aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/OutputSections.cpp
blob: 50b94015f22995666f0d49224f3102c656a011e9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
//===- OutputSections.cpp -------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "OutputSections.h"
#include "Config.h"
#include "EhFrame.h"
#include "LinkerScript.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "Target.h"
#include "lld/Core/Parallel.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"
#include <map>

using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

using namespace lld;
using namespace lld::elf;

template <class ELFT>
OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
                                           uintX_t Flags)
    : Name(Name) {
  memset(&Header, 0, sizeof(Elf_Shdr));
  Header.sh_type = Type;
  Header.sh_flags = Flags;
  Header.sh_addralign = 1;
}

template <class ELFT>
void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) {
  *Shdr = Header;
}

template <class ELFT>
GotPltSection<ELFT>::GotPltSection()
    : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
  this->Header.sh_addralign = Target->GotPltEntrySize;
}

template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
  Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
  Entries.push_back(&Sym);
}

template <class ELFT> bool GotPltSection<ELFT>::empty() const {
  return Entries.empty();
}

template <class ELFT> void GotPltSection<ELFT>::finalize() {
  this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) *
                         Target->GotPltEntrySize;
}

template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
  Target->writeGotPltHeader(Buf);
  Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize;
  for (const SymbolBody *B : Entries) {
    Target->writeGotPlt(Buf, *B);
    Buf += sizeof(uintX_t);
  }
}

template <class ELFT>
GotSection<ELFT>::GotSection()
    : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
  if (Config->EMachine == EM_MIPS)
    this->Header.sh_flags |= SHF_MIPS_GPREL;
  this->Header.sh_addralign = Target->GotEntrySize;
}

template <class ELFT>
void GotSection<ELFT>::addEntry(SymbolBody &Sym) {
  Sym.GotIndex = Entries.size();
  Entries.push_back(&Sym);
}

template <class ELFT>
void GotSection<ELFT>::addMipsEntry(SymbolBody &Sym, uintX_t Addend,
                                    RelExpr Expr) {
  // For "true" local symbols which can be referenced from the same module
  // only compiler creates two instructions for address loading:
  //
  // lw   $8, 0($gp) # R_MIPS_GOT16
  // addi $8, $8, 0  # R_MIPS_LO16
  //
  // The first instruction loads high 16 bits of the symbol address while
  // the second adds an offset. That allows to reduce number of required
  // GOT entries because only one global offset table entry is necessary
  // for every 64 KBytes of local data. So for local symbols we need to
  // allocate number of GOT entries to hold all required "page" addresses.
  //
  // All global symbols (hidden and regular) considered by compiler uniformly.
  // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
  // to load address of the symbol. So for each such symbol we need to
  // allocate dedicated GOT entry to store its address.
  //
  // If a symbol is preemptible we need help of dynamic linker to get its
  // final address. The corresponding GOT entries are allocated in the
  // "global" part of GOT. Entries for non preemptible global symbol allocated
  // in the "local" part of GOT.
  //
  // See "Global Offset Table" in Chapter 5:
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (Expr == R_MIPS_GOT_LOCAL_PAGE) {
    // At this point we do not know final symbol value so to reduce number
    // of allocated GOT entries do the following trick. Save all output
    // sections referenced by GOT relocations. Then later in the `finalize`
    // method calculate number of "pages" required to cover all saved output
    // section and allocate appropriate number of GOT entries.
    auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec;
    MipsOutSections.insert(OutSec);
    return;
  }
  if (Sym.isTls()) {
    // GOT entries created for MIPS TLS relocations behave like
    // almost GOT entries from other ABIs. They go to the end
    // of the global offset table.
    Sym.GotIndex = Entries.size();
    Entries.push_back(&Sym);
    return;
  }
  auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) {
    if (S.isInGot() && !A)
      return;
    size_t NewIndex = Items.size();
    if (!MipsGotMap.insert({{&S, A}, NewIndex}).second)
      return;
    Items.emplace_back(&S, A);
    if (!A)
      S.GotIndex = NewIndex;
  };
  if (Sym.isPreemptible()) {
    // Ignore addends for preemptible symbols. They got single GOT entry anyway.
    AddEntry(Sym, 0, MipsGlobal);
    Sym.IsInGlobalMipsGot = true;
  } else
    AddEntry(Sym, Addend, MipsLocal);
}

template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
  if (Sym.GlobalDynIndex != -1U)
    return false;
  Sym.GlobalDynIndex = Entries.size();
  // Global Dynamic TLS entries take two GOT slots.
  Entries.push_back(nullptr);
  Entries.push_back(&Sym);
  return true;
}

// Reserves TLS entries for a TLS module ID and a TLS block offset.
// In total it takes two GOT slots.
template <class ELFT> bool GotSection<ELFT>::addTlsIndex() {
  if (TlsIndexOff != uint32_t(-1))
    return false;
  TlsIndexOff = Entries.size() * sizeof(uintX_t);
  Entries.push_back(nullptr);
  Entries.push_back(nullptr);
  return true;
}

template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) {
  // Initialize the entry by the %hi(EntryValue) expression
  // but without right-shifting.
  EntryValue = (EntryValue + 0x8000) & ~0xffff;
  // Take into account MIPS GOT header.
  // See comment in the GotSection::writeTo.
  size_t NewIndex = MipsLocalGotPos.size() + 2;
  auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
  assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries);
  return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset;
}

template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const {
  uintX_t Off = MipsPageEntries;
  if (B.isTls())
    Off += MipsLocal.size() + MipsGlobal.size() + B.GotIndex;
  else if (B.IsInGlobalMipsGot)
    Off += MipsLocal.size() + B.GotIndex;
  else if (B.isInGot())
    Off += B.GotIndex;
  else {
    auto It = MipsGotMap.find({&B, Addend});
    assert(It != MipsGotMap.end());
    Off += It->second;
  }
  return Off * sizeof(uintX_t) - MipsGPOffset;
}

template <class ELFT>
typename GotSection<ELFT>::uintX_t GotSection<ELFT>::getMipsTlsOffset() {
  return (MipsPageEntries + MipsLocal.size() + MipsGlobal.size()) *
         sizeof(uintX_t);
}

template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
  return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t);
}

template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
  return B.GlobalDynIndex * sizeof(uintX_t);
}

template <class ELFT>
const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
  return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first;
}

template <class ELFT>
unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
  return MipsPageEntries + MipsLocal.size();
}

template <class ELFT> void GotSection<ELFT>::finalize() {
  size_t EntriesNum = Entries.size();
  if (Config->EMachine == EM_MIPS) {
    // Take into account MIPS GOT header.
    // See comment in the GotSection::writeTo.
    MipsPageEntries += 2;
    for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) {
      // Calculate an upper bound of MIPS GOT entries required to store page
      // addresses of local symbols. We assume the worst case - each 64kb
      // page of the output section has at least one GOT relocation against it.
      // Add 0x8000 to the section's size because the page address stored
      // in the GOT entry is calculated as (value + 0x8000) & ~0xffff.
      MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff;
    }
    EntriesNum += MipsPageEntries + MipsLocal.size() + MipsGlobal.size();
  }
  this->Header.sh_size = EntriesNum * sizeof(uintX_t);
}

