aboutsummaryrefslogtreecommitdiffstats
path: root/uts/common/fs/zfs/spa.c
diff options
context:
space:
mode:
Diffstat (limited to 'uts/common/fs/zfs/spa.c')
-rw-r--r--uts/common/fs/zfs/spa.c5882
1 files changed, 5882 insertions, 0 deletions
diff --git a/uts/common/fs/zfs/spa.c b/uts/common/fs/zfs/spa.c
new file mode 100644
index 000000000000..b6190e4cfafe
--- /dev/null
+++ b/uts/common/fs/zfs/spa.c
@@ -0,0 +1,5882 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ */
+
+/*
+ * This file contains all the routines used when modifying on-disk SPA state.
+ * This includes opening, importing, destroying, exporting a pool, and syncing a
+ * pool.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/fm/fs/zfs.h>
+#include <sys/spa_impl.h>
+#include <sys/zio.h>
+#include <sys/zio_checksum.h>
+#include <sys/dmu.h>
+#include <sys/dmu_tx.h>
+#include <sys/zap.h>
+#include <sys/zil.h>
+#include <sys/ddt.h>
+#include <sys/vdev_impl.h>
+#include <sys/metaslab.h>
+#include <sys/metaslab_impl.h>
+#include <sys/uberblock_impl.h>
+#include <sys/txg.h>
+#include <sys/avl.h>
+#include <sys/dmu_traverse.h>
+#include <sys/dmu_objset.h>
+#include <sys/unique.h>
+#include <sys/dsl_pool.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_dir.h>
+#include <sys/dsl_prop.h>
+#include <sys/dsl_synctask.h>
+#include <sys/fs/zfs.h>
+#include <sys/arc.h>
+#include <sys/callb.h>
+#include <sys/systeminfo.h>
+#include <sys/spa_boot.h>
+#include <sys/zfs_ioctl.h>
+#include <sys/dsl_scan.h>
+
+#ifdef _KERNEL
+#include <sys/bootprops.h>
+#include <sys/callb.h>
+#include <sys/cpupart.h>
+#include <sys/pool.h>
+#include <sys/sysdc.h>
+#include <sys/zone.h>
+#endif /* _KERNEL */
+
+#include "zfs_prop.h"
+#include "zfs_comutil.h"
+
+typedef enum zti_modes {
+ zti_mode_fixed, /* value is # of threads (min 1) */
+ zti_mode_online_percent, /* value is % of online CPUs */
+ zti_mode_batch, /* cpu-intensive; value is ignored */
+ zti_mode_null, /* don't create a taskq */
+ zti_nmodes
+} zti_modes_t;
+
+#define ZTI_FIX(n) { zti_mode_fixed, (n) }
+#define ZTI_PCT(n) { zti_mode_online_percent, (n) }
+#define ZTI_BATCH { zti_mode_batch, 0 }
+#define ZTI_NULL { zti_mode_null, 0 }
+
+#define ZTI_ONE ZTI_FIX(1)
+
+typedef struct zio_taskq_info {
+ enum zti_modes zti_mode;
+ uint_t zti_value;
+} zio_taskq_info_t;
+
+static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
+ "issue", "issue_high", "intr", "intr_high"
+};
+
+/*
+ * Define the taskq threads for the following I/O types:
+ * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
+ */
+const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
+ /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
+ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
+ { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
+ { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) },
+ { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
+ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
+ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
+};
+
+static dsl_syncfunc_t spa_sync_props;
+static boolean_t spa_has_active_shared_spare(spa_t *spa);
+static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
+ spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
+ char **ereport);
+static void spa_vdev_resilver_done(spa_t *spa);
+
+uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
+id_t zio_taskq_psrset_bind = PS_NONE;
+boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
+uint_t zio_taskq_basedc = 80; /* base duty cycle */
+
+boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
+
+/*
+ * This (illegal) pool name is used when temporarily importing a spa_t in order
+ * to get the vdev stats associated with the imported devices.
+ */
+#define TRYIMPORT_NAME "$import"
+
+/*
+ * ==========================================================================
+ * SPA properties routines
+ * ==========================================================================
+ */
+
+/*
+ * Add a (source=src, propname=propval) list to an nvlist.
+ */
+static void
+spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
+ uint64_t intval, zprop_source_t src)
+{
+ const char *propname = zpool_prop_to_name(prop);
+ nvlist_t *propval;
+
+ VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
+
+ if (strval != NULL)
+ VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
+ else
+ VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
+
+ VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
+ nvlist_free(propval);
+}
+
+/*
+ * Get property values from the spa configuration.
+ */
+static void
+spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
+{
+ uint64_t size;
+ uint64_t alloc;
+ uint64_t cap, version;
+ zprop_source_t src = ZPROP_SRC_NONE;
+ spa_config_dirent_t *dp;
+
+ ASSERT(MUTEX_HELD(&spa->spa_props_lock));
+
+ if (spa->spa_root_vdev != NULL) {
+ alloc = metaslab_class_get_alloc(spa_normal_class(spa));
+ size = metaslab_class_get_space(spa_normal_class(spa));
+ spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
+ spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
+ spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
+ spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
+ size - alloc, src);
+ spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
+ (spa_mode(spa) == FREAD), src);
+
+ cap = (size == 0) ? 0 : (alloc * 100 / size);
+ spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
+
+ spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
+ ddt_get_pool_dedup_ratio(spa), src);
+
+ spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
+ spa->spa_root_vdev->vdev_state, src);
+
+ version = spa_version(spa);
+ if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
+ src = ZPROP_SRC_DEFAULT;
+ else
+ src = ZPROP_SRC_LOCAL;
+ spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
+ }
+
+ spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
+
+ if (spa->spa_root != NULL)
+ spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
+ 0, ZPROP_SRC_LOCAL);
+
+ if ((dp = list_head(&spa->spa_config_list)) != NULL) {
+ if (dp->scd_path == NULL) {
+ spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
+ "none", 0, ZPROP_SRC_LOCAL);
+ } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
+ spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
+ dp->scd_path, 0, ZPROP_SRC_LOCAL);
+ }
+ }
+}
+
+/*
+ * Get zpool property values.
+ */
+int
+spa_prop_get(spa_t *spa, nvlist_t **nvp)
+{
+ objset_t *mos = spa->spa_meta_objset;
+ zap_cursor_t zc;
+ zap_attribute_t za;
+ int err;
+
+ VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+
+ mutex_enter(&spa->spa_props_lock);
+
+ /*
+ * Get properties from the spa config.
+ */
+ spa_prop_get_config(spa, nvp);
+
+ /* If no pool property object, no more prop to get. */
+ if (mos == NULL || spa->spa_pool_props_object == 0) {
+ mutex_exit(&spa->spa_props_lock);
+ return (0);
+ }
+
+ /*
+ * Get properties from the MOS pool property object.
+ */
+ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
+ (err = zap_cursor_retrieve(&zc, &za)) == 0;
+ zap_cursor_advance(&zc)) {
+ uint64_t intval = 0;
+ char *strval = NULL;
+ zprop_source_t src = ZPROP_SRC_DEFAULT;
+ zpool_prop_t prop;
+
+ if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
+ continue;
+
+ switch (za.za_integer_length) {
+ case 8:
+ /* integer property */
+ if (za.za_first_integer !=
+ zpool_prop_default_numeric(prop))
+ src = ZPROP_SRC_LOCAL;
+
+ if (prop == ZPOOL_PROP_BOOTFS) {
+ dsl_pool_t *dp;
+ dsl_dataset_t *ds = NULL;
+
+ dp = spa_get_dsl(spa);
+ rw_enter(&dp->dp_config_rwlock, RW_READER);
+ if (err = dsl_dataset_hold_obj(dp,
+ za.za_first_integer, FTAG, &ds)) {
+ rw_exit(&dp->dp_config_rwlock);
+ break;
+ }
+
+ strval = kmem_alloc(
+ MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
+ KM_SLEEP);
+ dsl_dataset_name(ds, strval);
+ dsl_dataset_rele(ds, FTAG);
+ rw_exit(&dp->dp_config_rwlock);
+ } else {
+ strval = NULL;
+ intval = za.za_first_integer;
+ }
+
+ spa_prop_add_list(*nvp, prop, strval, intval, src);
+
+ if (strval != NULL)
+ kmem_free(strval,
+ MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
+
+ break;
+
+ case 1:
+ /* string property */
+ strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
+ err = zap_lookup(mos, spa->spa_pool_props_object,
+ za.za_name, 1, za.za_num_integers, strval);
+ if (err) {
+ kmem_free(strval, za.za_num_integers);
+ break;
+ }
+ spa_prop_add_list(*nvp, prop, strval, 0, src);
+ kmem_free(strval, za.za_num_integers);
+ break;
+
+ default:
+ break;
+ }
+ }
+ zap_cursor_fini(&zc);
+ mutex_exit(&spa->spa_props_lock);
+out:
+ if (err && err != ENOENT) {
+ nvlist_free(*nvp);
+ *nvp = NULL;
+ return (err);
+ }
+
+ return (0);
+}
+
+/*
+ * Validate the given pool properties nvlist and modify the list
+ * for the property values to be set.
+ */
+static int
+spa_prop_validate(spa_t *spa, nvlist_t *props)
+{
+ nvpair_t *elem;
+ int error = 0, reset_bootfs = 0;
+ uint64_t objnum;
+
+ elem = NULL;
+ while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
+ zpool_prop_t prop;
+ char *propname, *strval;
+ uint64_t intval;
+ objset_t *os;
+ char *slash;
+
+ propname = nvpair_name(elem);
+
+ if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
+ return (EINVAL);
+
+ switch (prop) {
+ case ZPOOL_PROP_VERSION:
+ error = nvpair_value_uint64(elem, &intval);
+ if (!error &&
+ (intval < spa_version(spa) || intval > SPA_VERSION))
+ error = EINVAL;
+ break;
+
+ case ZPOOL_PROP_DELEGATION:
+ case ZPOOL_PROP_AUTOREPLACE:
+ case ZPOOL_PROP_LISTSNAPS:
+ case ZPOOL_PROP_AUTOEXPAND:
+ error = nvpair_value_uint64(elem, &intval);
+ if (!error && intval > 1)
+ error = EINVAL;
+ break;
+
+ case ZPOOL_PROP_BOOTFS:
+ /*
+ * If the pool version is less than SPA_VERSION_BOOTFS,
+ * or the pool is still being created (version == 0),
+ * the bootfs property cannot be set.
