aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/InputFiles.cpp
blob: 98b88283cf09309be620ba45027f170b4578c805 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Driver.h"
#include "InputSection.h"
#include "LinkerScript.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/LTO/LTO.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::sys;
using namespace llvm::sys::fs;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

bool InputFile::isInGroup;
uint32_t InputFile::nextGroupId;
std::vector<BinaryFile *> elf::binaryFiles;
std::vector<BitcodeFile *> elf::bitcodeFiles;
std::vector<LazyObjFile *> elf::lazyObjFiles;
std::vector<InputFile *> elf::objectFiles;
std::vector<SharedFile *> elf::sharedFiles;

std::unique_ptr<TarWriter> elf::tar;

static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
  unsigned char size;
  unsigned char endian;
  std::tie(size, endian) = getElfArchType(mb.getBuffer());

  auto report = [&](StringRef msg) {
    StringRef filename = mb.getBufferIdentifier();
    if (archiveName.empty())
      fatal(filename + ": " + msg);
    else
      fatal(archiveName + "(" + filename + "): " + msg);
  };

  if (!mb.getBuffer().startswith(ElfMagic))
    report("not an ELF file");
  if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
    report("corrupted ELF file: invalid data encoding");
  if (size != ELFCLASS32 && size != ELFCLASS64)
    report("corrupted ELF file: invalid file class");

  size_t bufSize = mb.getBuffer().size();
  if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
      (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
    report("corrupted ELF file: file is too short");

  if (size == ELFCLASS32)
    return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
  return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
}

InputFile::InputFile(Kind k, MemoryBufferRef m)
    : mb(m), groupId(nextGroupId), fileKind(k) {
  // All files within the same --{start,end}-group get the same group ID.
  // Otherwise, a new file will get a new group ID.
  if (!isInGroup)
    ++nextGroupId;
}

Optional<MemoryBufferRef> elf::readFile(StringRef path) {
  // The --chroot option changes our virtual root directory.
  // This is useful when you are dealing with files created by --reproduce.
  if (!config->chroot.empty() && path.startswith("/"))
    path = saver.save(config->chroot + path);

  log(path);

  auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
  if (auto ec = mbOrErr.getError()) {
    error("cannot open " + path + ": " + ec.message());
    return None;
  }

  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
  MemoryBufferRef mbref = mb->getMemBufferRef();
  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership

  if (tar)
    tar->append(relativeToRoot(path), mbref.getBuffer());
  return mbref;
}

// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
static bool isCompatible(InputFile *file) {
  if (!file->isElf() && !isa<BitcodeFile>(file))
    return true;

  if (file->ekind == config->ekind && file->emachine == config->emachine) {
    if (config->emachine != EM_MIPS)
      return true;
    if (isMipsN32Abi(file) == config->mipsN32Abi)
      return true;
  }

  if (!config->emulation.empty()) {
    error(toString(file) + " is incompatible with " + config->emulation);
  } else {
    InputFile *existing;
    if (!objectFiles.empty())
      existing = objectFiles[0];
    else if (!sharedFiles.empty())
      existing = sharedFiles[0];
    else
      existing = bitcodeFiles[0];

    error(toString(file) + " is incompatible with " + toString(existing));
  }

  return false;
}

template <class ELFT> static void doParseFile(InputFile *file) {
  if (!isCompatible(file))
    return;

  // Binary file
  if (auto *f = dyn_cast<BinaryFile>(file)) {
    binaryFiles.push_back(f);
    f->parse();
    return;
  }

  // .a file
  if (auto *f = dyn_cast<ArchiveFile>(file)) {
    f->parse();
    return;
  }

  // Lazy object file
  if (auto *f = dyn_cast<LazyObjFile>(file)) {
    lazyObjFiles.push_back(f);
    f->parse<ELFT>();
    return;
  }

  if (config->trace)
    message(toString(file));

  // .so file
  if (auto *f = dyn_cast<SharedFile>(file)) {
    f->parse<ELFT>();
    return;
  }

  // LLVM bitcode file
  if (auto *f = dyn_cast<BitcodeFile>(file)) {
    bitcodeFiles.push_back(f);
    f->parse<ELFT>();
    return;
  }

  // Regular object file
  objectFiles.push_back(file);
  cast<ObjFile<ELFT>>(file)->parse();
}

// Add symbols in File to the symbol table.
void elf::parseFile(InputFile *file) {
  switch (config->ekind) {
  case ELF32LEKind:
    doParseFile<ELF32LE>(file);
    return;
  case ELF32BEKind:
    doParseFile<ELF32BE>(file);
    return;
  case ELF64LEKind:
    doParseFile<ELF64LE>(file);
    return;
  case ELF64BEKind:
    doParseFile<ELF64BE>(file);
    return;
  default:
    llvm_unreachable("unknown ELFT");
  }
}

// Concatenates arguments to construct a string representing an error location.
static std::string createFileLineMsg(StringRef path, unsigned line) {
  std::string filename = path::filename(path);
  std::string lineno = ":" + std::to_string(line);
  if (filename == path)
    return filename + lineno;
  return filename + lineno + " (" + path.str() + lineno + ")";
}

template <class ELFT>
static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
                                InputSectionBase &sec, uint64_t offset) {
  // In DWARF, functions and variables are stored to different places.
  // First, lookup a function for a given offset.
  if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
    return createFileLineMsg(info->FileName, info->Line);

  // If it failed, lookup again as a variable.
  if (Optional<std::pair<std::string, unsigned>> fileLine =
          file.getVariableLoc(sym.getName()))
    return createFileLineMsg(fileLine->first, fileLine->second);

  // File.sourceFile contains STT_FILE symbol, and that is a last resort.
  return file.sourceFile;
}

std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
                                 uint64_t offset) {
  if (kind() != ObjKind)
    return "";
  switch (config->ekind) {
  default:
    llvm_unreachable("Invalid kind");
  case ELF32LEKind:
    return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
  case ELF32BEKind:
    return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
  case ELF64LEKind:
    return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
  case ELF64BEKind:
    return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
  }
}

template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
  dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
  for (std::unique_ptr<DWARFUnit> &cu : dwarf->compile_units()) {
    auto report = [](Error err) {
      handleAllErrors(std::move(err),
                      [](ErrorInfoBase &info) { warn(info.message()); });
    };
    Expected<const DWARFDebugLine::LineTable *> expectedLT =
        dwarf->getLineTableForUnit(cu.get(), report);
    const DWARFDebugLine::LineTable *lt = nullptr;
    if (expectedLT)
      lt = *expectedLT;
    else
      report(expectedLT.takeError());
    if (!lt)
      continue;
    lineTables.push_back(lt);