template <class ELFT> void GotSection<ELFT>::writeMipsGot(uint8_t *&Buf) {
  // Set the MSB of the second GOT slot. This is not required by any
  // MIPS ABI documentation, though.
  //
  // There is a comment in glibc saying that "The MSB of got[1] of a
  // gnu object is set to identify gnu objects," and in GNU gold it
  // says "the second entry will be used by some runtime loaders".
  // But how this field is being used is unclear.
  //
  // We are not really willing to mimic other linkers behaviors
  // without understanding why they do that, but because all files
  // generated by GNU tools have this special GOT value, and because
  // we've been doing this for years, it is probably a safe bet to
  // keep doing this for now. We really need to revisit this to see
  // if we had to do this.
  auto *P = reinterpret_cast<typename ELFT::Off *>(Buf);
  P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
  // Write 'page address' entries to the local part of the GOT.
  for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) {
    uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first);
  }
  Buf += MipsPageEntries * sizeof(uintX_t);
  auto AddEntry = [&](const MipsGotEntry &SA) {
    uint8_t *Entry = Buf;
    Buf += sizeof(uintX_t);
    const SymbolBody* Body = SA.first;
    uintX_t VA = Body->template getVA<ELFT>(SA.second);
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
  };
  std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry);
  std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry);
}

template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
  if (Config->EMachine == EM_MIPS)
    writeMipsGot(Buf);
  for (const SymbolBody *B : Entries) {
    uint8_t *Entry = Buf;
    Buf += sizeof(uintX_t);
    if (!B)
      continue;
    if (B->isPreemptible())
      continue; // The dynamic linker will take care of it.
    uintX_t VA = B->getVA<ELFT>();
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
  }
}

template <class ELFT>
PltSection<ELFT>::PltSection()
    : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
  this->Header.sh_addralign = 16;
}

template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
  // At beginning of PLT, we have code to call the dynamic linker
  // to resolve dynsyms at runtime. Write such code.
  Target->writePltHeader(Buf);
  size_t Off = Target->PltHeaderSize;

  for (auto &I : Entries) {
    const SymbolBody *B = I.first;
    unsigned RelOff = I.second;
    uint64_t Got = B->getGotPltVA<ELFT>();
    uint64_t Plt = this->getVA() + Off;
    Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
    Off += Target->PltEntrySize;
  }
}

template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
  Sym.PltIndex = Entries.size();
  unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset();
  Entries.push_back(std::make_pair(&Sym, RelOff));
}

template <class ELFT> void PltSection<ELFT>::finalize() {
  this->Header.sh_size =
      Target->PltHeaderSize + Entries.size() * Target->PltEntrySize;
}

template <class ELFT>
RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
    : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL,
                              SHF_ALLOC),
      Sort(Sort) {
  this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
  this->Header.sh_addralign = sizeof(uintX_t);
}

template <class ELFT>
void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) {
  Relocs.push_back(Reloc);
}

template <class ELFT, class RelTy>
static bool compRelocations(const RelTy &A, const RelTy &B) {
  return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL);
}

template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
  uint8_t *BufBegin = Buf;
  for (const DynamicReloc<ELFT> &Rel : Relocs) {
    auto *P = reinterpret_cast<Elf_Rela *>(Buf);
    Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);

    if (Config->Rela)
      P->r_addend = Rel.getAddend();
    P->r_offset = Rel.getOffset();
    if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out<ELFT>::Got)
      // Dynamic relocation against MIPS GOT section make deal TLS entries
      // allocated in the end of the GOT. We need to adjust the offset to take
      // in account 'local' and 'global' GOT entries.
      P->r_offset += Out<ELFT>::Got->getMipsTlsOffset();
    P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL);
  }

  if (Sort) {
    if (Config->Rela)
      std::stable_sort((Elf_Rela *)BufBegin,
                       (Elf_Rela *)BufBegin + Relocs.size(),
                       compRelocations<ELFT, Elf_Rela>);
    else
      std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
                       compRelocations<ELFT, Elf_Rel>);
  }
}

template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
  return this->Header.sh_entsize * Relocs.size();
}

template <class ELFT> void RelocationSection<ELFT>::finalize() {
  this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex
                                : Out<ELFT>::DynSymTab->SectionIndex;
  this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
}

template <class ELFT>
InterpSection<ELFT>::InterpSection()
    : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
  this->Header.sh_size = Config->DynamicLinker.size() + 1;
}

template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
  StringRef S = Config->DynamicLinker;
  memcpy(Buf, S.data(), S.size());
}

template <class ELFT>
HashTableSection<ELFT>::HashTableSection()
    : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
  this->Header.sh_entsize = sizeof(Elf_Word);
  this->Header.sh_addralign = sizeof(Elf_Word);
}

static uint32_t hashSysv(StringRef Name) {
  uint32_t H = 0;
  for (char C : Name) {
    H = (H << 4) + C;
    uint32_t G = H & 0xf0000000;
    if (G)
      H ^= G >> 24;
    H &= ~G;
  }
  return H;
}

template <class ELFT> void HashTableSection<ELFT>::finalize() {
  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;

  unsigned NumEntries = 2;                             // nbucket and nchain.
  NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.

  // Create as many buckets as there are symbols.
  // FIXME: This is simplistic. We can try to optimize it, but implementing
  // support for SHT_GNU_HASH is probably even more profitable.
  NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
  this->Header.sh_size = NumEntries * sizeof(Elf_Word);
}

template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
  unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
  auto *P = reinterpret_cast<Elf_Word *>(Buf);
  *P++ = NumSymbols; // nbucket
  *P++ = NumSymbols; // nchain

  Elf_Word *Buckets = P;
  Elf_Word *Chains = P + NumSymbols;

  for (const std::pair<SymbolBody *, unsigned> &P :
       Out<ELFT>::DynSymTab->getSymbols()) {
    SymbolBody *Body = P.first;
    StringRef Name = Body->getName();
    unsigned I = Body->DynsymIndex;
    uint32_t Hash = hashSysv(Name) % NumSymbols;
    Chains[I] = Buckets[Hash];
    Buckets[Hash] = I;
  }
}

static uint32_t hashGnu(StringRef Name) {
  uint32_t H = 5381;
  for (uint8_t C : Name)
    H = (H << 5) + H + C;
  return H;
}

template <class ELFT>
GnuHashTableSection<ELFT>::GnuHashTableSection()
    : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
  this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
  this->Header.sh_addralign = sizeof(uintX_t);
}

template <class ELFT>
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
  if (!NumHashed)
    return 0;

  // These values are prime numbers which are not greater than 2^(N-1) + 1.
  // In result, for any particular NumHashed we return a prime number
  // which is not greater than NumHashed.
  static const unsigned Primes[] = {
      1,   1,    3,    3,    7,    13,    31,    61,    127,   251,
      509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};

  return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
                                   array_lengthof(Primes) - 1)];
}

// Bloom filter estimation: at least 8 bits for each hashed symbol.
// GNU Hash table requirement: it should be a power of 2,
//   the minimum value is 1, even for an empty table.
// Expected results for a 32-bit target:
//   calcMaskWords(0..4)   = 1
//   calcMaskWords(5..8)   = 2
//   calcMaskWords(9..16)  = 4
// For a 64-bit target:
//   calcMaskWords(0..8)   = 1
//   calcMaskWords(9..16)  = 2
//   calcMaskWords(17..32) = 4
template <class ELFT>
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
  if (!NumHashed)
    return 1;
  return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
}

template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
  unsigned NumHashed = Symbols.size();
  NBuckets = calcNBuckets(NumHashed);
  MaskWords = calcMaskWords(NumHashed);
  // Second hash shift estimation: just predefined values.
  Shift2 = ELFT::Is64Bits ? 6 : 5;

