPS_LO16 relocation after that, and an addend is calculated using
// the two relocations.
template <class ELFT, class RelTy>
static int64_t computeMipsAddend(const RelTy &Rel, InputSectionBase &Sec,
                                 RelExpr Expr, SymbolBody &Body,
                                 const RelTy *End) {
  if (Expr == R_MIPS_GOTREL && Body.isLocal())
    return Sec.getFile<ELFT>()->MipsGp0;

  // The ABI says that the paired relocation is used only for REL.
  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (RelTy::IsRela)
    return 0;

  uint32_t Type = Rel.getType(Config->IsMips64EL);
  uint32_t PairTy = getMipsPairType(Type, Body);
  if (PairTy == R_MIPS_NONE)
    return 0;

  const uint8_t *Buf = Sec.Data.data();
  uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);

  // To make things worse, paired relocations might not be contiguous in
  // the relocation table, so we need to do linear search. *sigh*
  for (const RelTy *RI = &Rel; RI != End; ++RI) {
    if (RI->getType(Config->IsMips64EL) != PairTy)
      continue;
    if (RI->getSymbol(Config->IsMips64EL) != SymIndex)
      continue;

    endianness E = Config->Endianness;
    int32_t Hi = (read32(Buf + Rel.r_offset, E) & 0xffff) << 16;
    int32_t Lo = SignExtend32<16>(read32(Buf + RI->r_offset, E));
    return Hi + Lo;
  }

  warn("can't find matching " + toString(PairTy) + " relocation for " +
       toString(Type));
  return 0;
}

template <class ELFT>
static void reportUndefined(SymbolBody &Sym, InputSectionBase &S,
                            uint64_t Offset) {
  if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
    return;

  bool CanBeExternal = Sym.symbol()->computeBinding() != STB_LOCAL &&
                       Sym.getVisibility() == STV_DEFAULT;
  if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
    return;

  std::string Msg =
      "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";

  std::string Src = S.getSrcMsg<ELFT>(Offset);
  if (!Src.empty())
    Msg += Src + "\n>>>               ";
  Msg += S.getObjMsg<ELFT>(Offset);

  if (Config->UnresolvedSymbols == UnresolvedPolicy::WarnAll ||
      (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal)) {
    warn(Msg);
  } else {
    error(Msg);
  }
}

template <class RelTy>
static std::pair<uint32_t, uint32_t>
mergeMipsN32RelTypes(uint32_t Type, uint32_t Offset, RelTy *I, RelTy *E) {
  // MIPS N32 ABI treats series of successive relocations with the same offset
  // as a single relocation. The similar approach used by N64 ABI, but this ABI
  // packs all relocations into the single relocation record. Here we emulate
  // this for the N32 ABI. Iterate over relocation with the same offset and put
  // theirs types into the single bit-set.
  uint32_t Processed = 0;
  for (; I != E && Offset == I->r_offset; ++I) {
    ++Processed;
    Type |= I->getType(Config->IsMips64EL) << (8 * Processed);
  }
  return std::make_pair(Type, Processed);
}

// .eh_frame sections are mergeable input sections, so their input
// offsets are not linearly mapped to output section. For each input
// offset, we need to find a section piece containing the offset and
// add the piece's base address to the input offset to compute the
// output offset. That isn't cheap.
//
// This class is to speed up the offset computation. When we process
// relocations, we access offsets in the monotonically increasing
// order. So we can optimize for that access pattern.
//
// For sections other than .eh_frame, this class doesn't do anything.
namespace {
class OffsetGetter {
public:
  explicit OffsetGetter(InputSectionBase &Sec) {
    if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) {
      P = Eh->Pieces;
      Size = Eh->Pieces.size();
    }
  }

  // Translates offsets in input sections to offsets in output sections.
  // Given offset must increase monotonically. We assume that P is
  // sorted by InputOff.
  uint64_t get(uint64_t Off) {
    if (P.empty())
      return Off;

    while (I != Size && P[I].InputOff + P[I].size() <= Off)
      ++I;
    if (I == Size)
      return Off;

    // P must be contiguous, so there must be no holes in between.
    assert(P[I].InputOff <= Off && "Relocation not in any piece");