+ */
+ if (spa_version(spa) < SPA_VERSION_BOOTFS) {
+ error = ENOTSUP;
+ break;
+ }
+
+ /*
+ * Make sure the vdev config is bootable
+ */
+ if (!vdev_is_bootable(spa->spa_root_vdev)) {
+ error = ENOTSUP;
+ break;
+ }
+
+ reset_bootfs = 1;
+
+ error = nvpair_value_string(elem, &strval);
+
+ if (!error) {
+ uint64_t compress;
+
+ if (strval == NULL || strval[0] == '\0') {
+ objnum = zpool_prop_default_numeric(
+ ZPOOL_PROP_BOOTFS);
+ break;
+ }
+
+ if (error = dmu_objset_hold(strval, FTAG, &os))
+ break;
+
+ /* Must be ZPL and not gzip compressed. */
+
+ if (dmu_objset_type(os) != DMU_OST_ZFS) {
+ error = ENOTSUP;
+ } else if ((error = dsl_prop_get_integer(strval,
+ zfs_prop_to_name(ZFS_PROP_COMPRESSION),
+ &compress, NULL)) == 0 &&
+ !BOOTFS_COMPRESS_VALID(compress)) {
+ error = ENOTSUP;
+ } else {
+ objnum = dmu_objset_id(os);
+ }
+ dmu_objset_rele(os, FTAG);
+ }
+ break;
+
+ case ZPOOL_PROP_FAILUREMODE:
+ error = nvpair_value_uint64(elem, &intval);
+ if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
+ intval > ZIO_FAILURE_MODE_PANIC))
+ error = EINVAL;
+
+ /*
+ * This is a special case which only occurs when
+ * the pool has completely failed. This allows
+ * the user to change the in-core failmode property
+ * without syncing it out to disk (I/Os might
+ * currently be blocked). We do this by returning
+ * EIO to the caller (spa_prop_set) to trick it
+ * into thinking we encountered a property validation
+ * error.
+ */
+ if (!error && spa_suspended(spa)) {
+ spa->spa_failmode = intval;
+ error = EIO;
+ }
+ break;
+
+ case ZPOOL_PROP_CACHEFILE:
+ if ((error = nvpair_value_string(elem, &strval)) != 0)
+ break;
+
+ if (strval[0] == '\0')
+ break;
+
+ if (strcmp(strval, "none") == 0)
+ break;
+
+ if (strval[0] != '/') {
+ error = EINVAL;
+ break;
+ }
+
+ slash = strrchr(strval, '/');
+ ASSERT(slash != NULL);
+
+ if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
+ strcmp(slash, "/..") == 0)
+ error = EINVAL;
+ break;
+
+ case ZPOOL_PROP_DEDUPDITTO:
+ if (spa_version(spa) < SPA_VERSION_DEDUP)
+ error = ENOTSUP;
+ else
+ error = nvpair_value_uint64(elem, &intval);
+ if (error == 0 &&
+ intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
+ error = EINVAL;
+ break;
+ }
+
+ if (error)
+ break;
+ }
+
+ if (!error && reset_bootfs) {
+ error = nvlist_remove(props,
+ zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
+
+ if (!error) {
+ error = nvlist_add_uint64(props,
+ zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
+ }
+ }
+
+ return (error);
+}
+
+void
+spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
+{
+ char *cachefile;
+ spa_config_dirent_t *dp;
+
+ if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
+ &cachefile) != 0)
+ return;
+
+ dp = kmem_alloc(sizeof (spa_config_dirent_t),
+ KM_SLEEP);
+
+ if (cachefile[0] == '\0')
+ dp->scd_path = spa_strdup(spa_config_path);
+ else if (strcmp(cachefile, "none") == 0)
+ dp->scd_path = NULL;
+ else
+ dp->scd_path = spa_strdup(cachefile);
+
+ list_insert_head(&spa->spa_config_list, dp);
+ if (need_sync)
+ spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
+}
+
+int
+spa_prop_set(spa_t *spa, nvlist_t *nvp)
+{
+ int error;
+ nvpair_t *elem;
+ boolean_t need_sync = B_FALSE;
+ zpool_prop_t prop;
+
+ if ((error = spa_prop_validate(spa, nvp)) != 0)
+ return (error);
+
+ elem = NULL;
+ while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
+ if ((prop = zpool_name_to_prop(
+ nvpair_name(elem))) == ZPROP_INVAL)
+ return (EINVAL);
+
+ if (prop == ZPOOL_PROP_CACHEFILE ||
+ prop == ZPOOL_PROP_ALTROOT ||
+ prop == ZPOOL_PROP_READONLY)
+ continue;
+
+ need_sync = B_TRUE;
+ break;
+ }
+
+ if (need_sync)
+ return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
+ spa, nvp, 3));
+ else
+ return (0);
+}
+
+/*
+ * If the bootfs property value is dsobj, clear it.
+ */
+void
+spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
+{
+ if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
+ VERIFY(zap_remove(spa->spa_meta_objset,
+ spa->spa_pool_props_object,
+ zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
+ spa->spa_bootfs = 0;
+ }
+}
+
+/*
+ * ==========================================================================
+ * SPA state manipulation (open/create/destroy/import/export)
+ * ==========================================================================
+ */
+
+static int
+spa_error_entry_compare(const void *a, const void *b)
+{
+ spa_error_entry_t *sa = (spa_error_entry_t *)a;
+ spa_error_entry_t *sb = (spa_error_entry_t *)b;
+ int ret;
+
+ ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
+ sizeof (zbookmark_t));
+
+ if (ret < 0)
+ return (-1);
+ else if (ret > 0)
+ return (1);
+ else
+ return (0);
+}
+
+/*
+ * Utility function which retrieves copies of the current logs and
+ * re-initializes them in the process.
+ */
+void
+spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
+{
+ ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
+
+ bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
+ bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
+
+ avl_create(&spa->spa_errlist_scrub,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+ avl_create(&spa->spa_errlist_last,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+}
+
+static taskq_t *
+spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
+ uint_t value)
+{
+ uint_t flags = TASKQ_PREPOPULATE;
+ boolean_t batch = B_FALSE;
+
+ switch (mode) {
+ case zti_mode_null:
+ return (NULL); /* no taskq needed */
+
+ case zti_mode_fixed:
+ ASSERT3U(value, >=, 1);
+ value = MAX(value, 1);
+ break;
+
+ case zti_mode_batch:
+ batch = B_TRUE;
+ flags |= TASKQ_THREADS_CPU_PCT;
+ value = zio_taskq_batch_pct;
+ break;
+
+ case zti_mode_online_percent:
+ flags |= TASKQ_THREADS_CPU_PCT;
+ break;
+
+ default:
+ panic("unrecognized mode for %s taskq (%u:%u) in "
+ "spa_activate()",
+ name, mode, value);
+ break;
+ }
+
+ if (zio_taskq_sysdc && spa->spa_proc != &p0) {
+ if (batch)
+ flags |= TASKQ_DC_BATCH;
+
+ return (taskq_create_sysdc(name, value, 50, INT_MAX,
+ spa->spa_proc, zio_taskq_basedc, flags));
+ }
+ return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
+ spa->spa_proc, flags));
+}
+
+static void
+spa_create_zio_taskqs(spa_t *spa)
+{
+ for (int t = 0; t < ZIO_TYPES; t++) {
+ for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
+ const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
+ enum zti_modes mode = ztip->zti_mode;
+ uint_t value = ztip->zti_value;
+ char name[32];
+
+ (void) snprintf(name, sizeof (name),
+ "%s_%s", zio_type_name[t], zio_taskq_types[q]);
+
+ spa->spa_zio_taskq[t][q] =
+ spa_taskq_create(spa, name, mode, value);
+ }
+ }
+}
+
+#ifdef _KERNEL
+static void
+spa_thread(void *arg)
+{
+ callb_cpr_t cprinfo;
+
+ spa_t *spa = arg;
+ user_t *pu = PTOU(curproc);
+
+ CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
+ spa->spa_name);
+
+ ASSERT(curproc != &p0);
+ (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
+ "zpool-%s", spa->spa_name);
+ (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
+
+ /* bind this thread to the requested psrset */
+ if (zio_taskq_psrset_bind != PS_NONE) {
+ pool_lock();
+ mutex_enter(&cpu_lock);
+ mutex_enter(&pidlock);
+ mutex_enter(&curproc->p_lock);
+
+ if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
+ 0, NULL, NULL) == 0) {
+ curthread->t_bind_pset = zio_taskq_psrset_bind;
+ } else {
+ cmn_err(CE_WARN,
+ "Couldn't bind process for zfs pool \"%s\" to "
+ "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
+ }
+
+ mutex_exit(&curproc->p_lock);
+ mutex_exit(&pidlock);
+ mutex_exit(&cpu_lock);
+ pool_unlock();
+ }
+
+ if (zio_taskq_sysdc) {
+ sysdc_thread_enter(curthread, 100, 0);
+ }
+
+ spa->spa_proc = curproc;
+ spa->spa_did = curthread->t_did;
+
+ spa_create_zio_taskqs(spa);
+
+ mutex_enter(&spa->spa_proc_lock);
+ ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
+
+ spa->spa_proc_state = SPA_PROC_ACTIVE;
+ cv_broadcast(&spa->spa_proc_cv);
+
+ CALLB_CPR_SAFE_BEGIN(&cprinfo);
+ while (spa->spa_proc_state == SPA_PROC_ACTIVE)
+ cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
+ CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
+
+ ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
+ spa->spa_proc_state = SPA_PROC_GONE;
+ spa->spa_proc = &p0;
+ cv_broadcast(&spa->spa_proc_cv);
+ CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
+
+ mutex_enter(&curproc->p_lock);
+ lwp_exit();
+}
+#endif
+
+/*
+ * Activate an uninitialized pool.
+ */
+static void
+spa_activate(spa_t *spa, int mode)
+{
+ ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
+
+ spa->spa_state = POOL_STATE_ACTIVE;
+ spa->spa_mode = mode;
+
+ spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
+ spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
+
+ /* Try to create a covering process */
+ mutex_enter(&spa->spa_proc_lock);
+ ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
+ ASSERT(spa->spa_proc == &p0);
+ spa->spa_did = 0;
+
+ /* Only create a process if we're going to be around a while. */
+ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
+ if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
+ NULL, 0) == 0) {
+ spa->spa_proc_state = SPA_PROC_CREATED;
+ while (spa->spa_proc_state == SPA_PROC_CREATED) {
+ cv_wait(&spa->spa_proc_cv,
+ &spa->spa_proc_lock);
+ }
+ ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
+ ASSERT(spa->spa_proc != &p0);
+ ASSERT(spa->spa_did != 0);
+ } else {
+#ifdef _KERNEL
+ cmn_err(CE_WARN,
+ "Couldn't create process for zfs pool \"%s\"\n",
+ spa->spa_name);
+#endif
+ }
+ }
+ mutex_exit(&spa->spa_proc_lock);
+
+ /* If we didn't create a process, we need to create our taskqs. */
+ if (spa->spa_proc == &p0) {
+ spa_create_zio_taskqs(spa);
+ }
+
+ list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
+ offsetof(vdev_t, vdev_config_dirty_node));
+ list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
+ offsetof(vdev_t, vdev_state_dirty_node));
+
+ txg_list_create(&spa->spa_vdev_txg_list,
+ offsetof(struct vdev, vdev_txg_node));
+
+ avl_create(&spa->spa_errlist_scrub,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+ avl_create(&spa->spa_errlist_last,
+ spa_error_entry_compare, sizeof (spa_error_entry_t),
+ offsetof(spa_error_entry_t, se_avl));
+}
+
+/*
+ * Opposite of spa_activate().