  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
  this->Header.sh_size = sizeof(Elf_Word) * 4            // Header
                         + sizeof(Elf_Off) * MaskWords   // Bloom Filter
                         + sizeof(Elf_Word) * NBuckets   // Hash Buckets
                         + sizeof(Elf_Word) * NumHashed; // Hash Values
}

template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
  writeHeader(Buf);
  if (Symbols.empty())
    return;
  writeBloomFilter(Buf);
  writeHashTable(Buf);
}

template <class ELFT>
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
  auto *P = reinterpret_cast<Elf_Word *>(Buf);
  *P++ = NBuckets;
  *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
  *P++ = MaskWords;
  *P++ = Shift2;
  Buf = reinterpret_cast<uint8_t *>(P);
}

template <class ELFT>
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
  unsigned C = sizeof(Elf_Off) * 8;

  auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
  for (const SymbolData &Sym : Symbols) {
    size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
    uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
                (uintX_t(1) << ((Sym.Hash >> Shift2) % C));
    Masks[Pos] |= V;
  }
  Buf += sizeof(Elf_Off) * MaskWords;
}

template <class ELFT>
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
  Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
  Elf_Word *Values = Buckets + NBuckets;

  int PrevBucket = -1;
  int I = 0;
  for (const SymbolData &Sym : Symbols) {
    int Bucket = Sym.Hash % NBuckets;
    assert(PrevBucket <= Bucket);
    if (Bucket != PrevBucket) {
      Buckets[Bucket] = Sym.Body->DynsymIndex;
      PrevBucket = Bucket;
      if (I > 0)
        Values[I - 1] |= 1;
    }
    Values[I] = Sym.Hash & ~1;
    ++I;
  }
  if (I > 0)
    Values[I - 1] |= 1;
}

// Add symbols to this symbol hash table. Note that this function
// destructively sort a given vector -- which is needed because
// GNU-style hash table places some sorting requirements.
template <class ELFT>
void GnuHashTableSection<ELFT>::addSymbols(
    std::vector<std::pair<SymbolBody *, size_t>> &V) {
  // Ideally this will just be 'auto' but GCC 6.1 is not able
  // to deduce it correctly.
  std::vector<std::pair<SymbolBody *, size_t>>::iterator Mid =
      std::stable_partition(V.begin(), V.end(),
                            [](std::pair<SymbolBody *, size_t> &P) {
                              return P.first->isUndefined();
                            });
  if (Mid == V.end())
    return;
  for (auto I = Mid, E = V.end(); I != E; ++I) {
    SymbolBody *B = I->first;
    size_t StrOff = I->second;
    Symbols.push_back({B, StrOff, hashGnu(B->getName())});
  }

  unsigned NBuckets = calcNBuckets(Symbols.size());
  std::stable_sort(Symbols.begin(), Symbols.end(),
                   [&](const SymbolData &L, const SymbolData &R) {
                     return L.Hash % NBuckets < R.Hash % NBuckets;
                   });

  V.erase(Mid, V.end());
  for (const SymbolData &Sym : Symbols)
    V.push_back({Sym.Body, Sym.STName});
}

// Returns the number of version definition entries. Because the first entry
// is for the version definition itself, it is the number of versioned symbols
// plus one. Note that we don't support multiple versions yet.
static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }

template <class ELFT>
DynamicSection<ELFT>::DynamicSection()
    : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) {
  Elf_Shdr &Header = this->Header;
  Header.sh_addralign = sizeof(uintX_t);
  Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;

  // .dynamic section is not writable on MIPS.
  // See "Special Section" in Chapter 4 in the following document:
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (Config->EMachine == EM_MIPS)
    Header.sh_flags = SHF_ALLOC;
}

template <class ELFT> void DynamicSection<ELFT>::finalize() {
  if (this->Header.sh_size)
    return; // Already finalized.

  Elf_Shdr &Header = this->Header;
  Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;

  auto Add = [=](Entry E) { Entries.push_back(E); };

  // Add strings. We know that these are the last strings to be added to
  // DynStrTab and doing this here allows this function to set DT_STRSZ.
  if (!Config->RPath.empty())
    Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
         Out<ELFT>::DynStrTab->addString(Config->RPath)});
  for (const std::unique_ptr<SharedFile<ELFT>> &F :
       Symtab<ELFT>::X->getSharedFiles())
    if (F->isNeeded())
      Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
  if (!Config->SoName.empty())
    Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});

  Out<ELFT>::DynStrTab->finalize();

  if (Out<ELFT>::RelaDyn->hasRelocs()) {
    bool IsRela = Config->Rela;
    Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
    Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
    Add({IsRela ? DT_RELAENT : DT_RELENT,
         uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
  }
  if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
    Add({DT_JMPREL, Out<ELFT>::RelaPlt});
    Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
    Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
         Out<ELFT>::GotPlt});
    Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)});
  }

  Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
  Add({DT_SYMENT, sizeof(Elf_Sym)});
  Add({DT_STRTAB, Out<ELFT>::DynStrTab});
  Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
  if (Out<ELFT>::GnuHashTab)
    Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
  if (Out<ELFT>::HashTab)
    Add({DT_HASH, Out<ELFT>::HashTab});

  if (PreInitArraySec) {
    Add({DT_PREINIT_ARRAY, PreInitArraySec});
    Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()});
  }
  if (InitArraySec) {
    Add({DT_INIT_ARRAY, InitArraySec});
    Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()});
  }
  if (FiniArraySec) {
    Add({DT_FINI_ARRAY, FiniArraySec});
    Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()});
  }

  if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init))
    Add({DT_INIT, B});
  if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini))
    Add({DT_FINI, B});

  uint32_t DtFlags = 0;
  uint32_t DtFlags1 = 0;
  if (Config->Bsymbolic)
    DtFlags |= DF_SYMBOLIC;
  if (Config->ZNodelete)
    DtFlags1 |= DF_1_NODELETE;
  if (Config->ZNow) {
    DtFlags |= DF_BIND_NOW;
    DtFlags1 |= DF_1_NOW;
  }
  if (Config->ZOrigin) {
    DtFlags |= DF_ORIGIN;
    DtFlags1 |= DF_1_ORIGIN;
  }

  if (DtFlags)
    Add({DT_FLAGS, DtFlags});
  if (DtFlags1)
    Add({DT_FLAGS_1, DtFlags1});

  if (!Config->Entry.empty())
    Add({DT_DEBUG, (uint64_t)0});

  bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0;
  if (HasVerNeed || Out<ELFT>::VerDef)
    Add({DT_VERSYM, Out<ELFT>::VerSym});
  if (Out<ELFT>::VerDef) {
    Add({DT_VERDEF, Out<ELFT>::VerDef});
    Add({DT_VERDEFNUM, getVerDefNum()});
  }
  if (HasVerNeed) {
    Add({DT_VERNEED, Out<ELFT>::VerNeed});
    Add({DT_VERNEEDNUM, Out<ELFT>::VerNeed->getNeedNum()});
  }

  if (Config->EMachine == EM_MIPS) {
    Add({DT_MIPS_RLD_VERSION, 1});
    Add({DT_MIPS_FLAGS, RHF_NOTPOT});
    Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase});
    Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
    Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
    if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
      Add({DT_MIPS_GOTSYM, B->DynsymIndex});
    else
      Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
    Add({DT_PLTGOT, Out<ELFT>::Got});
    if (Out<ELFT>::MipsRldMap)
      Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
  }