    // Loop over variable records and insert them to variableLoc.
    for (const auto &entry : cu->dies()) {
      DWARFDie die(cu.get(), &entry);
      // Skip all tags that are not variables.
      if (die.getTag() != dwarf::DW_TAG_variable)
        continue;

      // Skip if a local variable because we don't need them for generating
      // error messages. In general, only non-local symbols can fail to be
      // linked.
      if (!dwarf::toUnsigned(die.find(dwarf::DW_AT_external), 0))
        continue;

      // Get the source filename index for the variable.
      unsigned file = dwarf::toUnsigned(die.find(dwarf::DW_AT_decl_file), 0);
      if (!lt->hasFileAtIndex(file))
        continue;

      // Get the line number on which the variable is declared.
      unsigned line = dwarf::toUnsigned(die.find(dwarf::DW_AT_decl_line), 0);

      // Here we want to take the variable name to add it into variableLoc.
      // Variable can have regular and linkage name associated. At first, we try
      // to get linkage name as it can be different, for example when we have
      // two variables in different namespaces of the same object. Use common
      // name otherwise, but handle the case when it also absent in case if the
      // input object file lacks some debug info.
      StringRef name =
          dwarf::toString(die.find(dwarf::DW_AT_linkage_name),
                          dwarf::toString(die.find(dwarf::DW_AT_name), ""));
      if (!name.empty())
        variableLoc.insert({name, {lt, file, line}});
    }
  }
}

// Returns the pair of file name and line number describing location of data
// object (variable, array, etc) definition.
template <class ELFT>
Optional<std::pair<std::string, unsigned>>
ObjFile<ELFT>::getVariableLoc(StringRef name) {
  llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });

  // Return if we have no debug information about data object.
  auto it = variableLoc.find(name);
  if (it == variableLoc.end())
    return None;

  // Take file name string from line table.
  std::string fileName;
  if (!it->second.lt->getFileNameByIndex(
          it->second.file, {},
          DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, fileName))
    return None;

  return std::make_pair(fileName, it->second.line);
}

// Returns source line information for a given offset
// using DWARF debug info.
template <class ELFT>
Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
                                                  uint64_t offset) {
  llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });

  // Detect SectionIndex for specified section.
  uint64_t sectionIndex = object::SectionedAddress::UndefSection;
  ArrayRef<InputSectionBase *> sections = s->file->getSections();
  for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
    if (s == sections[curIndex]) {
      sectionIndex = curIndex;
      break;
    }
  }

  // Use fake address calcuated by adding section file offset and offset in
  // section. See comments for ObjectInfo class.
  DILineInfo info;
  for (const llvm::DWARFDebugLine::LineTable *lt : lineTables) {
    if (lt->getFileLineInfoForAddress(
            {s->getOffsetInFile() + offset, sectionIndex}, nullptr,
            DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, info))
      return info;
  }
  return None;
}

// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
std::string lld::toString(const InputFile *f) {
  if (!f)
    return "<internal>";

  if (f->toStringCache.empty()) {
    if (f->archiveName.empty())
      f->toStringCache = f->getName();
    else
      f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
  }
  return f->toStringCache;
}

ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
  ekind = getELFKind(mb, "");

  switch (ekind) {
  case ELF32LEKind:
    init<ELF32LE>();
    break;
  case ELF32BEKind:
    init<ELF32BE>();
    break;
  case ELF64LEKind:
    init<ELF64LE>();
    break;
  case ELF64BEKind:
    init<ELF64BE>();
    break;
  default:
    llvm_unreachable("getELFKind");
  }
}

template <typename Elf_Shdr>
static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
  for (const Elf_Shdr &sec : sections)
    if (sec.sh_type == type)
      return &sec;
  return nullptr;
}

template <class ELFT> void ELFFileBase::init() {
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;

  // Initialize trivial attributes.
  const ELFFile<ELFT> &obj = getObj<ELFT>();
  emachine = obj.getHeader()->e_machine;
  osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
  abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];

  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);

  // Find a symbol table.
  bool isDSO =
      (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
  const Elf_Shdr *symtabSec =
      findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);

  if (!symtabSec)
    return;

  // Initialize members corresponding to a symbol table.
  firstGlobal = symtabSec->sh_info;

  ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
  if (firstGlobal == 0 || firstGlobal > eSyms.size())
    fatal(toString(this) + ": invalid sh_info in symbol table");

  elfSyms = reinterpret_cast<const void *>(eSyms.data());
  numELFSyms = eSyms.size();
  stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
}

template <class ELFT>
uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
  return CHECK(
      this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable),
      this);
}

template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
  if (this->symbols.empty())
    return {};
  return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
}

template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
  return makeArrayRef(this->symbols).slice(this->firstGlobal);
}

template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
  // Read a section table. justSymbols is usually false.
  if (this->justSymbols)
    initializeJustSymbols();
  else
    initializeSections(ignoreComdats);

  // Read a symbol table.
  initializeSymbols();
}

// Sections with SHT_GROUP and comdat bits define comdat section groups.
// They are identified and deduplicated by group name. This function
// returns a group name.
template <class ELFT>
StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
                                              const Elf_Shdr &sec) {
  typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
  if (sec.sh_info >= symbols.size())
    fatal(toString(this) + ": invalid symbol index");
  const typename ELFT::Sym &sym = symbols[sec.sh_info];
  StringRef signature = CHECK(sym.getName(this->stringTable), this);

