aboutsummaryrefslogtreecommitdiffstats
path: root/uts/common/fs/zfs/zfs_fm.c
diff options
context:
space:
mode:
Diffstat (limited to 'uts/common/fs/zfs/zfs_fm.c')
-rw-r--r--uts/common/fs/zfs/zfs_fm.c863
1 files changed, 863 insertions, 0 deletions
diff --git a/uts/common/fs/zfs/zfs_fm.c b/uts/common/fs/zfs/zfs_fm.c
new file mode 100644
index 000000000000..0b4812666442
--- /dev/null
+++ b/uts/common/fs/zfs/zfs_fm.c
@@ -0,0 +1,863 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/vdev.h>
+#include <sys/vdev_impl.h>
+#include <sys/zio.h>
+#include <sys/zio_checksum.h>
+
+#include <sys/fm/fs/zfs.h>
+#include <sys/fm/protocol.h>
+#include <sys/fm/util.h>
+#include <sys/sysevent.h>
+
+/*
+ * This general routine is responsible for generating all the different ZFS
+ * ereports. The payload is dependent on the class, and which arguments are
+ * supplied to the function:
+ *
+ * EREPORT POOL VDEV IO
+ * block X X X
+ * data X X
+ * device X X
+ * pool X
+ *
+ * If we are in a loading state, all errors are chained together by the same
+ * SPA-wide ENA (Error Numeric Association).
+ *
+ * For isolated I/O requests, we get the ENA from the zio_t. The propagation
+ * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
+ * to chain together all ereports associated with a logical piece of data. For
+ * read I/Os, there are basically three 'types' of I/O, which form a roughly
+ * layered diagram:
+ *
+ * +---------------+
+ * | Aggregate I/O | No associated logical data or device
+ * +---------------+
+ * |
+ * V
+ * +---------------+ Reads associated with a piece of logical data.
+ * | Read I/O | This includes reads on behalf of RAID-Z,
+ * +---------------+ mirrors, gang blocks, retries, etc.
+ * |
+ * V
+ * +---------------+ Reads associated with a particular device, but
+ * | Physical I/O | no logical data. Issued as part of vdev caching
+ * +---------------+ and I/O aggregation.
+ *
+ * Note that 'physical I/O' here is not the same terminology as used in the rest
+ * of ZIO. Typically, 'physical I/O' simply means that there is no attached
+ * blockpointer. But I/O with no associated block pointer can still be related
+ * to a logical piece of data (i.e. RAID-Z requests).
+ *
+ * Purely physical I/O always have unique ENAs. They are not related to a
+ * particular piece of logical data, and therefore cannot be chained together.
+ * We still generate an ereport, but the DE doesn't correlate it with any
+ * logical piece of data. When such an I/O fails, the delegated I/O requests
+ * will issue a retry, which will trigger the 'real' ereport with the correct
+ * ENA.
+ *
+ * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
+ * When a new logical I/O is issued, we set this to point to itself. Child I/Os
+ * then inherit this pointer, so that when it is first set subsequent failures
+ * will use the same ENA. For vdev cache fill and queue aggregation I/O,
+ * this pointer is set to NULL, and no ereport will be generated (since it
+ * doesn't actually correspond to any particular device or piece of data,
+ * and the caller will always retry without caching or queueing anyway).
+ *
+ * For checksum errors, we want to include more information about the actual
+ * error which occurs. Accordingly, we build an ereport when the error is
+ * noticed, but instead of sending it in immediately, we hang it off of the
+ * io_cksum_report field of the logical IO. When the logical IO completes
+ * (successfully or not), zfs_ereport_finish_checksum() is called with the
+ * good and bad versions of the buffer (if available), and we annotate the
+ * ereport with information about the differences.
+ */
+#ifdef _KERNEL
+static void
+zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
+ const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
+ uint64_t stateoroffset, uint64_t size)
+{
+ nvlist_t *ereport, *detector;
+
+ uint64_t ena;
+ char class[64];
+
+ /*
+ * If we are doing a spa_tryimport() or in recovery mode,
+ * ignore errors.