  // +1 for DT_NULL
  Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
}

template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
  auto *P = reinterpret_cast<Elf_Dyn *>(Buf);

  for (const Entry &E : Entries) {
    P->d_tag = E.Tag;
    switch (E.Kind) {
    case Entry::SecAddr:
      P->d_un.d_ptr = E.OutSec->getVA();
      break;
    case Entry::SymAddr:
      P->d_un.d_ptr = E.Sym->template getVA<ELFT>();
      break;
    case Entry::PlainInt:
      P->d_un.d_val = E.Val;
      break;
    }
    ++P;
  }
}

template <class ELFT>
EhFrameHeader<ELFT>::EhFrameHeader()
    : OutputSectionBase<ELFT>(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {}

// .eh_frame_hdr contains a binary search table of pointers to FDEs.
// Each entry of the search table consists of two values,
// the starting PC from where FDEs covers, and the FDE's address.
// It is sorted by PC.
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
  const endianness E = ELFT::TargetEndianness;

  // Sort the FDE list by their PC and uniqueify. Usually there is only
  // one FDE for a PC (i.e. function), but if ICF merges two functions
  // into one, there can be more than one FDEs pointing to the address.
  auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
  std::stable_sort(Fdes.begin(), Fdes.end(), Less);
  auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
  Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());

  Buf[0] = 1;
  Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
  Buf[2] = DW_EH_PE_udata4;
  Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
  write32<E>(Buf + 4, Out<ELFT>::EhFrame->getVA() - this->getVA() - 4);
  write32<E>(Buf + 8, Fdes.size());
  Buf += 12;

  uintX_t VA = this->getVA();
  for (FdeData &Fde : Fdes) {
    write32<E>(Buf, Fde.Pc - VA);
    write32<E>(Buf + 4, Fde.FdeVA - VA);
    Buf += 8;
  }
}

template <class ELFT> void EhFrameHeader<ELFT>::finalize() {
  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
  this->Header.sh_size = 12 + Out<ELFT>::EhFrame->NumFdes * 8;
}

template <class ELFT>
void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
  Fdes.push_back({Pc, FdeVA});
}

template <class ELFT>
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
    : OutputSectionBase<ELFT>(Name, Type, Flags) {
  if (Type == SHT_RELA)
    this->Header.sh_entsize = sizeof(Elf_Rela);
  else if (Type == SHT_REL)
    this->Header.sh_entsize = sizeof(Elf_Rel);
}

template <class ELFT> void OutputSection<ELFT>::finalize() {
  uint32_t Type = this->Header.sh_type;
  if (Type != SHT_RELA && Type != SHT_REL)
    return;
  this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex;
  // sh_info for SHT_REL[A] sections should contain the section header index of
  // the section to which the relocation applies.
  InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
  this->Header.sh_info = S->OutSec->SectionIndex;
}

template <class ELFT>
void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
  assert(C->Live);
  auto *S = cast<InputSection<ELFT>>(C);
  Sections.push_back(S);
  S->OutSec = this;
  this->updateAlignment(S->Alignment);
}

// If an input string is in the form of "foo.N" where N is a number,
// return N. Otherwise, returns 65536, which is one greater than the
// lowest priority.
static int getPriority(StringRef S) {
  size_t Pos = S.rfind('.');
  if (Pos == StringRef::npos)
    return 65536;
  int V;
  if (S.substr(Pos + 1).getAsInteger(10, V))
    return 65536;
  return V;
}

// This function is called after we sort input sections
// and scan relocations to setup sections' offsets.
template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
  uintX_t Off = this->Header.sh_size;
  for (InputSection<ELFT> *S : Sections) {
    Off = alignTo(Off, S->Alignment);
    S->OutSecOff = Off;
    Off += S->getSize();
  }
  this->Header.sh_size = Off;
}

// Sorts input sections by section name suffixes, so that .foo.N comes
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
// We want to keep the original order if the priorities are the same
// because the compiler keeps the original initialization order in a
// translation unit and we need to respect that.
// For more detail, read the section of the GCC's manual about init_priority.
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
  // Sort sections by priority.
  typedef std::pair<int, InputSection<ELFT> *> Pair;
  auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };

  std::vector<Pair> V;
  for (InputSection<ELFT> *S : Sections)
    V.push_back({getPriority(S->getSectionName()), S});
  std::stable_sort(V.begin(), V.end(), Comp);
  Sections.clear();
  for (Pair &P : V)
    Sections.push_back(P.second);
}

// Returns true if S matches /Filename.?\.o$/.
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
  if (!S.endswith(".o"))
    return false;
  S = S.drop_back(2);
  if (S.endswith(Filename))
    return true;
  return !S.empty() && S.drop_back().endswith(Filename);
}

static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }

// .ctors and .dtors are sorted by this priority from highest to lowest.
//
//  1. The section was contained in crtbegin (crtbegin contains
//     some sentinel value in its .ctors and .dtors so that the runtime
//     can find the beginning of the sections.)
//
//  2. The section has an optional priority value in the form of ".ctors.N"
//     or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
//     they are compared as string rather than number.
//
//  3. The section is just ".ctors" or ".dtors".
//
//  4. The section was contained in crtend, which contains an end marker.
//
// In an ideal world, we don't need this function because .init_array and
// .ctors are duplicate features (and .init_array is newer.) However, there
// are too many real-world use cases of .ctors, so we had no choice to
// support that with this rather ad-hoc semantics.
template <class ELFT>
static bool compCtors(const InputSection<ELFT> *A,
                      const InputSection<ELFT> *B) {
  bool BeginA = isCrtbegin(A->getFile()->getName());
  bool BeginB = isCrtbegin(B->getFile()->getName());
  if (BeginA != BeginB)
    return BeginA;
  bool EndA = isCrtend(A->getFile()->getName());
  bool EndB = isCrtend(B->getFile()->getName());
  if (EndA != EndB)
    return EndB;
  StringRef X = A->getSectionName();
  StringRef Y = B->getSectionName();
  assert(X.startswith(".ctors") || X.startswith(".dtors"));
  assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
  X = X.substr(6);
  Y = Y.substr(6);
  if (X.empty() && Y.empty())
    return false;
  return X < Y;
}

// Sorts input sections by the special rules for .ctors and .dtors.
// Unfortunately, the rules are different from the one for .{init,fini}_array.
// Read the comment above.
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
  std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
}

static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
  size_t I = 0;
  for (; I + A.size() < Size; I += A.size())
    memcpy(Buf + I, A.data(), A.size());
  memcpy(Buf + I, A.data(), Size - I);
}

template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
  ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
  if (!Filler.empty())
    fill(Buf, this->getSize(), Filler);
  if (Config->Threads) {
    parallel_for_each(Sections.begin(), Sections.end(),
                      [=](InputSection<ELFT> *C) { C->writeTo(Buf); });
  } else {
    for (InputSection<ELFT> *C : Sections)
      C->writeTo(Buf);
  }
}

template <class ELFT>
EhOutputSection<ELFT>::EhOutputSection()
    : OutputSectionBase<ELFT>(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}

// Returns the first relocation that points to a region
// between Begin and Begin+Size.
template <class IntTy, class RelTy>
static const RelTy *getReloc(IntTy Begin, IntTy Size, ArrayRef<RelTy> &Rels) {
  for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
    if (I->r_offset < Begin)
      continue;

    // Truncate Rels for fast access. That means we expect that the
    // relocations are sorted and we are looking up symbols in
    // sequential order. It is naturally satisfied for .eh_frame.
    Rels = Rels.slice(I - Rels.begin());
    if (I->r_offset < Begin + Size)
      return I;
    return nullptr;
  }
  Rels = ArrayRef<RelTy>();
  return nullptr;
}