+ */
+static void
+spa_deactivate(spa_t *spa)
+{
+ ASSERT(spa->spa_sync_on == B_FALSE);
+ ASSERT(spa->spa_dsl_pool == NULL);
+ ASSERT(spa->spa_root_vdev == NULL);
+ ASSERT(spa->spa_async_zio_root == NULL);
+ ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
+
+ txg_list_destroy(&spa->spa_vdev_txg_list);
+
+ list_destroy(&spa->spa_config_dirty_list);
+ list_destroy(&spa->spa_state_dirty_list);
+
+ for (int t = 0; t < ZIO_TYPES; t++) {
+ for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
+ if (spa->spa_zio_taskq[t][q] != NULL)
+ taskq_destroy(spa->spa_zio_taskq[t][q]);
+ spa->spa_zio_taskq[t][q] = NULL;
+ }
+ }
+
+ metaslab_class_destroy(spa->spa_normal_class);
+ spa->spa_normal_class = NULL;
+
+ metaslab_class_destroy(spa->spa_log_class);
+ spa->spa_log_class = NULL;
+
+ /*
+ * If this was part of an import or the open otherwise failed, we may
+ * still have errors left in the queues. Empty them just in case.
+ */
+ spa_errlog_drain(spa);
+
+ avl_destroy(&spa->spa_errlist_scrub);
+ avl_destroy(&spa->spa_errlist_last);
+
+ spa->spa_state = POOL_STATE_UNINITIALIZED;
+
+ mutex_enter(&spa->spa_proc_lock);
+ if (spa->spa_proc_state != SPA_PROC_NONE) {
+ ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
+ spa->spa_proc_state = SPA_PROC_DEACTIVATE;
+ cv_broadcast(&spa->spa_proc_cv);
+ while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
+ ASSERT(spa->spa_proc != &p0);
+ cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
+ }
+ ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
+ spa->spa_proc_state = SPA_PROC_NONE;
+ }
+ ASSERT(spa->spa_proc == &p0);
+ mutex_exit(&spa->spa_proc_lock);
+
+ /*
+ * We want to make sure spa_thread() has actually exited the ZFS
+ * module, so that the module can't be unloaded out from underneath
+ * it.
+ */
+ if (spa->spa_did != 0) {
+ thread_join(spa->spa_did);
+ spa->spa_did = 0;
+ }
+}
+
+/*
+ * Verify a pool configuration, and construct the vdev tree appropriately. This
+ * will create all the necessary vdevs in the appropriate layout, with each vdev
+ * in the CLOSED state. This will prep the pool before open/creation/import.
+ * All vdev validation is done by the vdev_alloc() routine.
+ */
+static int
+spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
+ uint_t id, int atype)
+{
+ nvlist_t **child;
+ uint_t children;
+ int error;
+
+ if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
+ return (error);
+
+ if ((*vdp)->vdev_ops->vdev_op_leaf)
+ return (0);
+
+ error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
+ &child, &children);
+
+ if (error == ENOENT)
+ return (0);
+
+ if (error) {
+ vdev_free(*vdp);
+ *vdp = NULL;
+ return (EINVAL);
+ }
+
+ for (int c = 0; c < children; c++) {
+ vdev_t *vd;
+ if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
+ atype)) != 0) {
+ vdev_free(*vdp);
+ *vdp = NULL;
+ return (error);
+ }
+ }
+
+ ASSERT(*vdp != NULL);
+
+ return (0);
+}
+
+/*
+ * Opposite of spa_load().
+ */
+static void
+spa_unload(spa_t *spa)
+{
+ int i;
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+
+ /*
+ * Stop async tasks.
+ */
+ spa_async_suspend(spa);
+
+ /*
+ * Stop syncing.
+ */
+ if (spa->spa_sync_on) {
+ txg_sync_stop(spa->spa_dsl_pool);
+ spa->spa_sync_on = B_FALSE;
+ }
+
+ /*
+ * Wait for any outstanding async I/O to complete.
+ */
+ if (spa->spa_async_zio_root != NULL) {
+ (void) zio_wait(spa->spa_async_zio_root);
+ spa->spa_async_zio_root = NULL;
+ }
+
+ bpobj_close(&spa->spa_deferred_bpobj);
+
+ /*
+ * Close the dsl pool.
+ */
+ if (spa->spa_dsl_pool) {
+ dsl_pool_close(spa->spa_dsl_pool);
+ spa->spa_dsl_pool = NULL;
+ spa->spa_meta_objset = NULL;
+ }
+
+ ddt_unload(spa);
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+
+ /*
+ * Drop and purge level 2 cache
+ */
+ spa_l2cache_drop(spa);
+
+ /*
+ * Close all vdevs.
+ */
+ if (spa->spa_root_vdev)
+ vdev_free(spa->spa_root_vdev);
+ ASSERT(spa->spa_root_vdev == NULL);
+
+ for (i = 0; i < spa->spa_spares.sav_count; i++)
+ vdev_free(spa->spa_spares.sav_vdevs[i]);
+ if (spa->spa_spares.sav_vdevs) {
+ kmem_free(spa->spa_spares.sav_vdevs,
+ spa->spa_spares.sav_count * sizeof (void *));
+ spa->spa_spares.sav_vdevs = NULL;
+ }
+ if (spa->spa_spares.sav_config) {
+ nvlist_free(spa->spa_spares.sav_config);
+ spa->spa_spares.sav_config = NULL;
+ }
+ spa->spa_spares.sav_count = 0;
+
+ for (i = 0; i < spa->spa_l2cache.sav_count; i++)
+ vdev_free(spa->spa_l2cache.sav_vdevs[i]);
+ if (spa->spa_l2cache.sav_vdevs) {
+ kmem_free(spa->spa_l2cache.sav_vdevs,
+ spa->spa_l2cache.sav_count * sizeof (void *));
+ spa->spa_l2cache.sav_vdevs = NULL;
+ }
+ if (spa->spa_l2cache.sav_config) {
+ nvlist_free(spa->spa_l2cache.sav_config);
+ spa->spa_l2cache.sav_config = NULL;
+ }
+ spa->spa_l2cache.sav_count = 0;
+
+ spa->spa_async_suspended = 0;
+
+ spa_config_exit(spa, SCL_ALL, FTAG);
+}
+
+/*
+ * Load (or re-load) the current list of vdevs describing the active spares for
+ * this pool. When this is called, we have some form of basic information in
+ * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
+ * then re-generate a more complete list including status information.
+ */
+static void
+spa_load_spares(spa_t *spa)
+{
+ nvlist_t **spares;
+ uint_t nspares;
+ int i;
+ vdev_t *vd, *tvd;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ /*
+ * First, close and free any existing spare vdevs.
+ */
+ for (i = 0; i < spa->spa_spares.sav_count; i++) {
+ vd = spa->spa_spares.sav_vdevs[i];
+
+ /* Undo the call to spa_activate() below */
+ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
+ B_FALSE)) != NULL && tvd->vdev_isspare)
+ spa_spare_remove(tvd);
+ vdev_close(vd);
+ vdev_free(vd);
+ }
+
+ if (spa->spa_spares.sav_vdevs)
+ kmem_free(spa->spa_spares.sav_vdevs,
+ spa->spa_spares.sav_count * sizeof (void *));
+
+ if (spa->spa_spares.sav_config == NULL)
+ nspares = 0;
+ else
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+
+ spa->spa_spares.sav_count = (int)nspares;
+ spa->spa_spares.sav_vdevs = NULL;
+
+ if (nspares == 0)
+ return;
+
+ /*
+ * Construct the array of vdevs, opening them to get status in the
+ * process. For each spare, there is potentially two different vdev_t
+ * structures associated with it: one in the list of spares (used only
+ * for basic validation purposes) and one in the active vdev
+ * configuration (if it's spared in). During this phase we open and
+ * validate each vdev on the spare list. If the vdev also exists in the
+ * active configuration, then we also mark this vdev as an active spare.
+ */
+ spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
+ KM_SLEEP);
+ for (i = 0; i < spa->spa_spares.sav_count; i++) {
+ VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
+ VDEV_ALLOC_SPARE) == 0);
+ ASSERT(vd != NULL);
+
+ spa->spa_spares.sav_vdevs[i] = vd;
+
+ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
+ B_FALSE)) != NULL) {
+ if (!tvd->vdev_isspare)
+ spa_spare_add(tvd);
+
+ /*
+ * We only mark the spare active if we were successfully
+ * able to load the vdev. Otherwise, importing a pool
+ * with a bad active spare would result in strange
+ * behavior, because multiple pool would think the spare
+ * is actively in use.
+ *
+ * There is a vulnerability here to an equally bizarre
+ * circumstance, where a dead active spare is later
+ * brought back to life (onlined or otherwise). Given
+ * the rarity of this scenario, and the extra complexity
+ * it adds, we ignore the possibility.
+ */
+ if (!vdev_is_dead(tvd))
+ spa_spare_activate(tvd);
+ }
+
+ vd->vdev_top = vd;
+ vd->vdev_aux = &spa->spa_spares;
+
+ if (vdev_open(vd) != 0)
+ continue;
+
+ if (vdev_validate_aux(vd) == 0)
+ spa_spare_add(vd);
+ }
+
+ /*
+ * Recompute the stashed list of spares, with status information
+ * this time.
+ */
+ VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
+ DATA_TYPE_NVLIST_ARRAY) == 0);
+
+ spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
+ KM_SLEEP);
+ for (i = 0; i < spa->spa_spares.sav_count; i++)
+ spares[i] = vdev_config_generate(spa,
+ spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
+ for (i = 0; i < spa->spa_spares.sav_count; i++)
+ nvlist_free(spares[i]);
+ kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
+}
+
+/*
+ * Load (or re-load) the current list of vdevs describing the active l2cache for
+ * this pool. When this is called, we have some form of basic information in
+ * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
+ * then re-generate a more complete list including status information.
+ * Devices which are already active have their details maintained, and are
+ * not re-opened.
+ */
+static void
+spa_load_l2cache(spa_t *spa)
+{
+ nvlist_t **l2cache;
+ uint_t nl2cache;
+ int i, j, oldnvdevs;
+ uint64_t guid;
+ vdev_t *vd, **oldvdevs, **newvdevs;
+ spa_aux_vdev_t *sav = &spa->spa_l2cache;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ if (sav->sav_config != NULL) {
+ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
+ ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
+ newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
+ } else {
+ nl2cache = 0;
+ }
+
+ oldvdevs = sav->sav_vdevs;
+ oldnvdevs = sav->sav_count;
+ sav->sav_vdevs = NULL;
+ sav->sav_count = 0;
+
+ /*
+ * Process new nvlist of vdevs.
+ */
+ for (i = 0; i < nl2cache; i++) {
+ VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
+ &guid) == 0);
+
+ newvdevs[i] = NULL;
+ for (j = 0; j < oldnvdevs; j++) {
+ vd = oldvdevs[j];
+ if (vd != NULL && guid == vd->vdev_guid) {
+ /*
+ * Retain previous vdev for add/remove ops.