  // As a special case, if a symbol is a section symbol and has no name,
  // we use a section name as a signature.
  //
  // Such SHT_GROUP sections are invalid from the perspective of the ELF
  // standard, but GNU gold 1.14 (the newest version as of July 2017) or
  // older produce such sections as outputs for the -r option, so we need
  // a bug-compatibility.
  if (signature.empty() && sym.getType() == STT_SECTION)
    return getSectionName(sec);
  return signature;
}

template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec) {
  // On a regular link we don't merge sections if -O0 (default is -O1). This
  // sometimes makes the linker significantly faster, although the output will
  // be bigger.
  //
  // Doing the same for -r would create a problem as it would combine sections
  // with different sh_entsize. One option would be to just copy every SHF_MERGE
  // section as is to the output. While this would produce a valid ELF file with
  // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
  // they see two .debug_str. We could have separate logic for combining
  // SHF_MERGE sections based both on their name and sh_entsize, but that seems
  // to be more trouble than it is worth. Instead, we just use the regular (-O1)
  // logic for -r.
  if (config->optimize == 0 && !config->relocatable)
    return false;

  // A mergeable section with size 0 is useless because they don't have
  // any data to merge. A mergeable string section with size 0 can be
  // argued as invalid because it doesn't end with a null character.
  // We'll avoid a mess by handling them as if they were non-mergeable.
  if (sec.sh_size == 0)
    return false;

  // Check for sh_entsize. The ELF spec is not clear about the zero
  // sh_entsize. It says that "the member [sh_entsize] contains 0 if
  // the section does not hold a table of fixed-size entries". We know
  // that Rust 1.13 produces a string mergeable section with a zero
  // sh_entsize. Here we just accept it rather than being picky about it.
  uint64_t entSize = sec.sh_entsize;
  if (entSize == 0)
    return false;
  if (sec.sh_size % entSize)
    fatal(toString(this) +
          ": SHF_MERGE section size must be a multiple of sh_entsize");

  uint64_t flags = sec.sh_flags;
  if (!(flags & SHF_MERGE))
    return false;
  if (flags & SHF_WRITE)
    fatal(toString(this) + ": writable SHF_MERGE section is not supported");

  return true;
}

// This is for --just-symbols.
//
// --just-symbols is a very minor feature that allows you to link your
// output against other existing program, so that if you load both your
// program and the other program into memory, your output can refer the
// other program's symbols.
//
// When the option is given, we link "just symbols". The section table is
// initialized with null pointers.
template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
  ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
  this->sections.resize(sections.size());
}

// An ELF object file may contain a `.deplibs` section. If it exists, the
// section contains a list of library specifiers such as `m` for libm. This
// function resolves a given name by finding the first matching library checking
// the various ways that a library can be specified to LLD. This ELF extension
// is a form of autolinking and is called `dependent libraries`. It is currently
// unique to LLVM and lld.
static void addDependentLibrary(StringRef specifier, const InputFile *f) {
  if (!config->dependentLibraries)
    return;
  if (fs::exists(specifier))
    driver->addFile(specifier, /*withLOption=*/false);
  else if (Optional<std::string> s = findFromSearchPaths(specifier))
    driver->addFile(*s, /*withLOption=*/true);
  else if (Optional<std::string> s = searchLibraryBaseName(specifier))
    driver->addFile(*s, /*withLOption=*/true);
  else
    error(toString(f) +
          ": unable to find library from dependent library specifier: " +
          specifier);
}

template <class ELFT>
void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
  const ELFFile<ELFT> &obj = this->getObj();

  ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
  uint64_t size = objSections.size();
  this->sections.resize(size);
  this->sectionStringTable =
      CHECK(obj.getSectionStringTable(objSections), this);

  for (size_t i = 0, e = objSections.size(); i < e; i++) {
    if (this->sections[i] == &InputSection::discarded)
      continue;
    const Elf_Shdr &sec = objSections[i];

    if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
      cgProfile =
          check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec));

    // SHF_EXCLUDE'ed sections are discarded by the linker. However,
    // if -r is given, we'll let the final link discard such sections.
    // This is compatible with GNU.
    if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
      if (sec.sh_type == SHT_LLVM_ADDRSIG) {
        // We ignore the address-significance table if we know that the object
        // file was created by objcopy or ld -r. This is because these tools
        // will reorder the symbols in the symbol table, invalidating the data
        // in the address-significance table, which refers to symbols by index.
        if (sec.sh_link != 0)
          this->addrsigSec = &sec;
        else if (config->icf == ICFLevel::Safe)
          warn(toString(this) + ": --icf=safe is incompatible with object "
                                "files created using objcopy or ld -r");
      }
      this->sections[i] = &InputSection::discarded;
      continue;
    }

    switch (sec.sh_type) {
    case SHT_GROUP: {
      // De-duplicate section groups by their signatures.
      StringRef signature = getShtGroupSignature(objSections, sec);
      this->sections[i] = &InputSection::discarded;


      ArrayRef<Elf_Word> entries =
          CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this);
      if (entries.empty())
        fatal(toString(this) + ": empty SHT_GROUP");

      // The first word of a SHT_GROUP section contains flags. Currently,
      // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
      // An group with the empty flag doesn't define anything; such sections
      // are just skipped.
      if (entries[0] == 0)
        continue;

      if (entries[0] != GRP_COMDAT)
        fatal(toString(this) + ": unsupported SHT_GROUP format");

      bool isNew =
          ignoreComdats ||
          symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
              .second;
      if (isNew) {
        if (config->relocatable)
          this->sections[i] = createInputSection(sec);
        continue;
      }

      // Otherwise, discard group members.
      for (uint32_t secIndex : entries.slice(1)) {
        if (secIndex >= size)
          fatal(toString(this) +
                ": invalid section index in group: " + Twine(secIndex));
        this->sections[secIndex] = &InputSection::discarded;
      }
      break;
    }
    case SHT_SYMTAB_SHNDX:
      shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
      break;
    case SHT_SYMTAB:
    case SHT_STRTAB:
    case SHT_NULL:
      break;
    default:
      this->sections[i] = createInputSection(sec);
    }

    // .ARM.exidx sections have a reverse dependency on the InputSection they
    // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
    if (sec.sh_flags & SHF_LINK_ORDER) {
      InputSectionBase *linkSec = nullptr;
      if (sec.sh_link < this->sections.size())
        linkSec = this->sections[sec.sh_link];
      if (!linkSec)
        fatal(toString(this) +
              ": invalid sh_link index: " + Twine(sec.sh_link));

      InputSection *isec = cast<InputSection>(this->sections[i]);
      linkSec->dependentSections.push_back(isec);
      if (!isa<InputSection>(linkSec))
        error("a section " + isec->name +
              " with SHF_LINK_ORDER should not refer a non-regular "
              "section: " +
              toString(linkSec));
    }
  }
}

// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
// the input objects have been compiled.
static void updateARMVFPArgs(const ARMAttributeParser &attributes,
                             const InputFile *f) {
  if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
    // If an ABI tag isn't present then it is implicitly given the value of 0
    // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
    // including some in glibc that don't use FP args (and should have value 3)
    // don't have the attribute so we do not consider an implicit value of 0
    // as a clash.
    return;

  unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
  ARMVFPArgKind arg;
  switch (vfpArgs) {
  case ARMBuildAttrs::BaseAAPCS:
    arg = ARMVFPArgKind::Base;
    break;
  case ARMBuildAttrs::HardFPAAPCS:
    arg = ARMVFPArgKind::VFP;
    break;
  case ARMBuildAttrs::ToolChainFPPCS:
    // Tool chain specific convention that conforms to neither AAPCS variant.
    arg = ARMVFPArgKind::ToolChain;
    break;
  case ARMBuildAttrs::CompatibleFPAAPCS:
    // Object compatible with all conventions.
    return;
  default:
    error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
    return;
  }
  // Follow ld.bfd and error if there is a mix of calling conventions.
  if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
    error(toString(f) + ": incompatible Tag_ABI_VFP_args");
  else
    config->armVFPArgs = arg;
}

// The ARM support in lld makes some use of instructions that are not available
// on all ARM architectures. Namely:
// - Use of BLX instruction for interworking between ARM and Thumb state.
// - Use of the extended Thumb branch encoding in relocation.
// - Use of the MOVT/MOVW instructions in Thumb Thunks.
// The ARM Attributes section contains information about the architecture chosen
// at compile time. We follow the convention that if at least one input object
// is compiled with an architecture that supports these features then lld is
// permitted to use them.
static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
  if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
    return;
  auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
  switch (arch) {
  case ARMBuildAttrs::Pre_v4:
  case ARMBuildAttrs::v4:
  case ARMBuildAttrs::v4T:
    // Architectures prior to v5 do not support BLX instruction
    break;
  case ARMBuildAttrs::v5T:
  case ARMBuildAttrs::v5TE:
  case ARMBuildAttrs::v5TEJ:
  case ARMBuildAttrs::v6:
  case ARMBuildAttrs::v6KZ:
  case ARMBuildAttrs::v6K:
    config->armHasBlx = true;
    // Architectures used in pre-Cortex processors do not support
    // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
    // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
    break;
  default:
    // All other Architectures have BLX and extended branch encoding
    config->armHasBlx = true;
    config->armJ1J2BranchEncoding = true;
    if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
      // All Architectures used in Cortex processors with the exception
      // of v6-M and v6S-M have the MOVT and MOVW instructions.
      config->armHasMovtMovw = true;
    break;
  }
}

// If a source file is compiled with x86 hardware-assisted call flow control
// enabled, the generated object file contains feature flags indicating that
// fact. This function reads the feature flags and returns it.
//
// Essentially we want to read a single 32-bit value in this function, but this
// function is rather complicated because the value is buried deep inside a
// .note.gnu.property section.
//
// The section consists of one or more NOTE records. Each NOTE record consists
// of zero or more type-length-value fields. We want to find a field of a
// certain type. It seems a bit too much to just store a 32-bit value, perhaps
// the ABI is unnecessarily complicated.
template <class ELFT>
static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) {
  using Elf_Nhdr = typename ELFT::Nhdr;
  using Elf_Note = typename ELFT::Note;

  uint32_t featuresSet = 0;
  while (!data.empty()) {
    // Read one NOTE record.
    if (data.size() < sizeof(Elf_Nhdr))
      fatal(toString(obj) + ": .note.gnu.property: section too short");

    auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
    if (data.size() < nhdr->getSize())
      fatal(toString(obj) + ": .note.gnu.property: section too short");

    Elf_Note note(*nhdr);
    if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
      data = data.slice(nhdr->getSize());
      continue;
    }

    uint32_t featureAndType = config->emachine == EM_AARCH64
                                  ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
                                  : GNU_PROPERTY_X86_FEATURE_1_AND;

    // Read a body of a NOTE record, which consists of type-length-value fields.
    ArrayRef<uint8_t> desc = note.getDesc();
    while (!desc.empty()) {
      if (desc.size() < 8)
        fatal(toString(obj) + ": .note.gnu.property: section too short");

      uint32_t type = read32le(desc.data());
      uint32_t size = read32le(desc.data() + 4);

      if (type == featureAndType) {
        // We found a FEATURE_1_AND field. There may be more than one of these
        // in a .note.gnu.propery section, for a relocatable object we
        // accumulate the bits set.
        featuresSet |= read32le(desc.data() + 8);
      }

      // On 64-bit, a payload may be followed by a 4-byte padding to make its
      // size a multiple of 8.
      if (ELFT::Is64Bits)
        size = alignTo(size, 8);

      desc = desc.slice(size + 8); // +8 for Type and Size
    }

    // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
    data = data.slice(nhdr->getSize());
  }

  return featuresSet;
}

template <class ELFT>
InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
  uint32_t idx = sec.sh_info;
  if (idx >= this->sections.size())
    fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
  InputSectionBase *target = this->sections[idx];

  // Strictly speaking, a relocation section must be included in the
  // group of the section it relocates. However, LLVM 3.3 and earlier
  // would fail to do so, so we gracefully handle that case.
  if (target == &InputSection::discarded)
    return nullptr;

  if (!target)
    fatal(toString(this) + ": unsupported relocation reference");
  return target;
}

// Create a regular InputSection class that has the same contents
// as a given section.
static InputSection *toRegularSection(MergeInputSection *sec) {
  return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
                            sec->data(), sec->name);
}

template <class ELFT>
InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
  StringRef name = getSectionName(sec);

  switch (sec.sh_type) {
  case SHT_ARM_ATTRIBUTES: {
    if (config->emachine != EM_ARM)
      break;
    ARMAttributeParser attributes;
    ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
    attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind);
    updateSupportedARMFeatures(attributes);
    updateARMVFPArgs(attributes, this);