// Search for an existing CIE record or create a new one.
// CIE records from input object files are uniquified by their contents
// and where their relocations point to.
template <class ELFT>
template <class RelTy>
CieRecord *EhOutputSection<ELFT>::addCie(SectionPiece &Piece,
                                         EhInputSection<ELFT> *Sec,
                                         ArrayRef<RelTy> &Rels) {
  const endianness E = ELFT::TargetEndianness;
  if (read32<E>(Piece.data().data() + 4) != 0)
    fatal("CIE expected at beginning of .eh_frame: " + Sec->getSectionName());

  SymbolBody *Personality = nullptr;
  if (const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels))
    Personality = &Sec->getFile()->getRelocTargetSym(*Rel);

  // Search for an existing CIE by CIE contents/relocation target pair.
  CieRecord *Cie = &CieMap[{Piece.data(), Personality}];

  // If not found, create a new one.
  if (Cie->Piece == nullptr) {
    Cie->Piece = &Piece;
    Cies.push_back(Cie);
  }
  return Cie;
}

// There is one FDE per function. Returns true if a given FDE
// points to a live function.
template <class ELFT>
template <class RelTy>
bool EhOutputSection<ELFT>::isFdeLive(SectionPiece &Piece,
                                      EhInputSection<ELFT> *Sec,
                                      ArrayRef<RelTy> &Rels) {
  const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels);
  if (!Rel)
    fatal("FDE doesn't reference another section");
  SymbolBody &B = Sec->getFile()->getRelocTargetSym(*Rel);
  auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
  if (!D || !D->Section)
    return false;
  InputSectionBase<ELFT> *Target = D->Section->Repl;
  return Target && Target->Live;
}

// .eh_frame is a sequence of CIE or FDE records. In general, there
// is one CIE record per input object file which is followed by
// a list of FDEs. This function searches an existing CIE or create a new
// one and associates FDEs to the CIE.
template <class ELFT>
template <class RelTy>
void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
                                          ArrayRef<RelTy> Rels) {
  const endianness E = ELFT::TargetEndianness;

  DenseMap<size_t, CieRecord *> OffsetToCie;
  for (SectionPiece &Piece : Sec->Pieces) {
    // The empty record is the end marker.
    if (Piece.size() == 4)
      return;

    size_t Offset = Piece.InputOff;
    uint32_t ID = read32<E>(Piece.data().data() + 4);
    if (ID == 0) {
      OffsetToCie[Offset] = addCie(Piece, Sec, Rels);
      continue;
    }

    uint32_t CieOffset = Offset + 4 - ID;
    CieRecord *Cie = OffsetToCie[CieOffset];
    if (!Cie)
      fatal("invalid CIE reference");

    if (!isFdeLive(Piece, Sec, Rels))
      continue;
    Cie->FdePieces.push_back(&Piece);
    NumFdes++;
  }
}

template <class ELFT>
void EhOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
  auto *Sec = cast<EhInputSection<ELFT>>(C);
  Sec->OutSec = this;
  this->updateAlignment(Sec->Alignment);
  Sections.push_back(Sec);

  // .eh_frame is a sequence of CIE or FDE records. This function
  // splits it into pieces so that we can call
  // SplitInputSection::getSectionPiece on the section.
  Sec->split();
  if (Sec->Pieces.empty())
    return;

  if (const Elf_Shdr *RelSec = Sec->RelocSection) {
    ELFFile<ELFT> &Obj = Sec->getFile()->getObj();
    if (RelSec->sh_type == SHT_RELA)
      addSectionAux(Sec, Obj.relas(RelSec));
    else
      addSectionAux(Sec, Obj.rels(RelSec));
    return;
  }
  addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
}

template <class ELFT>
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
  memcpy(Buf, D.data(), D.size());

  // Fix the size field. -4 since size does not include the size field itself.
  const endianness E = ELFT::TargetEndianness;
  write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
}

template <class ELFT> void EhOutputSection<ELFT>::finalize() {
  if (this->Header.sh_size)
    return; // Already finalized.

  size_t Off = 0;
  for (CieRecord *Cie : Cies) {
    Cie->Piece->OutputOff = Off;
    Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));

    for (SectionPiece *Fde : Cie->FdePieces) {
      Fde->OutputOff = Off;
      Off += alignTo(Fde->size(), sizeof(uintX_t));
    }
  }
  this->Header.sh_size = Off;
}

template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
  const endianness E = ELFT::TargetEndianness;
  switch (Size) {
  case DW_EH_PE_udata2:
    return read16<E>(Buf);
  case DW_EH_PE_udata4:
    return read32<E>(Buf);
  case DW_EH_PE_udata8:
    return read64<E>(Buf);
  case DW_EH_PE_absptr:
    if (ELFT::Is64Bits)
      return read64<E>(Buf);
    return read32<E>(Buf);
  }
  fatal("unknown FDE size encoding");
}

// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
// We need it to create .eh_frame_hdr section.
template <class ELFT>
typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
                                                    uint8_t Enc) {
  // The starting address to which this FDE applies is
  // stored at FDE + 8 byte.
  size_t Off = FdeOff + 8;
  uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
  if ((Enc & 0x70) == DW_EH_PE_absptr)
    return Addr;
  if ((Enc & 0x70) == DW_EH_PE_pcrel)
    return Addr + this->getVA() + Off;
  fatal("unknown FDE size relative encoding");
}

template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  const endianness E = ELFT::TargetEndianness;
  for (CieRecord *Cie : Cies) {
    size_t CieOffset = Cie->Piece->OutputOff;
    writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());

    for (SectionPiece *Fde : Cie->FdePieces) {
      size_t Off = Fde->OutputOff;
      writeCieFde<ELFT>(Buf + Off, Fde->data());

      // FDE's second word should have the offset to an associated CIE.
      // Write it.
      write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
    }
  }

  for (EhInputSection<ELFT> *S : Sections)
    S->relocate(Buf, nullptr);

  // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
  // to get a FDE from an address to which FDE is applied. So here
  // we obtain two addresses and pass them to EhFrameHdr object.
  if (Out<ELFT>::EhFrameHdr) {
    for (CieRecord *Cie : Cies) {
      uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data());
      for (SectionPiece *Fde : Cie->FdePieces) {
        uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
        uintX_t FdeVA = this->getVA() + Fde->OutputOff;
        Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
      }
    }
  }
}

template <class ELFT>
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
                                             uintX_t Flags, uintX_t Alignment)
    : OutputSectionBase<ELFT>(Name, Type, Flags),
      Builder(StringTableBuilder::RAW, Alignment) {}

template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  if (shouldTailMerge()) {
    StringRef Data = Builder.data();
    memcpy(Buf, Data.data(), Data.size());
    return;
  }
  for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) {
    StringRef Data = P.first.Val;
    memcpy(Buf + P.second, Data.data(), Data.size());
  }
}

static StringRef toStringRef(ArrayRef<uint8_t> A) {
  return {(const char *)A.data(), A.size()};
}

template <class ELFT>
void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
  auto *Sec = cast<MergeInputSection<ELFT>>(C);
  Sec->OutSec = this;
  this->updateAlignment(Sec->Alignment);
  this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize;
  Sections.push_back(Sec);

  bool IsString = this->Header.sh_flags & SHF_STRINGS;

  for (SectionPiece &Piece : Sec->Pieces) {
    if (!Piece.Live)
      continue;
    uintX_t OutputOffset = Builder.add(toStringRef(Piece.data()));
    if (!IsString || !shouldTailMerge())
      Piece.OutputOff = OutputOffset;
  }
}

template <class ELFT>
unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
  return Builder.getOffset(Val);
}

template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
  return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
}

template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
  if (shouldTailMerge())
    Builder.finalize();
  this->Header.sh_size = Builder.getSize();
}

template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() {
  for (MergeInputSection<ELFT> *Sec : Sections)
    Sec->finalizePieces();
}

template <class ELFT>
StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
    : OutputSectionBase<ELFT>(Name, SHT_STRTAB,
                              Dynamic ? (uintX_t)SHF_ALLOC : 0),
      Dynamic(Dynamic) {}