+ */
+ if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
+ spa_load_state(spa) == SPA_LOAD_RECOVER)
+ return;
+
+ /*
+ * If we are in the middle of opening a pool, and the previous attempt
+ * failed, don't bother logging any new ereports - we're just going to
+ * get the same diagnosis anyway.
+ */
+ if (spa_load_state(spa) != SPA_LOAD_NONE &&
+ spa->spa_last_open_failed)
+ return;
+
+ if (zio != NULL) {
+ /*
+ * If this is not a read or write zio, ignore the error. This
+ * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
+ */
+ if (zio->io_type != ZIO_TYPE_READ &&
+ zio->io_type != ZIO_TYPE_WRITE)
+ return;
+
+ /*
+ * Ignore any errors from speculative I/Os, as failure is an
+ * expected result.
+ */
+ if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
+ return;
+
+ /*
+ * If this I/O is not a retry I/O, don't post an ereport.
+ * Otherwise, we risk making bad diagnoses based on B_FAILFAST
+ * I/Os.
+ */
+ if (zio->io_error == EIO &&
+ !(zio->io_flags & ZIO_FLAG_IO_RETRY))
+ return;
+
+ if (vd != NULL) {
+ /*
+ * If the vdev has already been marked as failing due
+ * to a failed probe, then ignore any subsequent I/O
+ * errors, as the DE will automatically fault the vdev
+ * on the first such failure. This also catches cases
+ * where vdev_remove_wanted is set and the device has
+ * not yet been asynchronously placed into the REMOVED
+ * state.
+ */
+ if (zio->io_vd == vd && !vdev_accessible(vd, zio))
+ return;
+
+ /*
+ * Ignore checksum errors for reads from DTL regions of
+ * leaf vdevs.
+ */
+ if (zio->io_type == ZIO_TYPE_READ &&
+ zio->io_error == ECKSUM &&
+ vd->vdev_ops->vdev_op_leaf &&
+ vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
+ return;
+ }
+ }
+
+ /*
+ * For probe failure, we want to avoid posting ereports if we've
+ * already removed the device in the meantime.
+ */
+ if (vd != NULL &&
+ strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
+ (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
+ return;
+
+ if ((ereport = fm_nvlist_create(NULL)) == NULL)
+ return;
+
+ if ((detector = fm_nvlist_create(NULL)) == NULL) {
+ fm_nvlist_destroy(ereport, FM_NVA_FREE);
+ return;
+ }
+
+ /*
+ * Serialize ereport generation
+ */
+ mutex_enter(&spa->spa_errlist_lock);
+
+ /*
+ * Determine the ENA to use for this event. If we are in a loading
+ * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
+ * a root zio-wide ENA. Otherwise, simply use a unique ENA.
+ */
+ if (spa_load_state(spa) != SPA_LOAD_NONE) {
+ if (spa->spa_ena == 0)
+ spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
+ ena = spa->spa_ena;
+ } else if (zio != NULL && zio->io_logical != NULL) {
+ if (zio->io_logical->io_ena == 0)
+ zio->io_logical->io_ena =
+ fm_ena_generate(0, FM_ENA_FMT1);
+ ena = zio->io_logical->io_ena;
+ } else {
+ ena = fm_ena_generate(0, FM_ENA_FMT1);
+ }
+
+ /*
+ * Construct the full class, detector, and other standard FMA fields.
+ */
+ (void) snprintf(class, sizeof (class), "%s.%s",
+ ZFS_ERROR_CLASS, subclass);
+
+ fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
+ vd != NULL ? vd->vdev_guid : 0);
+
+ fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
+
+ /*
+ * Construct the per-ereport payload, depending on which parameters are
+ * passed in.
+ */
+
+ /*
+ * Generic payload members common to all ereports.
