aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/OutputSections.cpp
blob: bf7f9c29a29aad8a21246e17bb7228bd99316c10 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
//===- OutputSections.cpp -------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "OutputSections.h"
#include "Config.h"
#include "EhFrame.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Threads.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"

using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

using namespace lld;
using namespace lld::elf;

OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type,
                                     uint64_t Flags)
    : Name(Name) {
  this->Type = Type;
  this->Flags = Flags;
  this->Addralign = 1;
}

uint32_t OutputSectionBase::getPhdrFlags() const {
  uint32_t Ret = PF_R;
  if (Flags & SHF_WRITE)
    Ret |= PF_W;
  if (Flags & SHF_EXECINSTR)
    Ret |= PF_X;
  return Ret;
}

template <class ELFT>
void OutputSectionBase::writeHeaderTo(typename ELFT::Shdr *Shdr) {
  Shdr->sh_entsize = Entsize;
  Shdr->sh_addralign = Addralign;
  Shdr->sh_type = Type;
  Shdr->sh_offset = Offset;
  Shdr->sh_flags = Flags;
  Shdr->sh_info = Info;
  Shdr->sh_link = Link;
  Shdr->sh_addr = Addr;
  Shdr->sh_size = Size;
  Shdr->sh_name = ShName;
}

template <class ELFT> static uint64_t getEntsize(uint32_t Type) {
  switch (Type) {
  case SHT_RELA:
    return sizeof(typename ELFT::Rela);
  case SHT_REL:
    return sizeof(typename ELFT::Rel);
  case SHT_MIPS_REGINFO:
    return sizeof(Elf_Mips_RegInfo<ELFT>);
  case SHT_MIPS_OPTIONS:
    return sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
  case SHT_MIPS_ABIFLAGS:
    return sizeof(Elf_Mips_ABIFlags<ELFT>);
  default:
    return 0;
  }
}

template <class ELFT>
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
    : OutputSectionBase(Name, Type, Flags) {
  this->Entsize = getEntsize<ELFT>(Type);
}

template <typename ELFT>
static bool compareByFilePosition(InputSection<ELFT> *A,
                                  InputSection<ELFT> *B) {
  // Synthetic doesn't have link order dependecy, stable_sort will keep it last
  if (A->kind() == InputSectionData::Synthetic ||
      B->kind() == InputSectionData::Synthetic)
    return false;
  auto *LA = cast<InputSection<ELFT>>(A->getLinkOrderDep());
  auto *LB = cast<InputSection<ELFT>>(B->getLinkOrderDep());
  OutputSectionBase *AOut = LA->OutSec;
  OutputSectionBase *BOut = LB->OutSec;
  if (AOut != BOut)
    return AOut->SectionIndex < BOut->SectionIndex;
  return LA->OutSecOff < LB->OutSecOff;
}

template <class ELFT> void OutputSection<ELFT>::finalize() {
  if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) {
    std::sort(Sections.begin(), Sections.end(), compareByFilePosition<ELFT>);
    Size = 0;
    assignOffsets();

    // We must preserve the link order dependency of sections with the
    // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
    // need to translate the InputSection sh_link to the OutputSection sh_link,
    // all InputSections in the OutputSection have the same dependency.
    if (auto *D = this->Sections.front()->getLinkOrderDep())
      this->Link = D->OutSec->SectionIndex;
  }

  uint32_t Type = this->Type;
  if (!Config->Relocatable || (Type != SHT_RELA && Type != SHT_REL))
    return;

  this->Link = In<ELFT>::SymTab->OutSec->SectionIndex;
  // sh_info for SHT_REL[A] sections should contain the section header index of
  // the section to which the relocation applies.
  InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
  this->Info = S->OutSec->SectionIndex;
}

template <class ELFT>
void OutputSection<ELFT>::addSection(InputSectionData *C) {
  assert(C->Live);
  auto *S = cast<InputSection<ELFT>>(C);
  Sections.push_back(S);
  S->OutSec = this;
  this->updateAlignment(S->Alignment);
  // Keep sh_entsize value of the input section to be able to perform merging
  // later during a final linking using the generated relocatable object.
  if (Config->Relocatable && (S->Flags & SHF_MERGE))
    this->Entsize = S->Entsize;
}