// Adds a string to the string table. If HashIt is true we hash and check for
// duplicates. It is optional because the name of global symbols are already
// uniqued and hashing them again has a big cost for a small value: uniquing
// them with some other string that happens to be the same.
template <class ELFT>
unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) {
  if (HashIt) {
    auto R = StringMap.insert(std::make_pair(S, Size));
    if (!R.second)
      return R.first->second;
  }
  unsigned Ret = Size;
  Size += S.size() + 1;
  Strings.push_back(S);
  return Ret;
}

template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
  // ELF string tables start with NUL byte, so advance the pointer by one.
  ++Buf;
  for (StringRef S : Strings) {
    memcpy(Buf, S.data(), S.size());
    Buf += S.size() + 1;
  }
}

template <class ELFT>
typename ELFT::uint DynamicReloc<ELFT>::getOffset() const {
  if (OutputSec)
    return OutputSec->getVA() + OffsetInSec;
  return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec);
}

template <class ELFT>
typename ELFT::uint DynamicReloc<ELFT>::getAddend() const {
  if (UseSymVA)
    return Sym->getVA<ELFT>(Addend);
  return Addend;
}

template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const {
  if (Sym && !UseSymVA)
    return Sym->DynsymIndex;
  return 0;
}

template <class ELFT>
SymbolTableSection<ELFT>::SymbolTableSection(
    StringTableSection<ELFT> &StrTabSec)
    : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
                              StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
                              StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
      StrTabSec(StrTabSec) {
  this->Header.sh_entsize = sizeof(Elf_Sym);
  this->Header.sh_addralign = sizeof(uintX_t);
}

// Orders symbols according to their positions in the GOT,
// in compliance with MIPS ABI rules.
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed description:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L,
                            const std::pair<SymbolBody *, unsigned> &R) {
  // Sort entries related to non-local preemptible symbols by GOT indexes.
  // All other entries go to the first part of GOT in arbitrary order.
  bool LIsInLocalGot = !L.first->IsInGlobalMipsGot;
  bool RIsInLocalGot = !R.first->IsInGlobalMipsGot;
  if (LIsInLocalGot || RIsInLocalGot)
    return !RIsInLocalGot;
  return L.first->GotIndex < R.first->GotIndex;
}

static uint8_t getSymbolBinding(SymbolBody *Body) {
  Symbol *S = Body->symbol();
  uint8_t Visibility = S->Visibility;
  if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
    return STB_LOCAL;
  if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
    return STB_GLOBAL;
  return S->Binding;
}

template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
  if (this->Header.sh_size)
    return; // Already finalized.

  this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
  this->Header.sh_link = StrTabSec.SectionIndex;
  this->Header.sh_info = NumLocals + 1;

  if (Config->Relocatable) {
    size_t I = NumLocals;
    for (const std::pair<SymbolBody *, size_t> &P : Symbols)
      P.first->DynsymIndex = ++I;
    return;
  }

  if (!StrTabSec.isDynamic()) {
    std::stable_sort(Symbols.begin(), Symbols.end(),
                     [](const std::pair<SymbolBody *, unsigned> &L,
                        const std::pair<SymbolBody *, unsigned> &R) {
                       return getSymbolBinding(L.first) == STB_LOCAL &&
                              getSymbolBinding(R.first) != STB_LOCAL;
                     });
    return;
  }
  if (Out<ELFT>::GnuHashTab)
    // NB: It also sorts Symbols to meet the GNU hash table requirements.
    Out<ELFT>::GnuHashTab->addSymbols(Symbols);
  else if (Config->EMachine == EM_MIPS)
    std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
  size_t I = 0;
  for (const std::pair<SymbolBody *, size_t> &P : Symbols)
    P.first->DynsymIndex = ++I;
}

template <class ELFT>
void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
  Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
}

template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
  Buf += sizeof(Elf_Sym);

  // All symbols with STB_LOCAL binding precede the weak and global symbols.
  // .dynsym only contains global symbols.
  if (!Config->DiscardAll && !StrTabSec.isDynamic())
    writeLocalSymbols(Buf);

  writeGlobalSymbols(Buf);
}

template <class ELFT>
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
  // Iterate over all input object files to copy their local symbols
  // to the output symbol table pointed by Buf.
  for (const std::unique_ptr<ObjectFile<ELFT>> &File :
       Symtab<ELFT>::X->getObjectFiles()) {
    for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
         File->KeptLocalSyms) {
      const DefinedRegular<ELFT> &Body = *P.first;
      InputSectionBase<ELFT> *Section = Body.Section;
      auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);

      if (!Section) {
        ESym->st_shndx = SHN_ABS;
        ESym->st_value = Body.Value;
      } else {
        const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
        ESym->st_shndx = OutSec->SectionIndex;
        ESym->st_value = OutSec->getVA() + Section->getOffset(Body);
      }
      ESym->st_name = P.second;
      ESym->st_size = Body.template getSize<ELFT>();
      ESym->setBindingAndType(STB_LOCAL, Body.Type);
      Buf += sizeof(*ESym);
    }
  }
}

template <class ELFT>
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
  // Write the internal symbol table contents to the output symbol table
  // pointed by Buf.
  auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
  for (const std::pair<SymbolBody *, size_t> &P : Symbols) {
    SymbolBody *Body = P.first;
    size_t StrOff = P.second;

    uint8_t Type = Body->Type;
    uintX_t Size = Body->getSize<ELFT>();

    ESym->setBindingAndType(getSymbolBinding(Body), Type);
    ESym->st_size = Size;
    ESym->st_name = StrOff;
    ESym->setVisibility(Body->symbol()->Visibility);
    ESym->st_value = Body->getVA<ELFT>();

    if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body))
      ESym->st_shndx = OutSec->SectionIndex;
    else if (isa<DefinedRegular<ELFT>>(Body))
      ESym->st_shndx = SHN_ABS;

    // On MIPS we need to mark symbol which has a PLT entry and requires pointer
    // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker
    // distinguish such symbols and MIPS lazy-binding stubs.
    // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
    if (Config->EMachine == EM_MIPS && Body->isInPlt() &&
        Body->NeedsCopyOrPltAddr)
      ESym->st_other |= STO_MIPS_PLT;
    ++ESym;
  }
}

template <class ELFT>
const OutputSectionBase<ELFT> *
SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
  switch (Sym->kind()) {
  case SymbolBody::DefinedSyntheticKind:
    return cast<DefinedSynthetic<ELFT>>(Sym)->Section;
  case SymbolBody::DefinedRegularKind: {
    auto &D = cast<DefinedRegular<ELFT>>(*Sym);
    if (D.Section)
      return D.Section->OutSec;
    break;
  }
  case SymbolBody::DefinedCommonKind:
    return Out<ELFT>::Bss;
  case SymbolBody::SharedKind:
    if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
      return Out<ELFT>::Bss;
    break;
  case SymbolBody::UndefinedKind:
  case SymbolBody::LazyArchiveKind:
  case SymbolBody::LazyObjectKind:
    break;
  case SymbolBody::DefinedBitcodeKind:
    llvm_unreachable("should have been replaced");
  }
  return nullptr;
}

template <class ELFT>
VersionDefinitionSection<ELFT>::VersionDefinitionSection()
    : OutputSectionBase<ELFT>(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) {
  this->Header.sh_addralign = sizeof(uint32_t);
}

static StringRef getFileDefName() {
  if (!Config->SoName.empty())
    return Config->SoName;
  return Config->OutputFile;
}

template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() {
  FileDefNameOff = Out<ELFT>::DynStrTab->addString(getFileDefName());
  for (VersionDefinition &V : Config->VersionDefinitions)
    V.NameOff = Out<ELFT>::DynStrTab->addString(V.Name);

  this->Header.sh_size =
      (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
  this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;