    // FIXME: Retain the first attribute section we see. The eglibc ARM
    // dynamic loaders require the presence of an attribute section for dlopen
    // to work. In a full implementation we would merge all attribute sections.
    if (in.armAttributes == nullptr) {
      in.armAttributes = make<InputSection>(*this, sec, name);
      return in.armAttributes;
    }
    return &InputSection::discarded;
  }
  case SHT_LLVM_DEPENDENT_LIBRARIES: {
    if (config->relocatable)
      break;
    ArrayRef<char> data =
        CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this);
    if (!data.empty() && data.back() != '\0') {
      error(toString(this) +
            ": corrupted dependent libraries section (unterminated string): " +
            name);
      return &InputSection::discarded;
    }
    for (const char *d = data.begin(), *e = data.end(); d < e;) {
      StringRef s(d);
      addDependentLibrary(s, this);
      d += s.size() + 1;
    }
    return &InputSection::discarded;
  }
  case SHT_RELA:
  case SHT_REL: {
    // Find a relocation target section and associate this section with that.
    // Target may have been discarded if it is in a different section group
    // and the group is discarded, even though it's a violation of the
    // spec. We handle that situation gracefully by discarding dangling
    // relocation sections.
    InputSectionBase *target = getRelocTarget(sec);
    if (!target)
      return nullptr;

    // This section contains relocation information.
    // If -r is given, we do not interpret or apply relocation
    // but just copy relocation sections to output.
    if (config->relocatable) {
      InputSection *relocSec = make<InputSection>(*this, sec, name);
      // We want to add a dependency to target, similar like we do for
      // -emit-relocs below. This is useful for the case when linker script
      // contains the "/DISCARD/". It is perhaps uncommon to use a script with
      // -r, but we faced it in the Linux kernel and have to handle such case
      // and not to crash.
      target->dependentSections.push_back(relocSec);
      return relocSec;
    }

    if (target->firstRelocation)
      fatal(toString(this) +
            ": multiple relocation sections to one section are not supported");

    // ELF spec allows mergeable sections with relocations, but they are
    // rare, and it is in practice hard to merge such sections by contents,
    // because applying relocations at end of linking changes section
    // contents. So, we simply handle such sections as non-mergeable ones.
    // Degrading like this is acceptable because section merging is optional.
    if (auto *ms = dyn_cast<MergeInputSection>(target)) {
      target = toRegularSection(ms);
      this->sections[sec.sh_info] = target;
    }

    if (sec.sh_type == SHT_RELA) {
      ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this);
      target->firstRelocation = rels.begin();
      target->numRelocations = rels.size();
      target->areRelocsRela = true;
    } else {
      ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this);
      target->firstRelocation = rels.begin();
      target->numRelocations = rels.size();
      target->areRelocsRela = false;
    }
    assert(isUInt<31>(target->numRelocations));

    // Relocation sections processed by the linker are usually removed
    // from the output, so returning `nullptr` for the normal case.
    // However, if -emit-relocs is given, we need to leave them in the output.
    // (Some post link analysis tools need this information.)
    if (config->emitRelocs) {
      InputSection *relocSec = make<InputSection>(*this, sec, name);
      // We will not emit relocation section if target was discarded.
      target->dependentSections.push_back(relocSec);
      return relocSec;
    }
    return nullptr;
  }
  }

  // The GNU linker uses .note.GNU-stack section as a marker indicating
  // that the code in the object file does not expect that the stack is
  // executable (in terms of NX bit). If all input files have the marker,
  // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
  // make the stack non-executable. Most object files have this section as
  // of 2017.
  //
  // But making the stack non-executable is a norm today for security
  // reasons. Failure to do so may result in a serious security issue.
  // Therefore, we make LLD always add PT_GNU_STACK unless it is
  // explicitly told to do otherwise (by -z execstack). Because the stack
  // executable-ness is controlled solely by command line options,
  // .note.GNU-stack sections are simply ignored.
  if (name == ".note.GNU-stack")
    return &InputSection::discarded;

  // Object files that use processor features such as Intel Control-Flow
  // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
  // .note.gnu.property section containing a bitfield of feature bits like the
  // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
  //
  // Since we merge bitmaps from multiple object files to create a new
  // .note.gnu.property containing a single AND'ed bitmap, we discard an input
  // file's .note.gnu.property section.
  if (name == ".note.gnu.property") {
    ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
    this->andFeatures = readAndFeatures(this, contents);
    return &InputSection::discarded;
  }

  // Split stacks is a feature to support a discontiguous stack,
  // commonly used in the programming language Go. For the details,
  // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
  // for split stack will include a .note.GNU-split-stack section.
  if (name == ".note.GNU-split-stack") {
    if (config->relocatable) {
      error("cannot mix split-stack and non-split-stack in a relocatable link");
      return &InputSection::discarded;
    }
    this->splitStack = true;
    return &InputSection::discarded;
  }

  // An object file cmpiled for split stack, but where some of the
  // functions were compiled with the no_split_stack_attribute will
  // include a .note.GNU-no-split-stack section.
  if (name == ".note.GNU-no-split-stack") {
    this->someNoSplitStack = true;
    return &InputSection::discarded;
  }

  // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
  // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
  // sections. Drop those sections to avoid duplicate symbol errors.
  // FIXME: This is glibc PR20543, we should remove this hack once that has been
  // fixed for a while.
  if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
      name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
    return &InputSection::discarded;

  // If we are creating a new .build-id section, strip existing .build-id
  // sections so that the output won't have more than one .build-id.
  // This is not usually a problem because input object files normally don't
  // have .build-id sections, but you can create such files by
  // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
  if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
    return &InputSection::discarded;

  // The linker merges EH (exception handling) frames and creates a
  // .eh_frame_hdr section for runtime. So we handle them with a special
  // class. For relocatable outputs, they are just passed through.
  if (name == ".eh_frame" && !config->relocatable)
    return make<EhInputSection>(*this, sec, name);

  if (shouldMerge(sec))
    return make<MergeInputSection>(*this, sec, name);
  return make<InputSection>(*this, sec, name);
}

template <class ELFT>
StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
  return CHECK(getObj().getSectionName(&sec, sectionStringTable), this);
}

// Initialize this->Symbols. this->Symbols is a parallel array as
// its corresponding ELF symbol table.
template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
  ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
  this->symbols.resize(eSyms.size());

  // Our symbol table may have already been partially initialized
  // because of LazyObjFile.
  for (size_t i = 0, end = eSyms.size(); i != end; ++i)
    if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL)
      this->symbols[i] =
          symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));