    // Offset -1 means that the piece is dead (i.e. garbage collected).
    if (P[I].OutputOff == -1)
      return -1;
    return P[I].OutputOff + Off - P[I].InputOff;
  }

private:
  ArrayRef<EhSectionPiece> P;
  size_t I = 0;
  size_t Size;
};
} // namespace

template <class ELFT, class GotPltSection>
static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
                        RelocationSection<ELFT> *Rel, uint32_t Type,
                        SymbolBody &Sym, bool UseSymVA) {
  Plt->addEntry<ELFT>(Sym);
  GotPlt->addEntry(Sym);
  Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0});
}

template <class ELFT>
static void addGotEntry(SymbolBody &Sym, bool Preemptible) {
  InX::Got->addEntry(Sym);

  uint64_t Off = Sym.getGotOffset();
  uint32_t DynType;
  RelExpr Expr = R_ABS;

  if (Sym.isTls()) {
    DynType = Target->TlsGotRel;
    Expr = R_TLS;
  } else if (!Preemptible && Config->Pic && !isAbsolute(Sym)) {
    DynType = Target->RelativeRel;
  } else {
    DynType = Target->GotRel;
  }

  bool Constant = !Preemptible && !(Config->Pic && !isAbsolute(Sym));
  if (!Constant)
    In<ELFT>::RelaDyn->addReloc(
        {DynType, InX::Got, Off, !Preemptible, &Sym, 0});

  if (Constant || (!Config->IsRela && !Preemptible))
    InX::Got->Relocations.push_back({Expr, DynType, Off, 0, &Sym});
}

// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
// This would have some drawbacks. For example, we would only know if .rela.dyn
// is needed after applying relocations. If it is, it will go after rw and rx
// sections. Given that it is ro, we will need an extra PT_LOAD. This
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT, class RelTy>
static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
  OffsetGetter GetOffset(Sec);

  for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) {
    const RelTy &Rel = *I;
    SymbolBody &Body = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
    uint32_t Type = Rel.getType(Config->IsMips64EL);

    if (Config->MipsN32Abi) {
      uint32_t Processed;
      std::tie(Type, Processed) =
          mergeMipsN32RelTypes(Type, Rel.r_offset, I + 1, End);
      I += Processed;
    }

    // Compute the offset of this section in the output section.
    uint64_t Offset = GetOffset.get(Rel.r_offset);
    if (Offset == uint64_t(-1))
      continue;

    // Report undefined symbols. The fact that we report undefined
    // symbols here means that we report undefined symbols only when
    // they have relocations pointing to them. We don't care about
    // undefined symbols that are in dead-stripped sections.
    if (!Body.isLocal() && Body.isUndefined() && !Body.symbol()->isWeak())
      reportUndefined<ELFT>(Body, Sec, Rel.r_offset);

    RelExpr Expr =
        Target->getRelExpr(Type, Body, Sec.Data.begin() + Rel.r_offset);

    // Ignore "hint" relocations because they are only markers for relaxation.
    if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
      continue;

    bool Preemptible = isPreemptible(Body, Type);
    Expr = adjustExpr<ELFT>(Body, Expr, Type, Sec.Data.data() + Rel.r_offset,
                            Sec, Rel.r_offset);
    if (ErrorCount)
      continue;

    // This relocation does not require got entry, but it is relative to got and
    // needs it to be created. Here we request for that.
    if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
                       R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
      InX::Got->HasGotOffRel = true;

    // Read an addend.
    int64_t Addend = computeAddend<ELFT>(Rel, Sec.Data.data());
    if (Config->EMachine == EM_MIPS)
      Addend += computeMipsAddend<ELFT>(Rel, Sec, Expr, Body, End);

    // Process some TLS relocations, including relaxing TLS relocations.
    // Note that this function does not handle all TLS relocations.
    if (unsigned Processed =
            handleTlsRelocation<ELFT>(Type, Body, Sec, Offset, Addend, Expr)) {
      I += (Processed - 1);
      continue;
    }

    // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
    if (needsPlt(Expr) && !Body.isInPlt()) {
      if (Body.isGnuIFunc() && !Preemptible)
        addPltEntry(InX::Iplt, InX::IgotPlt, In<ELFT>::RelaIplt,
                    Target->IRelativeRel, Body, true);
      else
        addPltEntry(InX::Plt, InX::GotPlt, In<ELFT>::RelaPlt, Target->PltRel,
                    Body, !Preemptible);
    }