  // sh_info should be set to the number of definitions. This fact is missed in
  // documentation, but confirmed by binutils community:
  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
  this->Header.sh_info = getVerDefNum();
}

template <class ELFT>
void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
                                              StringRef Name, size_t NameOff) {
  auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
  Verdef->vd_version = 1;
  Verdef->vd_cnt = 1;
  Verdef->vd_aux = sizeof(Elf_Verdef);
  Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
  Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
  Verdef->vd_ndx = Index;
  Verdef->vd_hash = hashSysv(Name);

  auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
  Verdaux->vda_name = NameOff;
  Verdaux->vda_next = 0;
}

template <class ELFT>
void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
  writeOne(Buf, 1, getFileDefName(), FileDefNameOff);

  for (VersionDefinition &V : Config->VersionDefinitions) {
    Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
    writeOne(Buf, V.Id, V.Name, V.NameOff);
  }

  // Need to terminate the last version definition.
  Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
  Verdef->vd_next = 0;
}

template <class ELFT>
VersionTableSection<ELFT>::VersionTableSection()
    : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
  this->Header.sh_addralign = sizeof(uint16_t);
}

template <class ELFT> void VersionTableSection<ELFT>::finalize() {
  this->Header.sh_size =
      sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1);
  this->Header.sh_entsize = sizeof(Elf_Versym);
  // At the moment of june 2016 GNU docs does not mention that sh_link field
  // should be set, but Sun docs do. Also readelf relies on this field.
  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
}

template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
  auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
  for (const std::pair<SymbolBody *, size_t> &P :
       Out<ELFT>::DynSymTab->getSymbols()) {
    OutVersym->vs_index = P.first->symbol()->VersionId;
    ++OutVersym;
  }
}

template <class ELFT>
VersionNeedSection<ELFT>::VersionNeedSection()
    : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
  this->Header.sh_addralign = sizeof(uint32_t);

  // Identifiers in verneed section start at 2 because 0 and 1 are reserved
  // for VER_NDX_LOCAL and VER_NDX_GLOBAL.
  // First identifiers are reserved by verdef section if it exist.
  NextIndex = getVerDefNum() + 1;
}

template <class ELFT>
void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
  if (!SS->Verdef) {
    SS->symbol()->VersionId = VER_NDX_GLOBAL;
    return;
  }
  SharedFile<ELFT> *F = SS->file();
  // If we don't already know that we need an Elf_Verneed for this DSO, prepare
  // to create one by adding it to our needed list and creating a dynstr entry
  // for the soname.
  if (F->VerdefMap.empty())
    Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())});
  typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
  // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
  // prepare to create one by allocating a version identifier and creating a
  // dynstr entry for the version name.
  if (NV.Index == 0) {
    NV.StrTab = Out<ELFT>::DynStrTab->addString(
        SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name);
    NV.Index = NextIndex++;
  }
  SS->symbol()->VersionId = NV.Index;
}

template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
  auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
  auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());

  for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
    // Create an Elf_Verneed for this DSO.
    Verneed->vn_version = 1;
    Verneed->vn_cnt = P.first->VerdefMap.size();
    Verneed->vn_file = P.second;
    Verneed->vn_aux =
        reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
    Verneed->vn_next = sizeof(Elf_Verneed);
    ++Verneed;

    // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
    // VerdefMap, which will only contain references to needed version
    // definitions. Each Elf_Vernaux is based on the information contained in
    // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
    // pointers, but is deterministic because the pointers refer to Elf_Verdef
    // data structures within a single input file.
    for (auto &NV : P.first->VerdefMap) {
      Vernaux->vna_hash = NV.first->vd_hash;
      Vernaux->vna_flags = 0;
      Vernaux->vna_other = NV.second.Index;
      Vernaux->vna_name = NV.second.StrTab;
      Vernaux->vna_next = sizeof(Elf_Vernaux);
      ++Vernaux;
    }

    Vernaux[-1].vna_next = 0;
  }
  Verneed[-1].vn_next = 0;
}

template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
  this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
  this->Header.sh_info = Needed.size();
  unsigned Size = Needed.size() * sizeof(Elf_Verneed);
  for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
    Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
  this->Header.sh_size = Size;
}

template <class ELFT>
BuildIdSection<ELFT>::BuildIdSection(size_t HashSize)
    : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC),
      HashSize(HashSize) {
  // 16 bytes for the note section header.
  this->Header.sh_size = 16 + HashSize;
}

template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) {
  const endianness E = ELFT::TargetEndianness;
  write32<E>(Buf, 4);                   // Name size
  write32<E>(Buf + 4, HashSize);        // Content size
  write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type
  memcpy(Buf + 12, "GNU", 4);           // Name string
  HashBuf = Buf + 16;
}

template <class ELFT>
void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
  const endianness E = ELFT::TargetEndianness;

  // 64-bit FNV-1 hash
  uint64_t Hash = 0xcbf29ce484222325;
  for (ArrayRef<uint8_t> Buf : Bufs) {
    for (uint8_t B : Buf) {
      Hash *= 0x100000001b3;
      Hash ^= B;
    }
  }
  write64<E>(this->HashBuf, Hash);
}

template <class ELFT>
void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
  MD5 Hash;
  for (ArrayRef<uint8_t> Buf : Bufs)
    Hash.update(Buf);
  MD5::MD5Result Res;
  Hash.final(Res);
  memcpy(this->HashBuf, Res, 16);
}

template <class ELFT>
void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
  SHA1 Hash;
  for (ArrayRef<uint8_t> Buf : Bufs)
    Hash.update(Buf);
  memcpy(this->HashBuf, Hash.final().data(), 20);
}

template <class ELFT>
BuildIdHexstring<ELFT>::BuildIdHexstring()
    : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {}

template <class ELFT>
void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
  memcpy(this->HashBuf, Config->BuildIdVector.data(),
         Config->BuildIdVector.size());
}

template <class ELFT>
MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
    : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
  this->Header.sh_addralign = 4;
  this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
  this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
}

template <class ELFT>
void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
  R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
  R->ri_gprmask = GprMask;
}

template <class ELFT>
void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
  // Copy input object file's .reginfo gprmask to output.
  auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
  GprMask |= S->Reginfo->ri_gprmask;
  S->OutSec = this;
}

template <class ELFT>
MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection()
    : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS,
                              SHF_ALLOC | SHF_MIPS_NOSTRIP) {
  this->Header.sh_addralign = 8;
  this->Header.sh_entsize = 1;
  this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
}

template <class ELFT>
void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) {
  auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf);
  Opt->kind = ODK_REGINFO;
  Opt->size = this->Header.sh_size;
  Opt->section = 0;
  Opt->info = 0;
  auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt));
  Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
  Reg->ri_gprmask = GprMask;
}