// This function is called after we sort input sections
// and scan relocations to setup sections' offsets.
template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
  uintX_t Off = this->Size;
  for (InputSection<ELFT> *S : Sections) {
    Off = alignTo(Off, S->Alignment);
    S->OutSecOff = Off;
    Off += S->getSize();
  }
  this->Size = Off;
}

template <class ELFT>
void OutputSection<ELFT>::sort(
    std::function<int(InputSection<ELFT> *S)> Order) {
  typedef std::pair<unsigned, InputSection<ELFT> *> Pair;
  auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };

  std::vector<Pair> V;
  for (InputSection<ELFT> *S : Sections)
    V.push_back({Order(S), S});
  std::stable_sort(V.begin(), V.end(), Comp);
  Sections.clear();
  for (Pair &P : V)
    Sections.push_back(P.second);
}

// Sorts input sections by section name suffixes, so that .foo.N comes
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
// We want to keep the original order if the priorities are the same
// because the compiler keeps the original initialization order in a
// translation unit and we need to respect that.
// For more detail, read the section of the GCC's manual about init_priority.
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
  // Sort sections by priority.
  sort([](InputSection<ELFT> *S) { return getPriority(S->Name); });
}

// Returns true if S matches /Filename.?\.o$/.
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
  if (!S.endswith(".o"))
    return false;
  S = S.drop_back(2);
  if (S.endswith(Filename))
    return true;
  return !S.empty() && S.drop_back().endswith(Filename);
}

static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }

// .ctors and .dtors are sorted by this priority from highest to lowest.
//
//  1. The section was contained in crtbegin (crtbegin contains
//     some sentinel value in its .ctors and .dtors so that the runtime
//     can find the beginning of the sections.)
//
//  2. The section has an optional priority value in the form of ".ctors.N"
//     or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
//     they are compared as string rather than number.
//
//  3. The section is just ".ctors" or ".dtors".
//
//  4. The section was contained in crtend, which contains an end marker.
//
// In an ideal world, we don't need this function because .init_array and
// .ctors are duplicate features (and .init_array is newer.) However, there
// are too many real-world use cases of .ctors, so we had no choice to
// support that with this rather ad-hoc semantics.
template <class ELFT>
static bool compCtors(const InputSection<ELFT> *A,
                      const InputSection<ELFT> *B) {
  bool BeginA = isCrtbegin(A->getFile()->getName());
  bool BeginB = isCrtbegin(B->getFile()->getName());
  if (BeginA != BeginB)
    return BeginA;
  bool EndA = isCrtend(A->getFile()->getName());
  bool EndB = isCrtend(B->getFile()->getName());
  if (EndA != EndB)
    return EndB;
  StringRef X = A->Name;
  StringRef Y = B->Name;
  assert(X.startswith(".ctors") || X.startswith(".dtors"));
  assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
  X = X.substr(6);
  Y = Y.substr(6);
  if (X.empty() && Y.empty())
    return false;
  return X < Y;
}

// Sorts input sections by the special rules for .ctors and .dtors.
// Unfortunately, the rules are different from the one for .{init,fini}_array.
// Read the comment above.
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
  std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
}

// Fill [Buf, Buf + Size) with Filler. Filler is written in big
// endian order. This is used for linker script "=fillexp" command.
void fill(uint8_t *Buf, size_t Size, uint32_t Filler) {
  uint8_t V[4];
  write32be(V, Filler);
  size_t I = 0;
  for (; I + 4 < Size; I += 4)
    memcpy(Buf + I, V, 4);
  memcpy(Buf + I, V, Size - I);
}

template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
  Loc = Buf;
  if (uint32_t Filler = Script<ELFT>::X->getFiller(this->Name))
    fill(Buf, this->Size, Filler);

  auto Fn = [=](InputSection<ELFT> *IS) { IS->writeTo(Buf); };
  forEach(Sections.begin(), Sections.end(), Fn);