  // Fill this->Symbols. A symbol is either local or global.
  for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
    const Elf_Sym &eSym = eSyms[i];

    // Read symbol attributes.
    uint32_t secIdx = getSectionIndex(eSym);
    if (secIdx >= this->sections.size())
      fatal(toString(this) + ": invalid section index: " + Twine(secIdx));

    InputSectionBase *sec = this->sections[secIdx];
    uint8_t binding = eSym.getBinding();
    uint8_t stOther = eSym.st_other;
    uint8_t type = eSym.getType();
    uint64_t value = eSym.st_value;
    uint64_t size = eSym.st_size;
    StringRefZ name = this->stringTable.data() + eSym.st_name;

    // Handle local symbols. Local symbols are not added to the symbol
    // table because they are not visible from other object files. We
    // allocate symbol instances and add their pointers to Symbols.
    if (binding == STB_LOCAL) {
      if (eSym.getType() == STT_FILE)
        sourceFile = CHECK(eSym.getName(this->stringTable), this);

      if (this->stringTable.size() <= eSym.st_name)
        fatal(toString(this) + ": invalid symbol name offset");

      if (eSym.st_shndx == SHN_UNDEF)
        this->symbols[i] = make<Undefined>(this, name, binding, stOther, type);
      else if (sec == &InputSection::discarded)
        this->symbols[i] = make<Undefined>(this, name, binding, stOther, type,
                                           /*DiscardedSecIdx=*/secIdx);
      else
        this->symbols[i] =
            make<Defined>(this, name, binding, stOther, type, value, size, sec);
      continue;
    }

    // Handle global undefined symbols.
    if (eSym.st_shndx == SHN_UNDEF) {
      this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
      continue;
    }

    // Handle global common symbols.
    if (eSym.st_shndx == SHN_COMMON) {
      if (value == 0 || value >= UINT32_MAX)
        fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
              "' has invalid alignment: " + Twine(value));
      this->symbols[i]->resolve(
          CommonSymbol{this, name, binding, stOther, type, value, size});
      continue;
    }

    // If a defined symbol is in a discarded section, handle it as if it
    // were an undefined symbol. Such symbol doesn't comply with the
    // standard, but in practice, a .eh_frame often directly refer
    // COMDAT member sections, and if a comdat group is discarded, some
    // defined symbol in a .eh_frame becomes dangling symbols.
    if (sec == &InputSection::discarded) {
      this->symbols[i]->resolve(
          Undefined{this, name, binding, stOther, type, secIdx});
      continue;
    }

    // Handle global defined symbols.
    if (binding == STB_GLOBAL || binding == STB_WEAK ||
        binding == STB_GNU_UNIQUE) {
      this->symbols[i]->resolve(
          Defined{this, name, binding, stOther, type, value, size, sec});
      continue;
    }

    fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
  }
}

ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
    : InputFile(ArchiveKind, file->getMemoryBufferRef()),
      file(std::move(file)) {}

void ArchiveFile::parse() {
  for (const Archive::Symbol &sym : file->symbols())
    symtab->addSymbol(LazyArchive{*this, sym});
}

// Returns a buffer pointing to a member file containing a given symbol.
void ArchiveFile::fetch(const Archive::Symbol &sym) {
  Archive::Child c =
      CHECK(sym.getMember(), toString(this) +
                                 ": could not get the member for symbol " +
                                 sym.getName());

  if (!seen.insert(c.getChildOffset()).second)
    return;

  MemoryBufferRef mb =
      CHECK(c.getMemoryBufferRef(),
            toString(this) +
                ": could not get the buffer for the member defining symbol " +
                sym.getName());

  if (tar && c.getParent()->isThin())
    tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());

  InputFile *file = createObjectFile(
      mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset());
  file->groupId = groupId;
  parseFile(file);
}

unsigned SharedFile::vernauxNum;

// Parse the version definitions in the object file if present, and return a
// vector whose nth element contains a pointer to the Elf_Verdef for version
// identifier n. Version identifiers that are not definitions map to nullptr.
template <typename ELFT>
static std::vector<const void *> parseVerdefs(const uint8_t *base,
                                              const typename ELFT::Shdr *sec) {
  if (!sec)
    return {};

  // We cannot determine the largest verdef identifier without inspecting
  // every Elf_Verdef, but both bfd and gold assign verdef identifiers
  // sequentially starting from 1, so we predict that the largest identifier
  // will be verdefCount.
  unsigned verdefCount = sec->sh_info;
  std::vector<const void *> verdefs(verdefCount + 1);

  // Build the Verdefs array by following the chain of Elf_Verdef objects
  // from the start of the .gnu.version_d section.
  const uint8_t *verdef = base + sec->sh_offset;
  for (unsigned i = 0; i != verdefCount; ++i) {
    auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
    verdef += curVerdef->vd_next;
    unsigned verdefIndex = curVerdef->vd_ndx;
    verdefs.resize(verdefIndex + 1);
    verdefs[verdefIndex] = curVerdef;
  }
  return verdefs;
}

// We do not usually care about alignments of data in shared object
// files because the loader takes care of it. However, if we promote a
// DSO symbol to point to .bss due to copy relocation, we need to keep
// the original alignment requirements. We infer it in this function.
template <typename ELFT>
static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
                             const typename ELFT::Sym &sym) {
  uint64_t ret = UINT64_MAX;
  if (sym.st_value)
    ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
  if (0 < sym.st_shndx && sym.st_shndx < sections.size())
    ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
  return (ret > UINT32_MAX) ? 0 : ret;
}

// Fully parse the shared object file.
//
// This function parses symbol versions. If a DSO has version information,
// the file has a ".gnu.version_d" section which contains symbol version
// definitions. Each symbol is associated to one version through a table in
// ".gnu.version" section. That table is a parallel array for the symbol
// table, and each table entry contains an index in ".gnu.version_d".
//
// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
// VER_NDX_GLOBAL. There's no table entry for these special versions in
// ".gnu.version_d".
//
// The file format for symbol versioning is perhaps a bit more complicated
// than necessary, but you can easily understand the code if you wrap your
// head around the data structure described above.
template <class ELFT> void SharedFile::parse() {
  using Elf_Dyn = typename ELFT::Dyn;
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;
  using Elf_Verdef = typename ELFT::Verdef;
  using Elf_Versym = typename ELFT::Versym;

