aboutsummaryrefslogtreecommitdiffstats
path: root/ELF/CallGraphSort.cpp
blob: 6f8ef8954af32cfef71a327686a896c81af7062a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
//===- CallGraphSort.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Implementation of Call-Chain Clustering from: Optimizing Function Placement
/// for Large-Scale Data-Center Applications
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
///
/// The goal of this algorithm is to improve runtime performance of the final
/// executable by arranging code sections such that page table and i-cache
/// misses are minimized.
///
/// Definitions:
/// * Cluster
///   * An ordered list of input sections which are layed out as a unit. At the
///     beginning of the algorithm each input section has its own cluster and
///     the weight of the cluster is the sum of the weight of all incomming
///     edges.
/// * Call-Chain Clustering (C³) Heuristic
///   * Defines when and how clusters are combined. Pick the highest weighted
///     input section then add it to its most likely predecessor if it wouldn't
///     penalize it too much.
/// * Density
///   * The weight of the cluster divided by the size of the cluster. This is a
///     proxy for the ammount of execution time spent per byte of the cluster.
///
/// It does so given a call graph profile by the following:
/// * Build a weighted call graph from the call graph profile
/// * Sort input sections by weight
/// * For each input section starting with the highest weight
///   * Find its most likely predecessor cluster
///   * Check if the combined cluster would be too large, or would have too low
///     a density.
///   * If not, then combine the clusters.
/// * Sort non-empty clusters by density
///
//===----------------------------------------------------------------------===//

#include "CallGraphSort.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"

#include <numeric>

using namespace llvm;

namespace lld {
namespace elf {

namespace {
struct Edge {
  int from;
  uint64_t weight;
};

struct Cluster {
  Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}

  double getDensity() const {
    if (size == 0)
      return 0;
    return double(weight) / double(size);
  }

  int next;
  int prev;
  size_t size = 0;
  uint64_t weight = 0;
  uint64_t initialWeight = 0;
  Edge bestPred = {-1, 0};
};

class CallGraphSort {
public:
  CallGraphSort();

  DenseMap<const InputSectionBase *, int> run();

private:
  std::vector<Cluster> clusters;
  std::vector<const InputSectionBase *> sections;
};

// Maximum ammount the combined cluster density can be worse than the original
// cluster to consider merging.
constexpr int MAX_DENSITY_DEGRADATION = 8;

// Maximum cluster size in bytes.
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
} // end anonymous namespace

using SectionPair =
    std::pair<const InputSectionBase *, const InputSectionBase *>;

// Take the edge list in Config->CallGraphProfile, resolve symbol names to
// Symbols, and generate a graph between InputSections with the provided
// weights.
CallGraphSort::CallGraphSort() {
  MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
  DenseMap<const InputSectionBase *, int> secToCluster;

  auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
    auto res = secToCluster.try_emplace(isec, clusters.size());
    if (res.second) {
      sections.push_back(isec);
      clusters.emplace_back(clusters.size(), isec->getSize());
    }
    return res.first->second;
  };

  // Create the graph.
  for (std::pair<SectionPair, uint64_t> &c : profile) {
    const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
    const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
    uint64_t weight = c.second;

    // Ignore edges between input sections belonging to different output
    // sections.  This is done because otherwise we would end up with clusters
    // containing input sections that can't actually be placed adjacently in the
    // output.  This messes with the cluster size and density calculations.  We
    // would also end up moving input sections in other output sections without
    // moving them closer to what calls them.
    if (fromSB->getOutputSection() != toSB->getOutputSection())
      continue;

    int from = getOrCreateNode(fromSB);
    int to = getOrCreateNode(toSB);

    clusters[to].weight += weight;

    if (from == to)
      continue;

    // Remember the best edge.
    Cluster &toC = clusters[to];
    if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
      toC.bestPred.from = from;
      toC.bestPred.weight = weight;
    }
  }
  for (Cluster &c : clusters)
    c.initialWeight = c.weight;
}