  // Linker scripts may have BYTE()-family commands with which you
  // can write arbitrary bytes to the output. Process them if any.
  Script<ELFT>::X->writeDataBytes(this->Name, Buf);
}

template <class ELFT>
EhOutputSection<ELFT>::EhOutputSection()
    : OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}

// Search for an existing CIE record or create a new one.
// CIE records from input object files are uniquified by their contents
// and where their relocations point to.
template <class ELFT>
template <class RelTy>
CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece,
                                         ArrayRef<RelTy> Rels) {
  auto *Sec = cast<EhInputSection<ELFT>>(Piece.ID);
  const endianness E = ELFT::TargetEndianness;
  if (read32<E>(Piece.data().data() + 4) != 0)
    fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame");

  SymbolBody *Personality = nullptr;
  unsigned FirstRelI = Piece.FirstRelocation;
  if (FirstRelI != (unsigned)-1)
    Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]);

  // Search for an existing CIE by CIE contents/relocation target pair.
  CieRecord *Cie = &CieMap[{Piece.data(), Personality}];

  // If not found, create a new one.
  if (Cie->Piece == nullptr) {
    Cie->Piece = &Piece;
    Cies.push_back(Cie);
  }
  return Cie;
}

// There is one FDE per function. Returns true if a given FDE
// points to a live function.
template <class ELFT>
template <class RelTy>
bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece,
                                      ArrayRef<RelTy> Rels) {
  auto *Sec = cast<EhInputSection<ELFT>>(Piece.ID);
  unsigned FirstRelI = Piece.FirstRelocation;
  if (FirstRelI == (unsigned)-1)
    fatal(toString(Sec) + ": FDE doesn't reference another section");
  const RelTy &Rel = Rels[FirstRelI];
  SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel);
  auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
  if (!D || !D->Section)
    return false;
  InputSectionBase<ELFT> *Target = D->Section->Repl;
  return Target && Target->Live;
}

// .eh_frame is a sequence of CIE or FDE records. In general, there
// is one CIE record per input object file which is followed by
// a list of FDEs. This function searches an existing CIE or create a new
// one and associates FDEs to the CIE.
template <class ELFT>
template <class RelTy>
void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
                                          ArrayRef<RelTy> Rels) {
  const endianness E = ELFT::TargetEndianness;

  DenseMap<size_t, CieRecord *> OffsetToCie;
  for (EhSectionPiece &Piece : Sec->Pieces) {
    // The empty record is the end marker.
    if (Piece.size() == 4)
      return;

    size_t Offset = Piece.InputOff;
    uint32_t ID = read32<E>(Piece.data().data() + 4);
    if (ID == 0) {
      OffsetToCie[Offset] = addCie(Piece, Rels);
      continue;
    }

    uint32_t CieOffset = Offset + 4 - ID;
    CieRecord *Cie = OffsetToCie[CieOffset];
    if (!Cie)
      fatal(toString(Sec) + ": invalid CIE reference");

    if (!isFdeLive(Piece, Rels))
      continue;
    Cie->FdePieces.push_back(&Piece);
    NumFdes++;
  }
}

template <class ELFT>
void EhOutputSection<ELFT>::addSection(InputSectionData *C) {
  auto *Sec = cast<EhInputSection<ELFT>>(C);
  Sec->OutSec = this;
  this->updateAlignment(Sec->Alignment);
  Sections.push_back(Sec);

  // .eh_frame is a sequence of CIE or FDE records. This function
  // splits it into pieces so that we can call
  // SplitInputSection::getSectionPiece on the section.
  Sec->split();
  if (Sec->Pieces.empty())
    return;

  if (Sec->NumRelocations) {
    if (Sec->AreRelocsRela)
      addSectionAux(Sec, Sec->relas());
    else
      addSectionAux(Sec, Sec->rels());
    return;
  }
  addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
}

template <class ELFT>
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
  memcpy(Buf, D.data(), D.size());

  // Fix the size field. -4 since size does not include the size field itself.
  const endianness E = ELFT::TargetEndianness;
  write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
}

template <class ELFT> void EhOutputSection<ELFT>::finalize() {
  if (this->Size)
    return; // Already finalized.