+ */
+ newvdevs[i] = vd;
+ oldvdevs[j] = NULL;
+ break;
+ }
+ }
+
+ if (newvdevs[i] == NULL) {
+ /*
+ * Create new vdev
+ */
+ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
+ VDEV_ALLOC_L2CACHE) == 0);
+ ASSERT(vd != NULL);
+ newvdevs[i] = vd;
+
+ /*
+ * Commit this vdev as an l2cache device,
+ * even if it fails to open.
+ */
+ spa_l2cache_add(vd);
+
+ vd->vdev_top = vd;
+ vd->vdev_aux = sav;
+
+ spa_l2cache_activate(vd);
+
+ if (vdev_open(vd) != 0)
+ continue;
+
+ (void) vdev_validate_aux(vd);
+
+ if (!vdev_is_dead(vd))
+ l2arc_add_vdev(spa, vd);
+ }
+ }
+
+ /*
+ * Purge vdevs that were dropped
+ */
+ for (i = 0; i < oldnvdevs; i++) {
+ uint64_t pool;
+
+ vd = oldvdevs[i];
+ if (vd != NULL) {
+ if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
+ pool != 0ULL && l2arc_vdev_present(vd))
+ l2arc_remove_vdev(vd);
+ (void) vdev_close(vd);
+ spa_l2cache_remove(vd);
+ }
+ }
+
+ if (oldvdevs)
+ kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
+
+ if (sav->sav_config == NULL)
+ goto out;
+
+ sav->sav_vdevs = newvdevs;
+ sav->sav_count = (int)nl2cache;
+
+ /*
+ * Recompute the stashed list of l2cache devices, with status
+ * information this time.
+ */
+ VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
+ DATA_TYPE_NVLIST_ARRAY) == 0);
+
+ l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
+ for (i = 0; i < sav->sav_count; i++)
+ l2cache[i] = vdev_config_generate(spa,
+ sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
+ VERIFY(nvlist_add_nvlist_array(sav->sav_config,
+ ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
+out:
+ for (i = 0; i < sav->sav_count; i++)
+ nvlist_free(l2cache[i]);
+ if (sav->sav_count)
+ kmem_free(l2cache, sav->sav_count * sizeof (void *));
+}
+
+static int
+load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
+{
+ dmu_buf_t *db;
+ char *packed = NULL;
+ size_t nvsize = 0;
+ int error;
+ *value = NULL;
+
+ VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
+ nvsize = *(uint64_t *)db->db_data;
+ dmu_buf_rele(db, FTAG);
+
+ packed = kmem_alloc(nvsize, KM_SLEEP);
+ error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
+ DMU_READ_PREFETCH);
+ if (error == 0)
+ error = nvlist_unpack(packed, nvsize, value, 0);
+ kmem_free(packed, nvsize);
+
+ return (error);
+}
+
+/*
+ * Checks to see if the given vdev could not be opened, in which case we post a
+ * sysevent to notify the autoreplace code that the device has been removed.
+ */
+static void
+spa_check_removed(vdev_t *vd)
+{
+ for (int c = 0; c < vd->vdev_children; c++)
+ spa_check_removed(vd->vdev_child[c]);
+
+ if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
+ zfs_post_autoreplace(vd->vdev_spa, vd);
+ spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
+ }
+}
+
+/*
+ * Validate the current config against the MOS config
+ */
+static boolean_t
+spa_config_valid(spa_t *spa, nvlist_t *config)
+{
+ vdev_t *mrvd, *rvd = spa->spa_root_vdev;
+ nvlist_t *nv;
+
+ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
+
+ ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
+
+ /*
+ * If we're doing a normal import, then build up any additional
+ * diagnostic information about missing devices in this config.
+ * We'll pass this up to the user for further processing.
+ */
+ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
+ nvlist_t **child, *nv;
+ uint64_t idx = 0;
+
+ child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
+ KM_SLEEP);
+ VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *tvd = rvd->vdev_child[c];
+ vdev_t *mtvd = mrvd->vdev_child[c];
+
+ if (tvd->vdev_ops == &vdev_missing_ops &&
+ mtvd->vdev_ops != &vdev_missing_ops &&
+ mtvd->vdev_islog)
+ child[idx++] = vdev_config_generate(spa, mtvd,
+ B_FALSE, 0);
+ }
+
+ if (idx) {
+ VERIFY(nvlist_add_nvlist_array(nv,
+ ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
+ VERIFY(nvlist_add_nvlist(spa->spa_load_info,
+ ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
+
+ for (int i = 0; i < idx; i++)
+ nvlist_free(child[i]);
+ }
+ nvlist_free(nv);
+ kmem_free(child, rvd->vdev_children * sizeof (char **));
+ }
+
+ /*
+ * Compare the root vdev tree with the information we have
+ * from the MOS config (mrvd). Check each top-level vdev
+ * with the corresponding MOS config top-level (mtvd).
+ */
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *tvd = rvd->vdev_child[c];
+ vdev_t *mtvd = mrvd->vdev_child[c];
+
+ /*
+ * Resolve any "missing" vdevs in the current configuration.
+ * If we find that the MOS config has more accurate information
+ * about the top-level vdev then use that vdev instead.
+ */
+ if (tvd->vdev_ops == &vdev_missing_ops &&
+ mtvd->vdev_ops != &vdev_missing_ops) {
+
+ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
+ continue;
+
+ /*
+ * Device specific actions.
+ */
+ if (mtvd->vdev_islog) {
+ spa_set_log_state(spa, SPA_LOG_CLEAR);
+ } else {
+ /*
+ * XXX - once we have 'readonly' pool
+ * support we should be able to handle
+ * missing data devices by transitioning
+ * the pool to readonly.
+ */
+ continue;
+ }
+
+ /*
+ * Swap the missing vdev with the data we were
+ * able to obtain from the MOS config.
+ */
+ vdev_remove_child(rvd, tvd);
+ vdev_remove_child(mrvd, mtvd);
+
+ vdev_add_child(rvd, mtvd);
+ vdev_add_child(mrvd, tvd);
+
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ vdev_load(mtvd);
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+
+ vdev_reopen(rvd);
+ } else if (mtvd->vdev_islog) {
+ /*
+ * Load the slog device's state from the MOS config
+ * since it's possible that the label does not
+ * contain the most up-to-date information.
+ */
+ vdev_load_log_state(tvd, mtvd);
+ vdev_reopen(tvd);
+ }
+ }
+ vdev_free(mrvd);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ /*
+ * Ensure we were able to validate the config.
+ */
+ return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
+}
+
+/*
+ * Check for missing log devices
+ */
+static int
+spa_check_logs(spa_t *spa)
+{
+ switch (spa->spa_log_state) {
+ case SPA_LOG_MISSING:
+ /* need to recheck in case slog has been restored */
+ case SPA_LOG_UNKNOWN:
+ if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
+ DS_FIND_CHILDREN)) {
+ spa_set_log_state(spa, SPA_LOG_MISSING);
+ return (1);
+ }
+ break;
+ }
+ return (0);
+}
+
+static boolean_t
+spa_passivate_log(spa_t *spa)
+{
+ vdev_t *rvd = spa->spa_root_vdev;
+ boolean_t slog_found = B_FALSE;
+
+ ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
+
+ if (!spa_has_slogs(spa))
+ return (B_FALSE);
+
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *tvd = rvd->vdev_child[c];
+ metaslab_group_t *mg = tvd->vdev_mg;
+
+ if (tvd->vdev_islog) {
+ metaslab_group_passivate(mg);
+ slog_found = B_TRUE;
+ }
+ }
+
+ return (slog_found);
+}
+
+static void
+spa_activate_log(spa_t *spa)
+{
+ vdev_t *rvd = spa->spa_root_vdev;
+
+ ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
+
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *tvd = rvd->vdev_child[c];
+ metaslab_group_t *mg = tvd->vdev_mg;
+
+ if (tvd->vdev_islog)
+ metaslab_group_activate(mg);
+ }
+}
+
+int
+spa_offline_log(spa_t *spa)
+{
+ int error = 0;
+
+ if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
+ NULL, DS_FIND_CHILDREN)) == 0) {
+
+ /*
+ * We successfully offlined the log device, sync out the
+ * current txg so that the "stubby" block can be removed
+ * by zil_sync().
+ */
+ txg_wait_synced(spa->spa_dsl_pool, 0);
+ }
+ return (error);
+}
+
+static void
+spa_aux_check_removed(spa_aux_vdev_t *sav)
+{
+ for (int i = 0; i < sav->sav_count; i++)
+ spa_check_removed(sav->sav_vdevs[i]);
+}
+
+void
+spa_claim_notify(zio_t *zio)
+{
+ spa_t *spa = zio->io_spa;
+
+ if (zio->io_error)
+ return;
+
+ mutex_enter(&spa->spa_props_lock); /* any mutex will do */
+ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
+ spa->spa_claim_max_txg = zio->io_bp->blk_birth;
+ mutex_exit(&spa->spa_props_lock);
+}
+
+typedef struct spa_load_error {
+ uint64_t sle_meta_count;
+ uint64_t sle_data_count;
+} spa_load_error_t;
+
+static void
+spa_load_verify_done(zio_t *zio)
+{
+ blkptr_t *bp = zio->io_bp;
+ spa_load_error_t *sle = zio->io_private;
+ dmu_object_type_t type = BP_GET_TYPE(bp);
+ int error = zio->io_error;
+
+ if (error) {
+ if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
+ type != DMU_OT_INTENT_LOG)
+ atomic_add_64(&sle->sle_meta_count, 1);
+ else
+ atomic_add_64(&sle->sle_data_count, 1);
+ }
+ zio_data_buf_free(zio->io_data, zio->io_size);
+}
+
+/*ARGSUSED*/
+static int
+spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
+ arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
+{
+ if (bp != NULL) {
+ zio_t *rio = arg;
+ size_t size = BP_GET_PSIZE(bp);
+ void *data = zio_data_buf_alloc(size);
+
+ zio_nowait(zio_read(rio, spa, bp, data, size,
+ spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
+ ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
+ ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
+ }
+ return (0);
+}
+
+static int
+spa_load_verify(spa_t *spa)
+{
+ zio_t *rio;
+ spa_load_error_t sle = { 0 };
+ zpool_rewind_policy_t policy;
+ boolean_t verify_ok = B_FALSE;
+ int error;
+
+ zpool_get_rewind_policy(spa->spa_config, &policy);
+
+ if (policy.zrp_request & ZPOOL_NEVER_REWIND)
+ return (0);
+
+ rio = zio_root(spa, NULL, &sle,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
+
+ error = traverse_pool(spa, spa->spa_verify_min_txg,
+ TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
+
+ (void) zio_wait(rio);
+
+ spa->spa_load_meta_errors = sle.sle_meta_count;
+ spa->spa_load_data_errors = sle.sle_data_count;
+
+ if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
+ sle.sle_data_count <= policy.zrp_maxdata) {
+ int64_t loss = 0;
+
+ verify_ok = B_TRUE;
+ spa->spa_load_txg = spa->spa_uberblock.ub_txg;
+ spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
+
+ loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
+ VERIFY(nvlist_add_uint64(spa->spa_load_info,
+ ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
+ VERIFY(nvlist_add_int64(spa->spa_load_info,
+ ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
+ VERIFY(nvlist_add_uint64(spa->spa_load_info,
+ ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
+ } else {
+ spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
+ }
+
+ if (error) {
+ if (error != ENXIO && error != EIO)
+ error = EIO;
+ return (error);
+ }
+
+ return (verify_ok ? 0 : EIO);
+}
+
+/*
+ * Find a value in the pool props object.