  ArrayRef<Elf_Dyn> dynamicTags;
  const ELFFile<ELFT> obj = this->getObj<ELFT>();
  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);

  const Elf_Shdr *versymSec = nullptr;
  const Elf_Shdr *verdefSec = nullptr;

  // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
  for (const Elf_Shdr &sec : sections) {
    switch (sec.sh_type) {
    default:
      continue;
    case SHT_DYNAMIC:
      dynamicTags =
          CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this);
      break;
    case SHT_GNU_versym:
      versymSec = &sec;
      break;
    case SHT_GNU_verdef:
      verdefSec = &sec;
      break;
    }
  }

  if (versymSec && numELFSyms == 0) {
    error("SHT_GNU_versym should be associated with symbol table");
    return;
  }

  // Search for a DT_SONAME tag to initialize this->soName.
  for (const Elf_Dyn &dyn : dynamicTags) {
    if (dyn.d_tag == DT_NEEDED) {
      uint64_t val = dyn.getVal();
      if (val >= this->stringTable.size())
        fatal(toString(this) + ": invalid DT_NEEDED entry");
      dtNeeded.push_back(this->stringTable.data() + val);
    } else if (dyn.d_tag == DT_SONAME) {
      uint64_t val = dyn.getVal();
      if (val >= this->stringTable.size())
        fatal(toString(this) + ": invalid DT_SONAME entry");
      soName = this->stringTable.data() + val;
    }
  }

  // DSOs are uniquified not by filename but by soname.
  DenseMap<StringRef, SharedFile *>::iterator it;
  bool wasInserted;
  std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);

  // If a DSO appears more than once on the command line with and without
  // --as-needed, --no-as-needed takes precedence over --as-needed because a
  // user can add an extra DSO with --no-as-needed to force it to be added to
  // the dependency list.
  it->second->isNeeded |= isNeeded;
  if (!wasInserted)
    return;

  sharedFiles.push_back(this);

  verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);

  // Parse ".gnu.version" section which is a parallel array for the symbol
  // table. If a given file doesn't have a ".gnu.version" section, we use
  // VER_NDX_GLOBAL.
  size_t size = numELFSyms - firstGlobal;
  std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL);
  if (versymSec) {
    ArrayRef<Elf_Versym> versym =
        CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec),
              this)
            .slice(firstGlobal);
    for (size_t i = 0; i < size; ++i)
      versyms[i] = versym[i].vs_index;
  }

  // System libraries can have a lot of symbols with versions. Using a
  // fixed buffer for computing the versions name (foo@ver) can save a
  // lot of allocations.
  SmallString<0> versionedNameBuffer;

  // Add symbols to the symbol table.
  ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
  for (size_t i = 0; i < syms.size(); ++i) {
    const Elf_Sym &sym = syms[i];

    // ELF spec requires that all local symbols precede weak or global
    // symbols in each symbol table, and the index of first non-local symbol
    // is stored to sh_info. If a local symbol appears after some non-local
    // symbol, that's a violation of the spec.
    StringRef name = CHECK(sym.getName(this->stringTable), this);
    if (sym.getBinding() == STB_LOCAL) {
      warn("found local symbol '" + name +
           "' in global part of symbol table in file " + toString(this));
      continue;
    }

    if (sym.isUndefined()) {
      Symbol *s = symtab->addSymbol(
          Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
      s->exportDynamic = true;
      continue;
    }

    // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
    // assigns VER_NDX_LOCAL to this section global symbol. Here is a
    // workaround for this bug.
    uint32_t idx = versyms[i] & ~VERSYM_HIDDEN;
    if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
        name == "_gp_disp")
      continue;

    uint32_t alignment = getAlignment<ELFT>(sections, sym);
    if (!(versyms[i] & VERSYM_HIDDEN)) {
      symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
                                     sym.st_other, sym.getType(), sym.st_value,
                                     sym.st_size, alignment, idx});
    }

    // Also add the symbol with the versioned name to handle undefined symbols
    // with explicit versions.
    if (idx == VER_NDX_GLOBAL)
      continue;

    if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
      error("corrupt input file: version definition index " + Twine(idx) +
            " for symbol " + name + " is out of bounds\n>>> defined in " +
            toString(this));
      continue;
    }

    StringRef verName =
        this->stringTable.data() +
        reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
    versionedNameBuffer.clear();
    name = (name + "@" + verName).toStringRef(versionedNameBuffer);
    symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
                                   sym.st_other, sym.getType(), sym.st_value,
                                   sym.st_size, alignment, idx});
  }
}

static ELFKind getBitcodeELFKind(const Triple &t) {
  if (t.isLittleEndian())
    return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
  return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
}

static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
  switch (t.getArch()) {
  case Triple::aarch64:
    return EM_AARCH64;
  case Triple::amdgcn:
  case Triple::r600:
    return EM_AMDGPU;
  case Triple::arm:
  case Triple::thumb:
    return EM_ARM;
  case Triple::avr:
    return EM_AVR;
  case Triple::mips:
  case Triple::mipsel:
  case Triple::mips64:
  case Triple::mips64el:
    return EM_MIPS;
  case Triple::msp430:
    return EM_MSP430;
  case Triple::ppc:
    return EM_PPC;
  case Triple::ppc64:
  case Triple::ppc64le:
    return EM_PPC64;
  case Triple::riscv32:
  case Triple::riscv64:
    return EM_RISCV;
  case Triple::x86:
    return t.isOSIAMCU() ? EM_IAMCU : EM_386;
  case Triple::x86_64:
    return EM_X86_64;
  default:
    error(path + ": could not infer e_machine from bitcode target triple " +
          t.str());
    return EM_NONE;
  }
}

BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
                         uint64_t offsetInArchive)
    : InputFile(BitcodeKind, mb) {
  this->archiveName = archiveName;

  std::string path = mb.getBufferIdentifier().str();
  if (config->thinLTOIndexOnly)
    path = replaceThinLTOSuffix(mb.getBufferIdentifier());

  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
  // name. If two archives define two members with the same name, this
  // causes a collision which result in only one of the objects being taken
  // into consideration at LTO time (which very likely causes undefined
  // symbols later in the link stage). So we append file offset to make
  // filename unique.
  StringRef name = archiveName.empty()
                       ? saver.save(path)
                       : saver.save(archiveName + "(" + path + " at " +
                                    utostr(offsetInArchive) + ")");
  MemoryBufferRef mbref(mb.getBuffer(), name);

  obj = CHECK(lto::InputFile::create(mbref), this);