  size_t Off = 0;
  for (CieRecord *Cie : Cies) {
    Cie->Piece->OutputOff = Off;
    Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));

    for (EhSectionPiece *Fde : Cie->FdePieces) {
      Fde->OutputOff = Off;
      Off += alignTo(Fde->size(), sizeof(uintX_t));
    }
  }
  this->Size = Off;
}

template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
  const endianness E = ELFT::TargetEndianness;
  switch (Size) {
  case DW_EH_PE_udata2:
    return read16<E>(Buf);
  case DW_EH_PE_udata4:
    return read32<E>(Buf);
  case DW_EH_PE_udata8:
    return read64<E>(Buf);
  case DW_EH_PE_absptr:
    if (ELFT::Is64Bits)
      return read64<E>(Buf);
    return read32<E>(Buf);
  }
  fatal("unknown FDE size encoding");
}

// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
// We need it to create .eh_frame_hdr section.
template <class ELFT>
typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
                                                    uint8_t Enc) {
  // The starting address to which this FDE applies is
  // stored at FDE + 8 byte.
  size_t Off = FdeOff + 8;
  uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
  if ((Enc & 0x70) == DW_EH_PE_absptr)
    return Addr;
  if ((Enc & 0x70) == DW_EH_PE_pcrel)
    return Addr + this->Addr + Off;
  fatal("unknown FDE size relative encoding");
}

template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  const endianness E = ELFT::TargetEndianness;
  for (CieRecord *Cie : Cies) {
    size_t CieOffset = Cie->Piece->OutputOff;
    writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());

    for (EhSectionPiece *Fde : Cie->FdePieces) {
      size_t Off = Fde->OutputOff;
      writeCieFde<ELFT>(Buf + Off, Fde->data());

      // FDE's second word should have the offset to an associated CIE.
      // Write it.
      write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
    }
  }

  for (EhInputSection<ELFT> *S : Sections)
    S->relocate(Buf, nullptr);

  // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
  // to get a FDE from an address to which FDE is applied. So here
  // we obtain two addresses and pass them to EhFrameHdr object.
  if (In<ELFT>::EhFrameHdr) {
    for (CieRecord *Cie : Cies) {
      uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece);
      for (SectionPiece *Fde : Cie->FdePieces) {
        uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
        uintX_t FdeVA = this->Addr + Fde->OutputOff;
        In<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
      }
    }
  }
}

template <class ELFT>
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
                                             uintX_t Flags, uintX_t Alignment)
    : OutputSectionBase(Name, Type, Flags),
      Builder(StringTableBuilder::RAW, Alignment) {}

template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  Builder.write(Buf);
}

template <class ELFT>
void MergeOutputSection<ELFT>::addSection(InputSectionData *C) {
  auto *Sec = cast<MergeInputSection<ELFT>>(C);
  Sec->OutSec = this;
  this->updateAlignment(Sec->Alignment);
  this->Entsize = Sec->Entsize;
  Sections.push_back(Sec);
}

template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
  return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2;
}

template <class ELFT> void MergeOutputSection<ELFT>::finalizeTailMerge() {
  // Add all string pieces to the string table builder to create section
  // contents.
  for (MergeInputSection<ELFT> *Sec : Sections)
    for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
      if (Sec->Pieces[I].Live)
        Builder.add(Sec->getData(I));

  // Fix the string table content. After this, the contents will never change.
  Builder.finalize();
  this->Size = Builder.getSize();

  // finalize() fixed tail-optimized strings, so we can now get
  // offsets of strings. Get an offset for each string and save it
  // to a corresponding StringPiece for easy access.
  for (MergeInputSection<ELFT> *Sec : Sections)
    for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
      if (Sec->Pieces[I].Live)
        Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I));
}

template <class ELFT> void MergeOutputSection<ELFT>::finalizeNoTailMerge() {
  // Add all string pieces to the string table builder to create section
  // contents. Because we are not tail-optimizing, offsets of strings are
  // fixed when they are added to the builder (string table builder contains
  // a hash table from strings to offsets).
  for (MergeInputSection<ELFT> *Sec : Sections)
    for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
      if (Sec->Pieces[I].Live)
        Sec->Pieces[I].OutputOff = Builder.add(Sec->getData(I));