+ */
+static void
+spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
+{
+ (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
+ zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
+}
+
+/*
+ * Find a value in the pool directory object.
+ */
+static int
+spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
+{
+ return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
+ name, sizeof (uint64_t), 1, val));
+}
+
+static int
+spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
+{
+ vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
+ return (err);
+}
+
+/*
+ * Fix up config after a partly-completed split. This is done with the
+ * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
+ * pool have that entry in their config, but only the splitting one contains
+ * a list of all the guids of the vdevs that are being split off.
+ *
+ * This function determines what to do with that list: either rejoin
+ * all the disks to the pool, or complete the splitting process. To attempt
+ * the rejoin, each disk that is offlined is marked online again, and
+ * we do a reopen() call. If the vdev label for every disk that was
+ * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
+ * then we call vdev_split() on each disk, and complete the split.
+ *
+ * Otherwise we leave the config alone, with all the vdevs in place in
+ * the original pool.
+ */
+static void
+spa_try_repair(spa_t *spa, nvlist_t *config)
+{
+ uint_t extracted;
+ uint64_t *glist;
+ uint_t i, gcount;
+ nvlist_t *nvl;
+ vdev_t **vd;
+ boolean_t attempt_reopen;
+
+ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
+ return;
+
+ /* check that the config is complete */
+ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
+ &glist, &gcount) != 0)
+ return;
+
+ vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
+
+ /* attempt to online all the vdevs & validate */
+ attempt_reopen = B_TRUE;
+ for (i = 0; i < gcount; i++) {
+ if (glist[i] == 0) /* vdev is hole */
+ continue;
+
+ vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
+ if (vd[i] == NULL) {
+ /*
+ * Don't bother attempting to reopen the disks;
+ * just do the split.
+ */
+ attempt_reopen = B_FALSE;
+ } else {
+ /* attempt to re-online it */
+ vd[i]->vdev_offline = B_FALSE;
+ }
+ }
+
+ if (attempt_reopen) {
+ vdev_reopen(spa->spa_root_vdev);
+
+ /* check each device to see what state it's in */
+ for (extracted = 0, i = 0; i < gcount; i++) {
+ if (vd[i] != NULL &&
+ vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
+ break;
+ ++extracted;
+ }
+ }
+
+ /*
+ * If every disk has been moved to the new pool, or if we never
+ * even attempted to look at them, then we split them off for
+ * good.
+ */
+ if (!attempt_reopen || gcount == extracted) {
+ for (i = 0; i < gcount; i++)
+ if (vd[i] != NULL)
+ vdev_split(vd[i]);
+ vdev_reopen(spa->spa_root_vdev);
+ }
+
+ kmem_free(vd, gcount * sizeof (vdev_t *));
+}
+
+static int
+spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
+ boolean_t mosconfig)
+{
+ nvlist_t *config = spa->spa_config;
+ char *ereport = FM_EREPORT_ZFS_POOL;
+ int error;
+ uint64_t pool_guid;
+ nvlist_t *nvl;
+
+ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
+ return (EINVAL);
+
+ /*
+ * Versioning wasn't explicitly added to the label until later, so if
+ * it's not present treat it as the initial version.
+ */
+ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
+ &spa->spa_ubsync.ub_version) != 0)
+ spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
+
+ (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
+ &spa->spa_config_txg);
+
+ if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
+ spa_guid_exists(pool_guid, 0)) {
+ error = EEXIST;
+ } else {
+ spa->spa_load_guid = pool_guid;
+
+ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
+ &nvl) == 0) {
+ VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
+ KM_SLEEP) == 0);
+ }
+
+ gethrestime(&spa->spa_loaded_ts);
+ error = spa_load_impl(spa, pool_guid, config, state, type,
+ mosconfig, &ereport);
+ }
+
+ spa->spa_minref = refcount_count(&spa->spa_refcount);
+ if (error) {
+ if (error != EEXIST) {
+ spa->spa_loaded_ts.tv_sec = 0;
+ spa->spa_loaded_ts.tv_nsec = 0;
+ }
+ if (error != EBADF) {
+ zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
+ }
+ }
+ spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
+ spa->spa_ena = 0;
+
+ return (error);
+}
+
+/*
+ * Load an existing storage pool, using the pool's builtin spa_config as a
+ * source of configuration information.
+ */
+static int
+spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
+ spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
+ char **ereport)
+{
+ int error = 0;
+ nvlist_t *nvroot = NULL;
+ vdev_t *rvd;
+ uberblock_t *ub = &spa->spa_uberblock;
+ uint64_t children, config_cache_txg = spa->spa_config_txg;
+ int orig_mode = spa->spa_mode;
+ int parse;
+ uint64_t obj;
+
+ /*
+ * If this is an untrusted config, access the pool in read-only mode.
+ * This prevents things like resilvering recently removed devices.
+ */
+ if (!mosconfig)
+ spa->spa_mode = FREAD;
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+
+ spa->spa_load_state = state;
+
+ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
+ return (EINVAL);
+
+ parse = (type == SPA_IMPORT_EXISTING ?
+ VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
+
+ /*
+ * Create "The Godfather" zio to hold all async IOs
+ */
+ spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
+
+ /*
+ * Parse the configuration into a vdev tree. We explicitly set the
+ * value that will be returned by spa_version() since parsing the
+ * configuration requires knowing the version number.
+ */
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ if (error != 0)
+ return (error);
+
+ ASSERT(spa->spa_root_vdev == rvd);
+
+ if (type != SPA_IMPORT_ASSEMBLE) {
+ ASSERT(spa_guid(spa) == pool_guid);
+ }
+
+ /*
+ * Try to open all vdevs, loading each label in the process.
+ */
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ error = vdev_open(rvd);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ if (error != 0)
+ return (error);
+
+ /*
+ * We need to validate the vdev labels against the configuration that
+ * we have in hand, which is dependent on the setting of mosconfig. If
+ * mosconfig is true then we're validating the vdev labels based on
+ * that config. Otherwise, we're validating against the cached config
+ * (zpool.cache) that was read when we loaded the zfs module, and then
+ * later we will recursively call spa_load() and validate against
+ * the vdev config.
+ *
+ * If we're assembling a new pool that's been split off from an
+ * existing pool, the labels haven't yet been updated so we skip
+ * validation for now.
+ */
+ if (type != SPA_IMPORT_ASSEMBLE) {
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ error = vdev_validate(rvd);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ if (error != 0)
+ return (error);
+
+ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
+ return (ENXIO);
+ }
+
+ /*
+ * Find the best uberblock.
+ */
+ vdev_uberblock_load(NULL, rvd, ub);
+
+ /*
+ * If we weren't able to find a single valid uberblock, return failure.
+ */
+ if (ub->ub_txg == 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
+
+ /*
+ * If the pool is newer than the code, we can't open it.
+ */
+ if (ub->ub_version > SPA_VERSION)
+ return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
+
+ /*
+ * If the vdev guid sum doesn't match the uberblock, we have an
+ * incomplete configuration. We first check to see if the pool
+ * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
+ * If it is, defer the vdev_guid_sum check till later so we
+ * can handle missing vdevs.
+ */
+ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
+ &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
+ rvd->vdev_guid_sum != ub->ub_guid_sum)
+ return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
+
+ if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_try_repair(spa, config);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ nvlist_free(spa->spa_config_splitting);
+ spa->spa_config_splitting = NULL;
+ }
+
+ /*
+ * Initialize internal SPA structures.
+ */
+ spa->spa_state = POOL_STATE_ACTIVE;
+ spa->spa_ubsync = spa->spa_uberblock;
+ spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
+ TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
+ spa->spa_first_txg = spa->spa_last_ubsync_txg ?
+ spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
+ spa->spa_claim_max_txg = spa->spa_first_txg;
+ spa->spa_prev_software_version = ub->ub_software_version;
+
+ error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
+ if (error)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+ spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
+
+ if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ if (!mosconfig) {
+ uint64_t hostid;
+ nvlist_t *policy = NULL, *nvconfig;
+
+ if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
+ ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
+ char *hostname;
+ unsigned long myhostid = 0;
+
+ VERIFY(nvlist_lookup_string(nvconfig,
+ ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
+
+#ifdef _KERNEL
+ myhostid = zone_get_hostid(NULL);
+#else /* _KERNEL */
+ /*
+ * We're emulating the system's hostid in userland, so
+ * we can't use zone_get_hostid().
+ */
+ (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
+#endif /* _KERNEL */
+ if (hostid != 0 && myhostid != 0 &&
+ hostid != myhostid) {
+ nvlist_free(nvconfig);
+ cmn_err(CE_WARN, "pool '%s' could not be "
+ "loaded as it was last accessed by "
+ "another system (host: %s hostid: 0x%lx). "
+ "See: http://www.sun.com/msg/ZFS-8000-EY",
+ spa_name(spa), hostname,
+ (unsigned long)hostid);
+ return (EBADF);
+ }
+ }
+ if (nvlist_lookup_nvlist(spa->spa_config,
+ ZPOOL_REWIND_POLICY, &policy) == 0)
+ VERIFY(nvlist_add_nvlist(nvconfig,
+ ZPOOL_REWIND_POLICY, policy) == 0);
+
+ spa_config_set(spa, nvconfig);
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_activate(spa, orig_mode);
+
+ return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
+ }
+
+ if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+ error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
+ if (error != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ /*
+ * Load the bit that tells us to use the new accounting function
+ * (raid-z deflation). If we have an older pool, this will not
+ * be present.
+ */
+ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
+ &spa->spa_creation_version);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ /*
+ * Load the persistent error log. If we have an older pool, this will
+ * not be present.
+ */
+ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
+ &spa->spa_errlog_scrub);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ /*
+ * Load the history object. If we have an older pool, this
+ * will not be present.
+ */
+ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ /*
+ * If we're assembling the pool from the split-off vdevs of
+ * an existing pool, we don't want to attach the spares & cache
+ * devices.
+ */
+
+ /*
+ * Load any hot spares for this pool.
+ */
+ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+ if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
+ ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
+ if (load_nvlist(spa, spa->spa_spares.sav_object,
+ &spa->spa_spares.sav_config) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_load_spares(spa);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ } else if (error == 0) {
+ spa->spa_spares.sav_sync = B_TRUE;
+ }
+
+ /*
+ * Load any level 2 ARC devices for this pool.