+ */
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
+ DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
+ DATA_TYPE_UINT64, spa_guid(spa),
+ FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
+ spa_load_state(spa), NULL);
+
+ if (spa != NULL) {
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
+ DATA_TYPE_STRING,
+ spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
+ FM_EREPORT_FAILMODE_WAIT :
+ spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
+ FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
+ NULL);
+ }
+
+ if (vd != NULL) {
+ vdev_t *pvd = vd->vdev_parent;
+
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
+ DATA_TYPE_UINT64, vd->vdev_guid,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
+ DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
+ if (vd->vdev_path != NULL)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
+ DATA_TYPE_STRING, vd->vdev_path, NULL);
+ if (vd->vdev_devid != NULL)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
+ DATA_TYPE_STRING, vd->vdev_devid, NULL);
+ if (vd->vdev_fru != NULL)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
+ DATA_TYPE_STRING, vd->vdev_fru, NULL);
+
+ if (pvd != NULL) {
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
+ DATA_TYPE_UINT64, pvd->vdev_guid,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
+ DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
+ NULL);
+ if (pvd->vdev_path)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
+ DATA_TYPE_STRING, pvd->vdev_path, NULL);
+ if (pvd->vdev_devid)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
+ DATA_TYPE_STRING, pvd->vdev_devid, NULL);
+ }
+ }
+
+ if (zio != NULL) {
+ /*
+ * Payload common to all I/Os.
+ */
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
+ DATA_TYPE_INT32, zio->io_error, NULL);
+
+ /*
+ * If the 'size' parameter is non-zero, it indicates this is a
+ * RAID-Z or other I/O where the physical offset and length are
+ * provided for us, instead of within the zio_t.
+ */
+ if (vd != NULL) {
+ if (size)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
+ DATA_TYPE_UINT64, stateoroffset,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
+ DATA_TYPE_UINT64, size, NULL);
+ else
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
+ DATA_TYPE_UINT64, zio->io_offset,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
+ DATA_TYPE_UINT64, zio->io_size, NULL);
+ }
+
+ /*
+ * Payload for I/Os with corresponding logical information.
+ */
+ if (zio->io_logical != NULL)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
+ DATA_TYPE_UINT64,
+ zio->io_logical->io_bookmark.zb_objset,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
+ DATA_TYPE_UINT64,
+ zio->io_logical->io_bookmark.zb_object,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
+ DATA_TYPE_INT64,
+ zio->io_logical->io_bookmark.zb_level,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
+ DATA_TYPE_UINT64,
+ zio->io_logical->io_bookmark.zb_blkid, NULL);
+ } else if (vd != NULL) {
+ /*
+ * If we have a vdev but no zio, this is a device fault, and the
+ * 'stateoroffset' parameter indicates the previous state of the
+ * vdev.
+ */
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
+ DATA_TYPE_UINT64, stateoroffset, NULL);
+ }
+
+ mutex_exit(&spa->spa_errlist_lock);
+
+ *ereport_out = ereport;
+ *detector_out = detector;
+}
+
+/* if it's <= 128 bytes, save the corruption directly */
+#define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
+
+#define MAX_RANGES 16
+
+typedef struct zfs_ecksum_info {
+ /* histograms of set and cleared bits by bit number in a 64-bit word */
+ uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
+ uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
+
+ /* inline arrays of bits set and cleared. */
+ uint64_t zei_bits_set[ZFM_MAX_INLINE];
+ uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
+
+ /*
+ * for each range, the number of bits set and cleared. The Hamming
+ * distance between the good and bad buffers is the sum of them all.
+ */
+ uint32_t zei_range_sets[MAX_RANGES];
+ uint32_t zei_range_clears[MAX_RANGES];
+
+ struct zei_ranges {
+ uint32_t zr_start;
+ uint32_t zr_end;
+ } zei_ranges[MAX_RANGES];
+
+ size_t zei_range_count;
+ uint32_t zei_mingap;
+ uint32_t zei_allowed_mingap;
+
+} zfs_ecksum_info_t;
+
+static void
+update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
+{
+ size_t i;
+ size_t bits = 0;
+ uint64_t value = BE_64(value_arg);
+
+ /* We store the bits in big-endian (largest-first) order */
+ for (i = 0; i < 64; i++) {
+ if (value & (1ull << i)) {
+ hist[63 - i]++;
+ ++bits;
+ }
+ }
+ /* update the count of bits changed */
+ *count += bits;
+}
+
+/*
+ * We've now filled up the range array, and need to increase "mingap" and
+ * shrink the range list accordingly. zei_mingap is always the smallest
+ * distance between array entries, so we set the new_allowed_gap to be
+ * one greater than that. We then go through the list, joining together
+ * any ranges which are closer than the new_allowed_gap.