template <class ELFT>
void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
  auto *S = cast<MipsOptionsInputSection<ELFT>>(C);
  if (S->Reginfo)
    GprMask |= S->Reginfo->ri_gprmask;
  S->OutSec = this;
}

template <class ELFT>
std::pair<OutputSectionBase<ELFT> *, bool>
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
                                   StringRef OutsecName) {
  SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
  OutputSectionBase<ELFT> *&Sec = Map[Key];
  if (Sec)
    return {Sec, false};

  switch (C->SectionKind) {
  case InputSectionBase<ELFT>::Regular:
    Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
    break;
  case InputSectionBase<ELFT>::EHFrame:
    return {Out<ELFT>::EhFrame, false};
  case InputSectionBase<ELFT>::Merge:
    Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags,
                                       Key.Alignment);
    break;
  case InputSectionBase<ELFT>::MipsReginfo:
    Sec = new MipsReginfoOutputSection<ELFT>();
    break;
  case InputSectionBase<ELFT>::MipsOptions:
    Sec = new MipsOptionsOutputSection<ELFT>();
    break;
  }
  return {Sec, true};
}

template <class ELFT>
OutputSectionBase<ELFT> *OutputSectionFactory<ELFT>::lookup(StringRef Name,
                                                            uint32_t Type,
                                                            uintX_t Flags) {
  return Map.lookup({Name, Type, Flags, 0});
}

template <class ELFT>
SectionKey<ELFT::Is64Bits>
OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C,
                                      StringRef OutsecName) {
  const Elf_Shdr *H = C->getSectionHdr();
  uintX_t Flags = H->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED;

  // For SHF_MERGE we create different output sections for each alignment.
  // This makes each output section simple and keeps a single level mapping from
  // input to output.
  uintX_t Alignment = 0;
  if (isa<MergeInputSection<ELFT>>(C))
    Alignment = std::max(H->sh_addralign, H->sh_entsize);

  uint32_t Type = H->sh_type;
  return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment};
}

template <bool Is64Bits>
typename lld::elf::SectionKey<Is64Bits>
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
  return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
}

template <bool Is64Bits>
typename lld::elf::SectionKey<Is64Bits>
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
  return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
                              0};
}

template <bool Is64Bits>
unsigned
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
  return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
}

template <bool Is64Bits>
bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
                                                           const Key &RHS) {
  return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
         LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
         LHS.Alignment == RHS.Alignment;
}

namespace llvm {
template struct DenseMapInfo<SectionKey<true>>;
template struct DenseMapInfo<SectionKey<false>>;
}

namespace lld {
namespace elf {
template class OutputSectionBase<ELF32LE>;
template class OutputSectionBase<ELF32BE>;
template class OutputSectionBase<ELF64LE>;
template class OutputSectionBase<ELF64BE>;

template class EhFrameHeader<ELF32LE>;
template class EhFrameHeader<ELF32BE>;
template class EhFrameHeader<ELF64LE>;
template class EhFrameHeader<ELF64BE>;

template class GotPltSection<ELF32LE>;
template class GotPltSection<ELF32BE>;
template class GotPltSection<ELF64LE>;
template class GotPltSection<ELF64BE>;

template class GotSection<ELF32LE>;
template class GotSection<ELF32BE>;
template class GotSection<ELF64LE>;
template class GotSection<ELF64BE>;

template class PltSection<ELF32LE>;
template class PltSection<ELF32BE>;
template class PltSection<ELF64LE>;
template class PltSection<ELF64BE>;

template class RelocationSection<ELF32LE>;
template class RelocationSection<ELF32BE>;
template class RelocationSection<ELF64LE>;
template class RelocationSection<ELF64BE>;

template class InterpSection<ELF32LE>;
template class InterpSection<ELF32BE>;
template class InterpSection<ELF64LE>;
template class InterpSection<ELF64BE>;

template class GnuHashTableSection<ELF32LE>;
template class GnuHashTableSection<ELF32BE>;
template class GnuHashTableSection<ELF64LE>;
template class GnuHashTableSection<ELF64BE>;

template class HashTableSection<ELF32LE>;
template class HashTableSection<ELF32BE>;
template class HashTableSection<ELF64LE>;
template class HashTableSection<ELF64BE>;

template class DynamicSection<ELF32LE>;
template class DynamicSection<ELF32BE>;
template class DynamicSection<ELF64LE>;
template class DynamicSection<ELF64BE>;

template class OutputSection<ELF32LE>;
template class OutputSection<ELF32BE>;
template class OutputSection<ELF64LE>;
template class OutputSection<ELF64BE>;

template class EhOutputSection<ELF32LE>;
template class EhOutputSection<ELF32BE>;
template class EhOutputSection<ELF64LE>;
template class EhOutputSection<ELF64BE>;

template class MipsReginfoOutputSection<ELF32LE>;
template class MipsReginfoOutputSection<ELF32BE>;
template class MipsReginfoOutputSection<ELF64LE>;
template class MipsReginfoOutputSection<ELF64BE>;

template class MipsOptionsOutputSection<ELF32LE>;
template class MipsOptionsOutputSection<ELF32BE>;
template class MipsOptionsOutputSection<ELF64LE>;
template class MipsOptionsOutputSection<ELF64BE>;

template class MergeOutputSection<ELF32LE>;
template class MergeOutputSection<ELF32BE>;
template class MergeOutputSection<ELF64LE>;
template class MergeOutputSection<ELF64BE>;

template class StringTableSection<ELF32LE>;
template class StringTableSection<ELF32BE>;
template class StringTableSection<ELF64LE>;
template class StringTableSection<ELF64BE>;

template class SymbolTableSection<ELF32LE>;
template class SymbolTableSection<ELF32BE>;
template class SymbolTableSection<ELF64LE>;
template class SymbolTableSection<ELF64BE>;

template class VersionTableSection<ELF32LE>;
template class VersionTableSection<ELF32BE>;
template class VersionTableSection<ELF64LE>;
template class VersionTableSection<ELF64BE>;

template class VersionNeedSection<ELF32LE>;
template class VersionNeedSection<ELF32BE>;
template class VersionNeedSection<ELF64LE>;
template class VersionNeedSection<ELF64BE>;

template class VersionDefinitionSection<ELF32LE>;
template class VersionDefinitionSection<ELF32BE>;
template class VersionDefinitionSection<ELF64LE>;
template class VersionDefinitionSection<ELF64BE>;

template class BuildIdSection<ELF32LE>;
template class BuildIdSection<ELF32BE>;
template class BuildIdSection<ELF64LE>;
template class BuildIdSection<ELF64BE>;

template class BuildIdFnv1<ELF32LE>;
template class BuildIdFnv1<ELF32BE>;
template class BuildIdFnv1<ELF64LE>;
template class BuildIdFnv1<ELF64BE>;

template class BuildIdMd5<ELF32LE>;
template class BuildIdMd5<ELF32BE>;
template class BuildIdMd5<ELF64LE>;
template class BuildIdMd5<ELF64BE>;

template class BuildIdSha1<ELF32LE>;
template class BuildIdSha1<ELF32BE>;
template class BuildIdSha1<ELF64LE>;
template class BuildIdSha1<ELF64BE>;

template class BuildIdHexstring<ELF32LE>;
template class BuildIdHexstring<ELF32BE>;
template class BuildIdHexstring<ELF64LE>;
template class BuildIdHexstring<ELF64BE>;

template class OutputSectionFactory<ELF32LE>;
template class OutputSectionFactory<ELF32BE>;
template class OutputSectionFactory<ELF64LE>;
template class OutputSectionFactory<ELF64BE>;
}
}