+ */
+ error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
+ &spa->spa_l2cache.sav_object);
+ if (error != 0 && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+ if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
+ ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
+ if (load_nvlist(spa, spa->spa_l2cache.sav_object,
+ &spa->spa_l2cache.sav_config) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_load_l2cache(spa);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ } else if (error == 0) {
+ spa->spa_l2cache.sav_sync = B_TRUE;
+ }
+
+ spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
+
+ error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
+ if (error && error != ENOENT)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ if (error == 0) {
+ uint64_t autoreplace;
+
+ spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
+ spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
+ spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
+ spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
+ spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
+ spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
+ &spa->spa_dedup_ditto);
+
+ spa->spa_autoreplace = (autoreplace != 0);
+ }
+
+ /*
+ * If the 'autoreplace' property is set, then post a resource notifying
+ * the ZFS DE that it should not issue any faults for unopenable
+ * devices. We also iterate over the vdevs, and post a sysevent for any
+ * unopenable vdevs so that the normal autoreplace handler can take
+ * over.
+ */
+ if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
+ spa_check_removed(spa->spa_root_vdev);
+ /*
+ * For the import case, this is done in spa_import(), because
+ * at this point we're using the spare definitions from
+ * the MOS config, not necessarily from the userland config.
+ */
+ if (state != SPA_LOAD_IMPORT) {
+ spa_aux_check_removed(&spa->spa_spares);
+ spa_aux_check_removed(&spa->spa_l2cache);
+ }
+ }
+
+ /*
+ * Load the vdev state for all toplevel vdevs.
+ */
+ vdev_load(rvd);
+
+ /*
+ * Propagate the leaf DTLs we just loaded all the way up the tree.
+ */
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ /*
+ * Load the DDTs (dedup tables).
+ */
+ error = ddt_load(spa);
+ if (error != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ spa_update_dspace(spa);
+
+ /*
+ * Validate the config, using the MOS config to fill in any
+ * information which might be missing. If we fail to validate
+ * the config then declare the pool unfit for use. If we're
+ * assembling a pool from a split, the log is not transferred
+ * over.
+ */
+ if (type != SPA_IMPORT_ASSEMBLE) {
+ nvlist_t *nvconfig;
+
+ if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ if (!spa_config_valid(spa, nvconfig)) {
+ nvlist_free(nvconfig);
+ return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
+ ENXIO));
+ }
+ nvlist_free(nvconfig);
+
+ /*
+ * Now that we've validate the config, check the state of the
+ * root vdev. If it can't be opened, it indicates one or
+ * more toplevel vdevs are faulted.
+ */
+ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
+ return (ENXIO);
+
+ if (spa_check_logs(spa)) {
+ *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
+ return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
+ }
+ }
+
+ /*
+ * We've successfully opened the pool, verify that we're ready
+ * to start pushing transactions.
+ */
+ if (state != SPA_LOAD_TRYIMPORT) {
+ if (error = spa_load_verify(spa))
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
+ error));
+ }
+
+ if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
+ spa->spa_load_max_txg == UINT64_MAX)) {
+ dmu_tx_t *tx;
+ int need_update = B_FALSE;
+
+ ASSERT(state != SPA_LOAD_TRYIMPORT);
+
+ /*
+ * Claim log blocks that haven't been committed yet.
+ * This must all happen in a single txg.
+ * Note: spa_claim_max_txg is updated by spa_claim_notify(),
+ * invoked from zil_claim_log_block()'s i/o done callback.
+ * Price of rollback is that we abandon the log.
+ */
+ spa->spa_claiming = B_TRUE;
+
+ tx = dmu_tx_create_assigned(spa_get_dsl(spa),
+ spa_first_txg(spa));
+ (void) dmu_objset_find(spa_name(spa),
+ zil_claim, tx, DS_FIND_CHILDREN);
+ dmu_tx_commit(tx);
+
+ spa->spa_claiming = B_FALSE;
+
+ spa_set_log_state(spa, SPA_LOG_GOOD);
+ spa->spa_sync_on = B_TRUE;
+ txg_sync_start(spa->spa_dsl_pool);
+
+ /*
+ * Wait for all claims to sync. We sync up to the highest
+ * claimed log block birth time so that claimed log blocks
+ * don't appear to be from the future. spa_claim_max_txg
+ * will have been set for us by either zil_check_log_chain()
+ * (invoked from spa_check_logs()) or zil_claim() above.
+ */
+ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
+
+ /*
+ * If the config cache is stale, or we have uninitialized
+ * metaslabs (see spa_vdev_add()), then update the config.
+ *
+ * If this is a verbatim import, trust the current
+ * in-core spa_config and update the disk labels.
+ */
+ if (config_cache_txg != spa->spa_config_txg ||
+ state == SPA_LOAD_IMPORT ||
+ state == SPA_LOAD_RECOVER ||
+ (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
+ need_update = B_TRUE;
+
+ for (int c = 0; c < rvd->vdev_children; c++)
+ if (rvd->vdev_child[c]->vdev_ms_array == 0)
+ need_update = B_TRUE;
+
+ /*
+ * Update the config cache asychronously in case we're the
+ * root pool, in which case the config cache isn't writable yet.
+ */
+ if (need_update)
+ spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
+
+ /*
+ * Check all DTLs to see if anything needs resilvering.
+ */
+ if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
+ vdev_resilver_needed(rvd, NULL, NULL))
+ spa_async_request(spa, SPA_ASYNC_RESILVER);
+
+ /*
+ * Delete any inconsistent datasets.
+ */
+ (void) dmu_objset_find(spa_name(spa),
+ dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
+
+ /*
+ * Clean up any stale temporary dataset userrefs.
+ */
+ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
+ }
+
+ return (0);
+}
+
+static int
+spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
+{
+ int mode = spa->spa_mode;
+
+ spa_unload(spa);
+ spa_deactivate(spa);
+
+ spa->spa_load_max_txg--;
+
+ spa_activate(spa, mode);
+ spa_async_suspend(spa);
+
+ return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
+}
+
+static int
+spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
+ uint64_t max_request, int rewind_flags)
+{
+ nvlist_t *config = NULL;
+ int load_error, rewind_error;
+ uint64_t safe_rewind_txg;
+ uint64_t min_txg;
+
+ if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
+ spa->spa_load_max_txg = spa->spa_load_txg;
+ spa_set_log_state(spa, SPA_LOG_CLEAR);
+ } else {
+ spa->spa_load_max_txg = max_request;
+ }
+
+ load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
+ mosconfig);
+ if (load_error == 0)
+ return (0);
+
+ if (spa->spa_root_vdev != NULL)
+ config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
+
+ spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
+ spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
+
+ if (rewind_flags & ZPOOL_NEVER_REWIND) {
+ nvlist_free(config);
+ return (load_error);
+ }
+
+ /* Price of rolling back is discarding txgs, including log */
+ if (state == SPA_LOAD_RECOVER)
+ spa_set_log_state(spa, SPA_LOG_CLEAR);
+
+ spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
+ safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
+ min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
+ TXG_INITIAL : safe_rewind_txg;
+
+ /*
+ * Continue as long as we're finding errors, we're still within
+ * the acceptable rewind range, and we're still finding uberblocks
+ */
+ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
+ spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
+ if (spa->spa_load_max_txg < safe_rewind_txg)
+ spa->spa_extreme_rewind = B_TRUE;
+ rewind_error = spa_load_retry(spa, state, mosconfig);
+ }
+
+ spa->spa_extreme_rewind = B_FALSE;
+ spa->spa_load_max_txg = UINT64_MAX;
+
+ if (config && (rewind_error || state != SPA_LOAD_RECOVER))
+ spa_config_set(spa, config);
+
+ return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
+}
+
+/*
+ * Pool Open/Import
+ *
+ * The import case is identical to an open except that the configuration is sent
+ * down from userland, instead of grabbed from the configuration cache. For the
+ * case of an open, the pool configuration will exist in the
+ * POOL_STATE_UNINITIALIZED state.
+ *
+ * The stats information (gen/count/ustats) is used to gather vdev statistics at
+ * the same time open the pool, without having to keep around the spa_t in some
+ * ambiguous state.
+ */
+static int
+spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
+ nvlist_t **config)
+{
+ spa_t *spa;
+ spa_load_state_t state = SPA_LOAD_OPEN;
+ int error;
+ int locked = B_FALSE;
+
+ *spapp = NULL;
+
+ /*
+ * As disgusting as this is, we need to support recursive calls to this
+ * function because dsl_dir_open() is called during spa_load(), and ends
+ * up calling spa_open() again. The real fix is to figure out how to
+ * avoid dsl_dir_open() calling this in the first place.
+ */
+ if (mutex_owner(&spa_namespace_lock) != curthread) {
+ mutex_enter(&spa_namespace_lock);
+ locked = B_TRUE;
+ }
+
+ if ((spa = spa_lookup(pool)) == NULL) {
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+ return (ENOENT);
+ }
+
+ if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
+ zpool_rewind_policy_t policy;
+
+ zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
+ &policy);
+ if (policy.zrp_request & ZPOOL_DO_REWIND)
+ state = SPA_LOAD_RECOVER;
+
+ spa_activate(spa, spa_mode_global);
+
+ if (state != SPA_LOAD_RECOVER)
+ spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
+
+ error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
+ policy.zrp_request);
+
+ if (error == EBADF) {
+ /*
+ * If vdev_validate() returns failure (indicated by
+ * EBADF), it indicates that one of the vdevs indicates
+ * that the pool has been exported or destroyed. If
+ * this is the case, the config cache is out of sync and
+ * we should remove the pool from the namespace.
+ */
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_config_sync(spa, B_TRUE, B_TRUE);
+ spa_remove(spa);
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+ return (ENOENT);
+ }
+
+ if (error) {
+ /*
+ * We can't open the pool, but we still have useful
+ * information: the state of each vdev after the
+ * attempted vdev_open(). Return this to the user.
+ */
+ if (config != NULL && spa->spa_config) {
+ VERIFY(nvlist_dup(spa->spa_config, config,
+ KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist(*config,
+ ZPOOL_CONFIG_LOAD_INFO,
+ spa->spa_load_info) == 0);
+ }
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa->spa_last_open_failed = error;
+ if (locked)
+ mutex_exit(&spa_namespace_lock);
+ *spapp = NULL;
+ return (error);
+ }
+ }
+
+ spa_open_ref(spa, tag);
+
+ if (config != NULL)
+ *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
+
+ /*
+ * If we've recovered the pool, pass back any information we
+ * gathered while doing the load.
+ */
+ if (state == SPA_LOAD_RECOVER) {
+ VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
+ spa->spa_load_info) == 0);
+ }
+
+ if (locked) {
+ spa->spa_last_open_failed = 0;
+ spa->spa_last_ubsync_txg = 0;
+ spa->spa_load_txg = 0;
+ mutex_exit(&spa_namespace_lock);
+ }
+
+ *spapp = spa;
+
+ return (0);
+}
+
+int
+spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
+ nvlist_t **config)
+{
+ return (spa_open_common(name, spapp, tag, policy, config));
+}
+
+int
+spa_open(const char *name, spa_t **spapp, void *tag)
+{
+ return (spa_open_common(name, spapp, tag, NULL, NULL));
+}
+
+/*
+ * Lookup the given spa_t, incrementing the inject count in the process,
+ * preventing it from being exported or destroyed.