+ *
+ * By construction, there will be at least one. We also update zei_mingap
+ * to the new smallest gap, to prepare for our next invocation.
+ */
+static void
+shrink_ranges(zfs_ecksum_info_t *eip)
+{
+ uint32_t mingap = UINT32_MAX;
+ uint32_t new_allowed_gap = eip->zei_mingap + 1;
+
+ size_t idx, output;
+ size_t max = eip->zei_range_count;
+
+ struct zei_ranges *r = eip->zei_ranges;
+
+ ASSERT3U(eip->zei_range_count, >, 0);
+ ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
+
+ output = idx = 0;
+ while (idx < max - 1) {
+ uint32_t start = r[idx].zr_start;
+ uint32_t end = r[idx].zr_end;
+
+ while (idx < max - 1) {
+ idx++;
+
+ uint32_t nstart = r[idx].zr_start;
+ uint32_t nend = r[idx].zr_end;
+
+ uint32_t gap = nstart - end;
+ if (gap < new_allowed_gap) {
+ end = nend;
+ continue;
+ }
+ if (gap < mingap)
+ mingap = gap;
+ break;
+ }
+ r[output].zr_start = start;
+ r[output].zr_end = end;
+ output++;
+ }
+ ASSERT3U(output, <, eip->zei_range_count);
+ eip->zei_range_count = output;
+ eip->zei_mingap = mingap;
+ eip->zei_allowed_mingap = new_allowed_gap;
+}
+
+static void
+add_range(zfs_ecksum_info_t *eip, int start, int end)
+{
+ struct zei_ranges *r = eip->zei_ranges;
+ size_t count = eip->zei_range_count;
+
+ if (count >= MAX_RANGES) {
+ shrink_ranges(eip);
+ count = eip->zei_range_count;
+ }
+ if (count == 0) {
+ eip->zei_mingap = UINT32_MAX;
+ eip->zei_allowed_mingap = 1;
+ } else {
+ int gap = start - r[count - 1].zr_end;
+
+ if (gap < eip->zei_allowed_mingap) {
+ r[count - 1].zr_end = end;
+ return;
+ }
+ if (gap < eip->zei_mingap)
+ eip->zei_mingap = gap;
+ }
+ r[count].zr_start = start;
+ r[count].zr_end = end;
+ eip->zei_range_count++;
+}
+
+static size_t
+range_total_size(zfs_ecksum_info_t *eip)
+{
+ struct zei_ranges *r = eip->zei_ranges;
+ size_t count = eip->zei_range_count;
+ size_t result = 0;
+ size_t idx;
+
+ for (idx = 0; idx < count; idx++)
+ result += (r[idx].zr_end - r[idx].zr_start);
+
+ return (result);
+}
+
+static zfs_ecksum_info_t *
+annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
+ const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
+ boolean_t drop_if_identical)
+{
+ const uint64_t *good = (const uint64_t *)goodbuf;
+ const uint64_t *bad = (const uint64_t *)badbuf;
+
+ uint64_t allset = 0;
+ uint64_t allcleared = 0;
+
+ size_t nui64s = size / sizeof (uint64_t);
+
+ size_t inline_size;
+ int no_inline = 0;
+ size_t idx;
+ size_t range;
+
+ size_t offset = 0;
+ ssize_t start = -1;
+
+ zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
+
+ /* don't do any annotation for injected checksum errors */
+ if (info != NULL && info->zbc_injected)
+ return (eip);
+
+ if (info != NULL && info->zbc_has_cksum) {
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
+ DATA_TYPE_UINT64_ARRAY,
+ sizeof (info->zbc_expected) / sizeof (uint64_t),
+ (uint64_t *)&info->zbc_expected,
+ FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
+ DATA_TYPE_UINT64_ARRAY,
+ sizeof (info->zbc_actual) / sizeof (uint64_t),
+ (uint64_t *)&info->zbc_actual,
+ FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
+ DATA_TYPE_STRING,
+ info->zbc_checksum_name,
+ NULL);
+
+ if (info->zbc_byteswapped) {
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
+ DATA_TYPE_BOOLEAN, 1,
+ NULL);
+ }
+ }
+
+ if (badbuf == NULL || goodbuf == NULL)
+ return (eip);
+
+ ASSERT3U(nui64s, <=, UINT16_MAX);
+ ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
+ ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
+ ASSERT3U(size, <=, UINT32_MAX);
+
+ /* build up the range list by comparing the two buffers. */
+ for (idx = 0; idx < nui64s; idx++) {
+ if (good[idx] == bad[idx]) {
+ if (start == -1)
+ continue;
+
+ add_range(eip, start, idx);
+ start = -1;
+ } else {
+ if (start != -1)
+ continue;
+
+ start = idx;
+ }
+ }
+ if (start != -1)
+ add_range(eip, start, idx);
+
+ /* See if it will fit in our inline buffers */
+ inline_size = range_total_size(eip);
+ if (inline_size > ZFM_MAX_INLINE)
+ no_inline = 1;
+
+ /*
+ * If there is no change and we want to drop if the buffers are
+ * identical, do so.