    // Create a GOT slot if a relocation needs GOT.
    if (needsGot(Expr)) {
      if (Config->EMachine == EM_MIPS) {
        // MIPS ABI has special rules to process GOT entries and doesn't
        // require relocation entries for them. A special case is TLS
        // relocations. In that case dynamic loader applies dynamic
        // relocations to initialize TLS GOT entries.
        // See "Global Offset Table" in Chapter 5 in the following document
        // for detailed description:
        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
        InX::MipsGot->addEntry(Body, Addend, Expr);
        if (Body.isTls() && Body.isPreemptible())
          In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot,
                                       Body.getGotOffset(), false, &Body, 0});
      } else if (!Body.isInGot()) {
        addGotEntry<ELFT>(Body, Preemptible);
      }
    }

    if (!needsPlt(Expr) && !needsGot(Expr) && isPreemptible(Body, Type)) {
      // We don't know anything about the finaly symbol. Just ask the dynamic
      // linker to handle the relocation for us.
      if (!Target->isPicRel(Type))
        error("relocation " + toString(Type) +
              " cannot be used against shared object; recompile with -fPIC" +
              getLocation<ELFT>(Sec, Body, Offset));

      In<ELFT>::RelaDyn->addReloc(
          {Target->getDynRel(Type), &Sec, Offset, false, &Body, Addend});

      // MIPS ABI turns using of GOT and dynamic relocations inside out.
      // While regular ABI uses dynamic relocations to fill up GOT entries
      // MIPS ABI requires dynamic linker to fills up GOT entries using
      // specially sorted dynamic symbol table. This affects even dynamic
      // relocations against symbols which do not require GOT entries
      // creation explicitly, i.e. do not have any GOT-relocations. So if
      // a preemptible symbol has a dynamic relocation we anyway have
      // to create a GOT entry for it.
      // If a non-preemptible symbol has a dynamic relocation against it,
      // dynamic linker takes it st_value, adds offset and writes down
      // result of the dynamic relocation. In case of preemptible symbol
      // dynamic linker performs symbol resolution, writes the symbol value
      // to the GOT entry and reads the GOT entry when it needs to perform
      // a dynamic relocation.
      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
      if (Config->EMachine == EM_MIPS)
        InX::MipsGot->addEntry(Body, Addend, Expr);
      continue;
    }

    // If the relocation points to something in the file, we can process it.
    bool IsConstant =
        isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, Sec, Rel.r_offset);

    // If the output being produced is position independent, the final value
    // is still not known. In that case we still need some help from the
    // dynamic linker. We can however do better than just copying the incoming
    // relocation. We can process some of it and and just ask the dynamic
    // linker to add the load address.
    if (!IsConstant)
      In<ELFT>::RelaDyn->addReloc(
          {Target->RelativeRel, &Sec, Offset, true, &Body, Addend});

    // If the produced value is a constant, we just remember to write it
    // when outputting this section. We also have to do it if the format
    // uses Elf_Rel, since in that case the written value is the addend.
    if (IsConstant || !RelTy::IsRela)
      Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
  }
}

template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
  if (S.AreRelocsRela)
    scanRelocs<ELFT>(S, S.relas<ELFT>());
  else
    scanRelocs<ELFT>(S, S.rels<ELFT>());
}

// Insert the Thunks for OutputSection OS into their designated place
// in the Sections vector, and recalculate the InputSection output section
// offsets.
// This may invalidate any output section offsets stored outside of InputSection
template <class ELFT>
void ThunkCreator<ELFT>::mergeThunks(OutputSection *OS,
                                     std::vector<ThunkSection *> &Thunks) {
  // Order Thunks in ascending OutSecOff
  auto ThunkCmp = [](const ThunkSection *A, const ThunkSection *B) {
    return A->OutSecOff < B->OutSecOff;
  };
  std::stable_sort(Thunks.begin(), Thunks.end(), ThunkCmp);