+ */
+spa_t *
+spa_inject_addref(char *name)
+{
+ spa_t *spa;
+
+ mutex_enter(&spa_namespace_lock);
+ if ((spa = spa_lookup(name)) == NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (NULL);
+ }
+ spa->spa_inject_ref++;
+ mutex_exit(&spa_namespace_lock);
+
+ return (spa);
+}
+
+void
+spa_inject_delref(spa_t *spa)
+{
+ mutex_enter(&spa_namespace_lock);
+ spa->spa_inject_ref--;
+ mutex_exit(&spa_namespace_lock);
+}
+
+/*
+ * Add spares device information to the nvlist.
+ */
+static void
+spa_add_spares(spa_t *spa, nvlist_t *config)
+{
+ nvlist_t **spares;
+ uint_t i, nspares;
+ nvlist_t *nvroot;
+ uint64_t guid;
+ vdev_stat_t *vs;
+ uint_t vsc;
+ uint64_t pool;
+
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
+
+ if (spa->spa_spares.sav_count == 0)
+ return;
+
+ VERIFY(nvlist_lookup_nvlist(config,
+ ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+ if (nspares != 0) {
+ VERIFY(nvlist_add_nvlist_array(nvroot,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ VERIFY(nvlist_lookup_nvlist_array(nvroot,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
+
+ /*
+ * Go through and find any spares which have since been
+ * repurposed as an active spare. If this is the case, update
+ * their status appropriately.
+ */
+ for (i = 0; i < nspares; i++) {
+ VERIFY(nvlist_lookup_uint64(spares[i],
+ ZPOOL_CONFIG_GUID, &guid) == 0);
+ if (spa_spare_exists(guid, &pool, NULL) &&
+ pool != 0ULL) {
+ VERIFY(nvlist_lookup_uint64_array(
+ spares[i], ZPOOL_CONFIG_VDEV_STATS,
+ (uint64_t **)&vs, &vsc) == 0);
+ vs->vs_state = VDEV_STATE_CANT_OPEN;
+ vs->vs_aux = VDEV_AUX_SPARED;
+ }
+ }
+ }
+}
+
+/*
+ * Add l2cache device information to the nvlist, including vdev stats.
+ */
+static void
+spa_add_l2cache(spa_t *spa, nvlist_t *config)
+{
+ nvlist_t **l2cache;
+ uint_t i, j, nl2cache;
+ nvlist_t *nvroot;
+ uint64_t guid;
+ vdev_t *vd;
+ vdev_stat_t *vs;
+ uint_t vsc;
+
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
+
+ if (spa->spa_l2cache.sav_count == 0)
+ return;
+
+ VERIFY(nvlist_lookup_nvlist(config,
+ ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
+ VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
+ if (nl2cache != 0) {
+ VERIFY(nvlist_add_nvlist_array(nvroot,
+ ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
+ VERIFY(nvlist_lookup_nvlist_array(nvroot,
+ ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
+
+ /*
+ * Update level 2 cache device stats.
+ */
+
+ for (i = 0; i < nl2cache; i++) {
+ VERIFY(nvlist_lookup_uint64(l2cache[i],
+ ZPOOL_CONFIG_GUID, &guid) == 0);
+
+ vd = NULL;
+ for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
+ if (guid ==
+ spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
+ vd = spa->spa_l2cache.sav_vdevs[j];
+ break;
+ }
+ }
+ ASSERT(vd != NULL);
+
+ VERIFY(nvlist_lookup_uint64_array(l2cache[i],
+ ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
+ == 0);
+ vdev_get_stats(vd, vs);
+ }
+ }
+}
+
+int
+spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
+{
+ int error;
+ spa_t *spa;
+
+ *config = NULL;
+ error = spa_open_common(name, &spa, FTAG, NULL, config);
+
+ if (spa != NULL) {
+ /*
+ * This still leaves a window of inconsistency where the spares
+ * or l2cache devices could change and the config would be
+ * self-inconsistent.
+ */
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ if (*config != NULL) {
+ uint64_t loadtimes[2];
+
+ loadtimes[0] = spa->spa_loaded_ts.tv_sec;
+ loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
+ VERIFY(nvlist_add_uint64_array(*config,
+ ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
+
+ VERIFY(nvlist_add_uint64(*config,
+ ZPOOL_CONFIG_ERRCOUNT,
+ spa_get_errlog_size(spa)) == 0);
+
+ if (spa_suspended(spa))
+ VERIFY(nvlist_add_uint64(*config,
+ ZPOOL_CONFIG_SUSPENDED,
+ spa->spa_failmode) == 0);
+
+ spa_add_spares(spa, *config);
+ spa_add_l2cache(spa, *config);
+ }
+ }
+
+ /*
+ * We want to get the alternate root even for faulted pools, so we cheat
+ * and call spa_lookup() directly.
+ */
+ if (altroot) {
+ if (spa == NULL) {
+ mutex_enter(&spa_namespace_lock);
+ spa = spa_lookup(name);
+ if (spa)
+ spa_altroot(spa, altroot, buflen);
+ else
+ altroot[0] = '\0';
+ spa = NULL;
+ mutex_exit(&spa_namespace_lock);
+ } else {
+ spa_altroot(spa, altroot, buflen);
+ }
+ }
+
+ if (spa != NULL) {
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+ spa_close(spa, FTAG);
+ }
+
+ return (error);
+}
+
+/*
+ * Validate that the auxiliary device array is well formed. We must have an
+ * array of nvlists, each which describes a valid leaf vdev. If this is an
+ * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
+ * specified, as long as they are well-formed.
+ */
+static int
+spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
+ spa_aux_vdev_t *sav, const char *config, uint64_t version,
+ vdev_labeltype_t label)
+{
+ nvlist_t **dev;
+ uint_t i, ndev;
+ vdev_t *vd;
+ int error;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ /*
+ * It's acceptable to have no devs specified.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
+ return (0);
+
+ if (ndev == 0)
+ return (EINVAL);
+
+ /*
+ * Make sure the pool is formatted with a version that supports this
+ * device type.
+ */
+ if (spa_version(spa) < version)
+ return (ENOTSUP);
+
+ /*
+ * Set the pending device list so we correctly handle device in-use
+ * checking.
+ */
+ sav->sav_pending = dev;
+ sav->sav_npending = ndev;
+
+ for (i = 0; i < ndev; i++) {
+ if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
+ mode)) != 0)
+ goto out;
+
+ if (!vd->vdev_ops->vdev_op_leaf) {
+ vdev_free(vd);
+ error = EINVAL;
+ goto out;
+ }
+
+ /*
+ * The L2ARC currently only supports disk devices in
+ * kernel context. For user-level testing, we allow it.
+ */
+#ifdef _KERNEL
+ if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
+ strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
+ error = ENOTBLK;
+ goto out;
+ }
+#endif
+ vd->vdev_top = vd;
+
+ if ((error = vdev_open(vd)) == 0 &&
+ (error = vdev_label_init(vd, crtxg, label)) == 0) {
+ VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
+ vd->vdev_guid) == 0);
+ }
+
+ vdev_free(vd);
+
+ if (error &&
+ (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
+ goto out;
+ else
+ error = 0;
+ }
+
+out:
+ sav->sav_pending = NULL;
+ sav->sav_npending = 0;
+ return (error);
+}
+
+static int
+spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
+{
+ int error;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
+ &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
+ VDEV_LABEL_SPARE)) != 0) {
+ return (error);
+ }
+
+ return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
+ &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
+ VDEV_LABEL_L2CACHE));
+}
+
+static void
+spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
+ const char *config)
+{
+ int i;
+
+ if (sav->sav_config != NULL) {
+ nvlist_t **olddevs;
+ uint_t oldndevs;
+ nvlist_t **newdevs;
+
+ /*
+ * Generate new dev list by concatentating with the
+ * current dev list.
+ */
+ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
+ &olddevs, &oldndevs) == 0);
+
+ newdevs = kmem_alloc(sizeof (void *) *
+ (ndevs + oldndevs), KM_SLEEP);
+ for (i = 0; i < oldndevs; i++)
+ VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
+ KM_SLEEP) == 0);
+ for (i = 0; i < ndevs; i++)
+ VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
+ KM_SLEEP) == 0);
+
+ VERIFY(nvlist_remove(sav->sav_config, config,
+ DATA_TYPE_NVLIST_ARRAY) == 0);
+
+ VERIFY(nvlist_add_nvlist_array(sav->sav_config,
+ config, newdevs, ndevs + oldndevs) == 0);
+ for (i = 0; i < oldndevs + ndevs; i++)
+ nvlist_free(newdevs[i]);
+ kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
+ } else {
+ /*
+ * Generate a new dev list.
+ */
+ VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
+ KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
+ devs, ndevs) == 0);
+ }
+}
+
+/*
+ * Stop and drop level 2 ARC devices
+ */
+void
+spa_l2cache_drop(spa_t *spa)
+{
+ vdev_t *vd;
+ int i;
+ spa_aux_vdev_t *sav = &spa->spa_l2cache;
+
+ for (i = 0; i < sav->sav_count; i++) {
+ uint64_t pool;
+
+ vd = sav->sav_vdevs[i];
+ ASSERT(vd != NULL);
+
+ if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
+ pool != 0ULL && l2arc_vdev_present(vd))
+ l2arc_remove_vdev(vd);
+ if (vd->vdev_isl2cache)
+ spa_l2cache_remove(vd);
+ vdev_clear_stats(vd);
+ (void) vdev_close(vd);
+ }
+}
+
+/*
+ * Pool Creation
+ */
+int
+spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
+ const char *history_str, nvlist_t *zplprops)
+{
+ spa_t *spa;
+ char *altroot = NULL;
+ vdev_t *rvd;
+ dsl_pool_t *dp;
+ dmu_tx_t *tx;
+ int error = 0;
+ uint64_t txg = TXG_INITIAL;
+ nvlist_t **spares, **l2cache;
+ uint_t nspares, nl2cache;
+ uint64_t version, obj;
+
+ /*
+ * If this pool already exists, return failure.
+ */
+ mutex_enter(&spa_namespace_lock);
+ if (spa_lookup(pool) != NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (EEXIST);
+ }
+
+ /*
+ * Allocate a new spa_t structure.
+ */
+ (void) nvlist_lookup_string(props,
+ zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
+ spa = spa_add(pool, NULL, altroot);
+ spa_activate(spa, spa_mode_global);
+
+ if (props && (error = spa_prop_validate(spa, props))) {
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (error);
+ }
+
+ if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
+ &version) != 0)
+ version = SPA_VERSION;
+ ASSERT(version <= SPA_VERSION);
+
+ spa->spa_first_txg = txg;
+ spa->spa_uberblock.ub_txg = txg - 1;
+ spa->spa_uberblock.ub_version = version;
+ spa->spa_ubsync = spa->spa_uberblock;
+
+ /*
+ * Create "The Godfather" zio to hold all async IOs
+ */
+ spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
+
+ /*
+ * Create the root vdev.