  Triple t(obj->getTargetTriple());
  ekind = getBitcodeELFKind(t);
  emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
}

static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
  switch (gvVisibility) {
  case GlobalValue::DefaultVisibility:
    return STV_DEFAULT;
  case GlobalValue::HiddenVisibility:
    return STV_HIDDEN;
  case GlobalValue::ProtectedVisibility:
    return STV_PROTECTED;
  }
  llvm_unreachable("unknown visibility");
}

template <class ELFT>
static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
                                   const lto::InputFile::Symbol &objSym,
                                   BitcodeFile &f) {
  StringRef name = saver.save(objSym.getName());
  uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
  uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
  uint8_t visibility = mapVisibility(objSym.getVisibility());
  bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();

  int c = objSym.getComdatIndex();
  if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
    Undefined New(&f, name, binding, visibility, type);
    if (canOmitFromDynSym)
      New.exportDynamic = false;
    return symtab->addSymbol(New);
  }

  if (objSym.isCommon())
    return symtab->addSymbol(
        CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
                     objSym.getCommonAlignment(), objSym.getCommonSize()});

  Defined New(&f, name, binding, visibility, type, 0, 0, nullptr);
  if (canOmitFromDynSym)
    New.exportDynamic = false;
  return symtab->addSymbol(New);
}

template <class ELFT> void BitcodeFile::parse() {
  std::vector<bool> keptComdats;
  for (StringRef s : obj->getComdatTable())
    keptComdats.push_back(
        symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);

  for (const lto::InputFile::Symbol &objSym : obj->symbols())
    symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));

  for (auto l : obj->getDependentLibraries())
    addDependentLibrary(l, this);
}

void BinaryFile::parse() {
  ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
  auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
                                     8, data, ".data");
  sections.push_back(section);

  // For each input file foo that is embedded to a result as a binary
  // blob, we define _binary_foo_{start,end,size} symbols, so that
  // user programs can access blobs by name. Non-alphanumeric
  // characters in a filename are replaced with underscore.
  std::string s = "_binary_" + mb.getBufferIdentifier().str();
  for (size_t i = 0; i < s.size(); ++i)
    if (!isAlnum(s[i]))
      s[i] = '_';

  symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
                            STV_DEFAULT, STT_OBJECT, 0, 0, section});
  symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
                            STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
  symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
                            STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
}

InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
                                 uint64_t offsetInArchive) {
  if (isBitcode(mb))
    return make<BitcodeFile>(mb, archiveName, offsetInArchive);

  switch (getELFKind(mb, archiveName)) {
  case ELF32LEKind:
    return make<ObjFile<ELF32LE>>(mb, archiveName);
  case ELF32BEKind:
    return make<ObjFile<ELF32BE>>(mb, archiveName);
  case ELF64LEKind:
    return make<ObjFile<ELF64LE>>(mb, archiveName);
  case ELF64BEKind:
    return make<ObjFile<ELF64BE>>(mb, archiveName);
  default:
    llvm_unreachable("getELFKind");
  }
}

void LazyObjFile::fetch() {
  if (mb.getBuffer().empty())
    return;

  InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
  file->groupId = groupId;

  mb = {};

  // Copy symbol vector so that the new InputFile doesn't have to
  // insert the same defined symbols to the symbol table again.
  file->symbols = std::move(symbols);

  parseFile(file);
}

template <class ELFT> void LazyObjFile::parse() {
  using Elf_Sym = typename ELFT::Sym;

  // A lazy object file wraps either a bitcode file or an ELF file.
  if (isBitcode(this->mb)) {
    std::unique_ptr<lto::InputFile> obj =
        CHECK(lto::InputFile::create(this->mb), this);
    for (const lto::InputFile::Symbol &sym : obj->symbols()) {
      if (sym.isUndefined())
        continue;
      symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
    }
    return;
  }

  if (getELFKind(this->mb, archiveName) != config->ekind) {
    error("incompatible file: " + this->mb.getBufferIdentifier());
    return;
  }

  // Find a symbol table.
  ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
  ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);

  for (const typename ELFT::Shdr &sec : sections) {
    if (sec.sh_type != SHT_SYMTAB)
      continue;

    // A symbol table is found.
    ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
    uint32_t firstGlobal = sec.sh_info;
    StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
    this->symbols.resize(eSyms.size());

    // Get existing symbols or insert placeholder symbols.
    for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
      if (eSyms[i].st_shndx != SHN_UNDEF)
        this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));

    // Replace existing symbols with LazyObject symbols.
    //
    // resolve() may trigger this->fetch() if an existing symbol is an
    // undefined symbol. If that happens, this LazyObjFile has served
    // its purpose, and we can exit from the loop early.
    for (Symbol *sym : this->symbols) {
      if (!sym)
        continue;
      sym->resolve(LazyObject{*this, sym->getName()});

      // MemoryBuffer is emptied if this file is instantiated as ObjFile.
      if (mb.getBuffer().empty())
        return;
    }
    return;
  }
}

std::string elf::replaceThinLTOSuffix(StringRef path) {
  StringRef suffix = config->thinLTOObjectSuffixReplace.first;
  StringRef repl = config->thinLTOObjectSuffixReplace.second;

  if (path.consume_back(suffix))
    return (path + repl).str();
  return path;
}

template void BitcodeFile::parse<ELF32LE>();
template void BitcodeFile::parse<ELF32BE>();
template void BitcodeFile::parse<ELF64LE>();
template void BitcodeFile::parse<ELF64BE>();

template void LazyObjFile::parse<ELF32LE>();
template void LazyObjFile::parse<ELF32BE>();
template void LazyObjFile::parse<ELF64LE>();
template void LazyObjFile::parse<ELF64BE>();

template class elf::ObjFile<ELF32LE>;
template class elf::ObjFile<ELF32BE>;
template class elf::ObjFile<ELF64LE>;
template class elf::ObjFile<ELF64BE>;

template void SharedFile::parse<ELF32LE>();
template void SharedFile::parse<ELF32BE>();
template void SharedFile::parse<ELF64LE>();
template void SharedFile::parse<ELF64BE>();