+ */
+ if (inline_size == 0 && drop_if_identical) {
+ kmem_free(eip, sizeof (*eip));
+ return (NULL);
+ }
+
+ /*
+ * Now walk through the ranges, filling in the details of the
+ * differences. Also convert our uint64_t-array offsets to byte
+ * offsets.
+ */
+ for (range = 0; range < eip->zei_range_count; range++) {
+ size_t start = eip->zei_ranges[range].zr_start;
+ size_t end = eip->zei_ranges[range].zr_end;
+
+ for (idx = start; idx < end; idx++) {
+ uint64_t set, cleared;
+
+ // bits set in bad, but not in good
+ set = ((~good[idx]) & bad[idx]);
+ // bits set in good, but not in bad
+ cleared = (good[idx] & (~bad[idx]));
+
+ allset |= set;
+ allcleared |= cleared;
+
+ if (!no_inline) {
+ ASSERT3U(offset, <, inline_size);
+ eip->zei_bits_set[offset] = set;
+ eip->zei_bits_cleared[offset] = cleared;
+ offset++;
+ }
+
+ update_histogram(set, eip->zei_histogram_set,
+ &eip->zei_range_sets[range]);
+ update_histogram(cleared, eip->zei_histogram_cleared,
+ &eip->zei_range_clears[range]);
+ }
+
+ /* convert to byte offsets */
+ eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
+ eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
+ }
+ eip->zei_allowed_mingap *= sizeof (uint64_t);
+ inline_size *= sizeof (uint64_t);
+
+ /* fill in ereport */
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
+ DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
+ (uint32_t *)eip->zei_ranges,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
+ DATA_TYPE_UINT32, eip->zei_allowed_mingap,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
+ DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
+ DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
+ NULL);
+
+ if (!no_inline) {
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
+ DATA_TYPE_UINT8_ARRAY,
+ inline_size, (uint8_t *)eip->zei_bits_set,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
+ DATA_TYPE_UINT8_ARRAY,
+ inline_size, (uint8_t *)eip->zei_bits_cleared,
+ NULL);
+ } else {
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
+ DATA_TYPE_UINT16_ARRAY,
+ NBBY * sizeof (uint64_t), eip->zei_histogram_set,
+ FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
+ DATA_TYPE_UINT16_ARRAY,
+ NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
+ NULL);
+ }
+ return (eip);
+}
+#endif
+
+void
+zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
+ uint64_t stateoroffset, uint64_t size)
+{
+#ifdef _KERNEL
+ nvlist_t *ereport = NULL;
+ nvlist_t *detector = NULL;
+
+ zfs_ereport_start(&ereport, &detector,
+ subclass, spa, vd, zio, stateoroffset, size);
+
+ if (ereport == NULL)
+ return;
+
+ fm_ereport_post(ereport, EVCH_SLEEP);
+
+ fm_nvlist_destroy(ereport, FM_NVA_FREE);
+ fm_nvlist_destroy(detector, FM_NVA_FREE);
+#endif
+}
+
+void
+zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
+ struct zio *zio, uint64_t offset, uint64_t length, void *arg,
+ zio_bad_cksum_t *info)
+{
+ zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
+
+ if (zio->io_vsd != NULL)
+ zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
+ else
+ zio_vsd_default_cksum_report(zio, report, arg);
+
+ /* copy the checksum failure information if it was provided */
+ if (info != NULL) {
+ report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
+ bcopy(info, report->zcr_ckinfo, sizeof (*info));
+ }
+
+ report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
+ report->zcr_length = length;
+
+#ifdef _KERNEL
+ zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
+ FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
+
+ if (report->zcr_ereport == NULL) {
+ report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
+ kmem_free(report, sizeof (*report));
+ return;
+ }
+#endif
+
+ mutex_enter(&spa->spa_errlist_lock);
+ report->zcr_next = zio->io_logical->io_cksum_report;
+ zio->io_logical->io_cksum_report = report;