  // Merge sorted vectors of Thunks and InputSections by OutSecOff
  std::vector<InputSection *> Tmp;
  Tmp.reserve(OS->Sections.size() + Thunks.size());
  auto MergeCmp = [](const InputSection *A, const InputSection *B) {
    // std::merge requires a strict weak ordering.
    if (A->OutSecOff < B->OutSecOff)
      return true;
    if (A->OutSecOff == B->OutSecOff)
      // Check if Thunk is immediately before any specific Target InputSection
      // for example Mips LA25 Thunks.
      if (auto *TA = dyn_cast<ThunkSection>(A))
        if (TA && TA->getTargetInputSection() == B)
          return true;
    return false;
  };
  std::merge(OS->Sections.begin(), OS->Sections.end(), Thunks.begin(),
             Thunks.end(), std::back_inserter(Tmp), MergeCmp);
  OS->Sections = std::move(Tmp);
  OS->assignOffsets();
}

template <class ELFT>
ThunkSection *ThunkCreator<ELFT>::getOSThunkSec(ThunkSection *&TS,
                                                OutputSection *OS) {
  if (TS == nullptr) {
    uint32_t Off = 0;
    for (auto *IS : OS->Sections) {
      Off = IS->OutSecOff + IS->getSize();
      if ((IS->Flags & SHF_EXECINSTR) == 0)
        break;
    }
    TS = make<ThunkSection>(OS, Off);
    ThunkSections[OS].push_back(TS);
  }
  return TS;
}

template <class ELFT>
ThunkSection *ThunkCreator<ELFT>::getISThunkSec(InputSection *IS,
                                                OutputSection *OS) {
  ThunkSection *TS = ThunkedSections.lookup(IS);
  if (TS)
    return TS;
  auto *TOS = cast<OutputSection>(IS->OutSec);
  TS = make<ThunkSection>(TOS, IS->OutSecOff);
  ThunkSections[TOS].push_back(TS);
  ThunkedSections[IS] = TS;
  return TS;
}

template <class ELFT>
std::pair<Thunk *, bool> ThunkCreator<ELFT>::getThunk(SymbolBody &Body,
                                                      uint32_t Type) {
  auto res = ThunkedSymbols.insert({&Body, nullptr});
  if (res.second)
    res.first->second = addThunk<ELFT>(Type, Body);
  return std::make_pair(res.first->second, res.second);
}

// Process all relocations from the InputSections that have been assigned
// to OutputSections and redirect through Thunks if needed.
//
// createThunks must be called after scanRelocs has created the Relocations for
// each InputSection. It must be called before the static symbol table is
// finalized. If any Thunks are added to an OutputSection the output section
// offsets of the InputSections will change.
//
// FIXME: All Thunks are assumed to be in range of the relocation. Range
// extension Thunks are not yet supported.
template <class ELFT>
bool ThunkCreator<ELFT>::createThunks(
    ArrayRef<OutputSection *> OutputSections) {
  // Create all the Thunks and insert them into synthetic ThunkSections. The
  // ThunkSections are later inserted back into the OutputSection.

  // We separate the creation of ThunkSections from the insertion of the
  // ThunkSections back into the OutputSection as ThunkSections are not always
  // inserted into the same OutputSection as the caller.
  for (OutputSection *OS : OutputSections) {
    ThunkSection *OSTS = nullptr;
    for (InputSection *IS : OS->Sections) {
      for (Relocation &Rel : IS->Relocations) {
        SymbolBody &Body = *Rel.Sym;
        if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Body))
          continue;
        Thunk *T;
        bool IsNew;
        std::tie(T, IsNew) = getThunk(Body, Rel.Type);
        if (IsNew) {
          // Find or create a ThunkSection for the new Thunk
          ThunkSection *TS;
          if (auto *TIS = T->getTargetInputSection())
            TS = getISThunkSec(TIS, OS);
          else
            TS = getOSThunkSec(OSTS, OS);
          TS->addThunk(T);
        }
        // Redirect relocation to Thunk, we never go via the PLT to a Thunk
        Rel.Sym = T->ThunkSym;
        Rel.Expr = fromPlt(Rel.Expr);
      }
    }
  }

  // Merge all created synthetic ThunkSections back into OutputSection
  for (auto &KV : ThunkSections)
    mergeThunks(KV.first, KV.second);
  return !ThunkSections.empty();
}

template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
template void elf::scanRelocations<ELF64BE>(InputSectionBase &);

template class elf::ThunkCreator<ELF32LE>;
template class elf::ThunkCreator<ELF32BE>;
template class elf::ThunkCreator<ELF64LE>;
template class elf::ThunkCreator<ELF64BE>;