// It's bad to merge clusters which would degrade the density too much.
static bool isNewDensityBad(Cluster &a, Cluster &b) {
  double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
  return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
}

// Find the leader of V's belonged cluster (represented as an equivalence
// class). We apply union-find path-halving technique (simple to implement) in
// the meantime as it decreases depths and the time complexity.
static int getLeader(std::vector<int> &leaders, int v) {
  while (leaders[v] != v) {
    leaders[v] = leaders[leaders[v]];
    v = leaders[v];
  }
  return v;
}

static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
                          Cluster &from, int fromIdx) {
  int tail1 = into.prev, tail2 = from.prev;
  into.prev = tail2;
  cs[tail2].next = intoIdx;
  from.prev = tail1;
  cs[tail1].next = fromIdx;
  into.size += from.size;
  into.weight += from.weight;
  from.size = 0;
  from.weight = 0;
}

// Group InputSections into clusters using the Call-Chain Clustering heuristic
// then sort the clusters by density.
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
  std::vector<int> sorted(clusters.size());
  std::vector<int> leaders(clusters.size());

  std::iota(leaders.begin(), leaders.end(), 0);
  std::iota(sorted.begin(), sorted.end(), 0);
  llvm::stable_sort(sorted, [&](int a, int b) {
    return clusters[a].getDensity() > clusters[b].getDensity();
  });

  for (int l : sorted) {
    // The cluster index is the same as the index of its leader here because
    // clusters[L] has not been merged into another cluster yet.
    Cluster &c = clusters[l];

    // Don't consider merging if the edge is unlikely.
    if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
      continue;

    int predL = getLeader(leaders, c.bestPred.from);
    if (l == predL)
      continue;

    Cluster *predC = &clusters[predL];
    if (c.size + predC->size > MAX_CLUSTER_SIZE)
      continue;

    if (isNewDensityBad(*predC, c))
      continue;

    leaders[l] = predL;
    mergeClusters(clusters, *predC, predL, c, l);
  }

  // Sort remaining non-empty clusters by density.
  sorted.clear();
  for (int i = 0, e = (int)clusters.size(); i != e; ++i)
    if (clusters[i].size > 0)
      sorted.push_back(i);
  llvm::stable_sort(sorted, [&](int a, int b) {
    return clusters[a].getDensity() > clusters[b].getDensity();
  });

  DenseMap<const InputSectionBase *, int> orderMap;
  int curOrder = 1;
  for (int leader : sorted)
    for (int i = leader;;) {
      orderMap[sections[i]] = curOrder++;
      i = clusters[i].next;
      if (i == leader)
        break;
    }

  if (!config->printSymbolOrder.empty()) {
    std::error_code ec;
    raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
    if (ec) {
      error("cannot open " + config->printSymbolOrder + ": " + ec.message());
      return orderMap;
    }

    // Print the symbols ordered by C3, in the order of increasing curOrder
    // Instead of sorting all the orderMap, just repeat the loops above.
    for (int leader : sorted)
      for (int i = leader;;) {
        // Search all the symbols in the file of the section
        // and find out a Defined symbol with name that is within the section.
        for (Symbol *sym : sections[i]->file->getSymbols())
          if (!sym->isSection()) // Filter out section-type symbols here.
            if (auto *d = dyn_cast<Defined>(sym))
              if (sections[i] == d->section)
                os << sym->getName() << "\n";
        i = clusters[i].next;
        if (i == leader)
          break;
      }
  }

  return orderMap;
}

// Sort sections by the profile data provided by -callgraph-profile-file
//
// This first builds a call graph based on the profile data then merges sections
// according to the C³ huristic. All clusters are then sorted by a density
// metric to further improve locality.
DenseMap<const InputSectionBase *, int> computeCallGraphProfileOrder() {
  return CallGraphSort().run();
}

} // namespace elf
} // namespace lld