+ mutex_exit(&spa->spa_errlist_lock);
+}
+
+void
+zfs_ereport_finish_checksum(zio_cksum_report_t *report,
+ const void *good_data, const void *bad_data, boolean_t drop_if_identical)
+{
+#ifdef _KERNEL
+ zfs_ecksum_info_t *info = NULL;
+ info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
+ good_data, bad_data, report->zcr_length, drop_if_identical);
+
+ if (info != NULL)
+ fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
+
+ fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
+ fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
+ report->zcr_ereport = report->zcr_detector = NULL;
+
+ if (info != NULL)
+ kmem_free(info, sizeof (*info));
+#endif
+}
+
+void
+zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
+{
+#ifdef _KERNEL
+ if (rpt->zcr_ereport != NULL) {
+ fm_nvlist_destroy(rpt->zcr_ereport,
+ FM_NVA_FREE);
+ fm_nvlist_destroy(rpt->zcr_detector,
+ FM_NVA_FREE);
+ }
+#endif
+ rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
+
+ if (rpt->zcr_ckinfo != NULL)
+ kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
+
+ kmem_free(rpt, sizeof (*rpt));
+}
+
+void
+zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
+{
+#ifdef _KERNEL
+ fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
+#endif
+}
+
+void
+zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
+ struct zio *zio, uint64_t offset, uint64_t length,
+ const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
+{
+#ifdef _KERNEL
+ nvlist_t *ereport = NULL;
+ nvlist_t *detector = NULL;
+ zfs_ecksum_info_t *info;
+
+ zfs_ereport_start(&ereport, &detector,
+ FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
+
+ if (ereport == NULL)
+ return;
+
+ info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
+ B_FALSE);
+
+ if (info != NULL)
+ fm_ereport_post(ereport, EVCH_SLEEP);
+
+ fm_nvlist_destroy(ereport, FM_NVA_FREE);
+ fm_nvlist_destroy(detector, FM_NVA_FREE);
+
+ if (info != NULL)
+ kmem_free(info, sizeof (*info));
+#endif
+}
+
+static void
+zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
+{
+#ifdef _KERNEL
+ nvlist_t *resource;
+ char class[64];
+
+ if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
+ return;
+
+ if ((resource = fm_nvlist_create(NULL)) == NULL)
+ return;
+
+ (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
+ ZFS_ERROR_CLASS, name);
+ VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
+ VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
+ VERIFY(nvlist_add_uint64(resource,
+ FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
+ if (vd)
+ VERIFY(nvlist_add_uint64(resource,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
+
+ fm_ereport_post(resource, EVCH_SLEEP);
+
+ fm_nvlist_destroy(resource, FM_NVA_FREE);
+#endif
+}
+
+/*
+ * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
+ * has been removed from the system. This will cause the DE to ignore any
+ * recent I/O errors, inferring that they are due to the asynchronous device
+ * removal.
+ */
+void
+zfs_post_remove(spa_t *spa, vdev_t *vd)
+{
+ zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
+}
+
+/*
+ * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
+ * has the 'autoreplace' property set, and therefore any broken vdevs will be
+ * handled by higher level logic, and no vdev fault should be generated.
+ */
+void
+zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
+{
+ zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
+}
+
+/*
+ * The 'resource.fs.zfs.statechange' event is an internal signal that the
+ * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
+ * cause the retire agent to repair any outstanding fault management cases
+ * open because the device was not found (fault.fs.zfs.device).
+ */
+void
+zfs_post_state_change(spa_t *spa, vdev_t *vd)
+{
+ zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
+}