  Builder.finalizeInOrder();
  this->Size = Builder.getSize();
}

template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
  if (shouldTailMerge())
    finalizeTailMerge();
  else
    finalizeNoTailMerge();
}

template <class ELFT>
static typename ELFT::uint getOutFlags(InputSectionBase<ELFT> *S) {
  return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED;
}

template <class ELFT>
static SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C,
                                            StringRef OutsecName) {
  typedef typename ELFT::uint uintX_t;
  uintX_t Flags = getOutFlags(C);

  // For SHF_MERGE we create different output sections for each alignment.
  // This makes each output section simple and keeps a single level mapping from
  // input to output.
  // In case of relocatable object generation we do not try to perform merging
  // and treat SHF_MERGE sections as regular ones, but also create different
  // output sections for them to allow merging at final linking stage.
  uintX_t Alignment = 0;
  if (isa<MergeInputSection<ELFT>>(C) ||
      (Config->Relocatable && (C->Flags & SHF_MERGE)))
    Alignment = std::max<uintX_t>(C->Alignment, C->Entsize);

  return SectionKey<ELFT::Is64Bits>{OutsecName, C->Type, Flags, Alignment};
}

template <class ELFT>
std::pair<OutputSectionBase *, bool>
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
                                   StringRef OutsecName) {
  SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
  return create(Key, C);
}

template <class ELFT>
std::pair<OutputSectionBase *, bool>
OutputSectionFactory<ELFT>::create(const SectionKey<ELFT::Is64Bits> &Key,
                                   InputSectionBase<ELFT> *C) {
  uintX_t Flags = getOutFlags(C);
  OutputSectionBase *&Sec = Map[Key];
  if (Sec) {
    Sec->Flags |= Flags;
    return {Sec, false};
  }

  uint32_t Type = C->Type;
  switch (C->kind()) {
  case InputSectionBase<ELFT>::Regular:
  case InputSectionBase<ELFT>::Synthetic:
    Sec = make<OutputSection<ELFT>>(Key.Name, Type, Flags);
    break;
  case InputSectionBase<ELFT>::EHFrame:
    return {Out<ELFT>::EhFrame, false};
  case InputSectionBase<ELFT>::Merge:
    Sec = make<MergeOutputSection<ELFT>>(Key.Name, Type, Flags, Key.Alignment);
    break;
  }
  return {Sec, true};
}

template <bool Is64Bits>
typename lld::elf::SectionKey<Is64Bits>
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
  return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
}

template <bool Is64Bits>
typename lld::elf::SectionKey<Is64Bits>
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
  return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
                              0};
}

template <bool Is64Bits>
unsigned
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
  return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
}

template <bool Is64Bits>
bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
                                                           const Key &RHS) {
  return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
         LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
         LHS.Alignment == RHS.Alignment;
}

namespace llvm {
template struct DenseMapInfo<SectionKey<true>>;
template struct DenseMapInfo<SectionKey<false>>;
}

namespace lld {
namespace elf {

template void OutputSectionBase::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
template void OutputSectionBase::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
template void OutputSectionBase::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
template void OutputSectionBase::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);

template class OutputSection<ELF32LE>;
template class OutputSection<ELF32BE>;
template class OutputSection<ELF64LE>;
template class OutputSection<ELF64BE>;

template class EhOutputSection<ELF32LE>;
template class EhOutputSection<ELF32BE>;
template class EhOutputSection<ELF64LE>;
template class EhOutputSection<ELF64BE>;

template class MergeOutputSection<ELF32LE>;
template class MergeOutputSection<ELF32BE>;
template class MergeOutputSection<ELF64LE>;
template class MergeOutputSection<ELF64BE>;

template class OutputSectionFactory<ELF32LE>;
template class OutputSectionFactory<ELF32BE>;
template class OutputSectionFactory<ELF64LE>;
template class OutputSectionFactory<ELF64BE>;
}
}