+ */
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+
+ error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
+
+ ASSERT(error != 0 || rvd != NULL);
+ ASSERT(error != 0 || spa->spa_root_vdev == rvd);
+
+ if (error == 0 && !zfs_allocatable_devs(nvroot))
+ error = EINVAL;
+
+ if (error == 0 &&
+ (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
+ (error = spa_validate_aux(spa, nvroot, txg,
+ VDEV_ALLOC_ADD)) == 0) {
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_metaslab_set_size(rvd->vdev_child[c]);
+ vdev_expand(rvd->vdev_child[c], txg);
+ }
+ }
+
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ if (error != 0) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (error);
+ }
+
+ /*
+ * Get the list of spares, if specified.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) == 0) {
+ VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
+ KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_load_spares(spa);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ spa->spa_spares.sav_sync = B_TRUE;
+ }
+
+ /*
+ * Get the list of level 2 cache devices, if specified.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
+ &l2cache, &nl2cache) == 0) {
+ VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
+ NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_load_l2cache(spa);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ spa->spa_l2cache.sav_sync = B_TRUE;
+ }
+
+ spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
+ spa->spa_meta_objset = dp->dp_meta_objset;
+
+ /*
+ * Create DDTs (dedup tables).
+ */
+ ddt_create(spa);
+
+ spa_update_dspace(spa);
+
+ tx = dmu_tx_create_assigned(dp, txg);
+
+ /*
+ * Create the pool config object.
+ */
+ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
+ DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
+ DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
+
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
+ sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add pool config");
+ }
+
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
+ sizeof (uint64_t), 1, &version, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add pool version");
+ }
+
+ /* Newly created pools with the right version are always deflated. */
+ if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
+ spa->spa_deflate = TRUE;
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
+ sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add deflate");
+ }
+ }
+
+ /*
+ * Create the deferred-free bpobj. Turn off compression
+ * because sync-to-convergence takes longer if the blocksize
+ * keeps changing.
+ */
+ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
+ dmu_object_set_compress(spa->spa_meta_objset, obj,
+ ZIO_COMPRESS_OFF, tx);
+ if (zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
+ sizeof (uint64_t), 1, &obj, tx) != 0) {
+ cmn_err(CE_PANIC, "failed to add bpobj");
+ }
+ VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
+ spa->spa_meta_objset, obj));
+
+ /*
+ * Create the pool's history object.
+ */
+ if (version >= SPA_VERSION_ZPOOL_HISTORY)
+ spa_history_create_obj(spa, tx);
+
+ /*
+ * Set pool properties.
+ */
+ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
+ spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
+ spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
+ spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
+
+ if (props != NULL) {
+ spa_configfile_set(spa, props, B_FALSE);
+ spa_sync_props(spa, props, tx);
+ }
+
+ dmu_tx_commit(tx);
+
+ spa->spa_sync_on = B_TRUE;
+ txg_sync_start(spa->spa_dsl_pool);
+
+ /*
+ * We explicitly wait for the first transaction to complete so that our
+ * bean counters are appropriately updated.
+ */
+ txg_wait_synced(spa->spa_dsl_pool, txg);
+
+ spa_config_sync(spa, B_FALSE, B_TRUE);
+
+ if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
+ (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
+ spa_history_log_version(spa, LOG_POOL_CREATE);
+
+ spa->spa_minref = refcount_count(&spa->spa_refcount);
+
+ mutex_exit(&spa_namespace_lock);
+
+ return (0);
+}
+
+#ifdef _KERNEL
+/*
+ * Get the root pool information from the root disk, then import the root pool
+ * during the system boot up time.
+ */
+extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
+
+static nvlist_t *
+spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
+{
+ nvlist_t *config;
+ nvlist_t *nvtop, *nvroot;
+ uint64_t pgid;
+
+ if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
+ return (NULL);
+
+ /*
+ * Add this top-level vdev to the child array.
+ */
+ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
+ &nvtop) == 0);
+ VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
+ &pgid) == 0);
+ VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
+
+ /*
+ * Put this pool's top-level vdevs into a root vdev.
+ */
+ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
+ VDEV_TYPE_ROOT) == 0);
+ VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
+ VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
+ VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
+ &nvtop, 1) == 0);
+
+ /*
+ * Replace the existing vdev_tree with the new root vdev in
+ * this pool's configuration (remove the old, add the new).
+ */
+ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
+ nvlist_free(nvroot);
+ return (config);
+}
+
+/*
+ * Walk the vdev tree and see if we can find a device with "better"
+ * configuration. A configuration is "better" if the label on that
+ * device has a more recent txg.
+ */
+static void
+spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
+{
+ for (int c = 0; c < vd->vdev_children; c++)
+ spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
+
+ if (vd->vdev_ops->vdev_op_leaf) {
+ nvlist_t *label;
+ uint64_t label_txg;
+
+ if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
+ &label) != 0)
+ return;
+
+ VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
+ &label_txg) == 0);
+
+ /*
+ * Do we have a better boot device?
+ */
+ if (label_txg > *txg) {
+ *txg = label_txg;
+ *avd = vd;
+ }
+ nvlist_free(label);
+ }
+}
+
+/*
+ * Import a root pool.
+ *
+ * For x86. devpath_list will consist of devid and/or physpath name of
+ * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
+ * The GRUB "findroot" command will return the vdev we should boot.
+ *
+ * For Sparc, devpath_list consists the physpath name of the booting device
+ * no matter the rootpool is a single device pool or a mirrored pool.
+ * e.g.
+ * "/pci@1f,0/ide@d/disk@0,0:a"
+ */
+int
+spa_import_rootpool(char *devpath, char *devid)
+{
+ spa_t *spa;
+ vdev_t *rvd, *bvd, *avd = NULL;
+ nvlist_t *config, *nvtop;
+ uint64_t guid, txg;
+ char *pname;
+ int error;
+
+ /*
+ * Read the label from the boot device and generate a configuration.
+ */
+ config = spa_generate_rootconf(devpath, devid, &guid);
+#if defined(_OBP) && defined(_KERNEL)
+ if (config == NULL) {
+ if (strstr(devpath, "/iscsi/ssd") != NULL) {
+ /* iscsi boot */
+ get_iscsi_bootpath_phy(devpath);
+ config = spa_generate_rootconf(devpath, devid, &guid);
+ }
+ }
+#endif
+ if (config == NULL) {
+ cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
+ devpath);
+ return (EIO);
+ }
+
+ VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
+ &pname) == 0);
+ VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
+
+ mutex_enter(&spa_namespace_lock);
+ if ((spa = spa_lookup(pname)) != NULL) {
+ /*
+ * Remove the existing root pool from the namespace so that we
+ * can replace it with the correct config we just read in.
+ */
+ spa_remove(spa);
+ }
+
+ spa = spa_add(pname, config, NULL);
+ spa->spa_is_root = B_TRUE;
+ spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
+
+ /*
+ * Build up a vdev tree based on the boot device's label config.
+ */
+ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
+ &nvtop) == 0);
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
+ VDEV_ALLOC_ROOTPOOL);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ if (error) {
+ mutex_exit(&spa_namespace_lock);
+ nvlist_free(config);
+ cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
+ pname);
+ return (error);
+ }
+
+ /*
+ * Get the boot vdev.
+ */
+ if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
+ cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
+ (u_longlong_t)guid);
+ error = ENOENT;
+ goto out;
+ }
+
+ /*
+ * Determine if there is a better boot device.
+ */
+ avd = bvd;
+ spa_alt_rootvdev(rvd, &avd, &txg);
+ if (avd != bvd) {
+ cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
+ "try booting from '%s'", avd->vdev_path);
+ error = EINVAL;
+ goto out;
+ }
+
+ /*
+ * If the boot device is part of a spare vdev then ensure that
+ * we're booting off the active spare.
+ */
+ if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
+ !bvd->vdev_isspare) {
+ cmn_err(CE_NOTE, "The boot device is currently spared. Please "
+ "try booting from '%s'",
+ bvd->vdev_parent->
+ vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
+ error = EINVAL;
+ goto out;
+ }
+
+ error = 0;
+ spa_history_log_version(spa, LOG_POOL_IMPORT);
+out:
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ vdev_free(rvd);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ mutex_exit(&spa_namespace_lock);
+
+ nvlist_free(config);
+ return (error);
+}
+
+#endif
+
+/*
+ * Import a non-root pool into the system.
+ */
+int
+spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
+{
+ spa_t *spa;
+ char *altroot = NULL;
+ spa_load_state_t state = SPA_LOAD_IMPORT;
+ zpool_rewind_policy_t policy;
+ uint64_t mode = spa_mode_global;
+ uint64_t readonly = B_FALSE;
+ int error;
+ nvlist_t *nvroot;
+ nvlist_t **spares, **l2cache;
+ uint_t nspares, nl2cache;
+
+ /*
+ * If a pool with this name exists, return failure.
+ */
+ mutex_enter(&spa_namespace_lock);
+ if (spa_lookup(pool) != NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (EEXIST);
+ }
+
+ /*
+ * Create and initialize the spa structure.
+ */
+ (void) nvlist_lookup_string(props,
+ zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
+ (void) nvlist_lookup_uint64(props,
+ zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
+ if (readonly)
+ mode = FREAD;
+ spa = spa_add(pool, config, altroot);
+ spa->spa_import_flags = flags;
+
+ /*
+ * Verbatim import - Take a pool and insert it into the namespace
+ * as if it had been loaded at boot.
+ */
+ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
+ if (props != NULL)
+ spa_configfile_set(spa, props, B_FALSE);
+
+ spa_config_sync(spa, B_FALSE, B_TRUE);
+
+ mutex_exit(&spa_namespace_lock);
+ spa_history_log_version(spa, LOG_POOL_IMPORT);
+
+ return (0);
+ }
+
+ spa_activate(spa, mode);
+
+ /*
+ * Don't start async tasks until we know everything is healthy.
+ */
+ spa_async_suspend(spa);
+
+ zpool_get_rewind_policy(config, &policy);
+ if (policy.zrp_request & ZPOOL_DO_REWIND)
+ state = SPA_LOAD_RECOVER;
+
+ /*
+ * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
+ * because the user-supplied config is actually the one to trust when
+ * doing an import.
+ */
+ if (state != SPA_LOAD_RECOVER)
+ spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
+
+ error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
+ policy.zrp_request);
+
+ /*
+ * Propagate anything learned while loading the pool and pass it
+ * back to caller (i.e. rewind info, missing devices, etc).
+ */
+ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
+ spa->spa_load_info) == 0);
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ /*
+ * Toss any existing sparelist, as it doesn't have any validity
+ * anymore, and conflicts with spa_has_spare().
+ */
+ if (spa->spa_spares.sav_config) {
+ nvlist_free(spa->spa_spares.sav_config);
+ spa->spa_spares.sav_config = NULL;
+ spa_load_spares(spa);
+ }
+ if (spa->spa_l2cache.sav_config) {
+ nvlist_free(spa->spa_l2cache.sav_config);
+ spa->spa_l2cache.sav_config = NULL;
+ spa_load_l2cache(spa);
+ }
+
+ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
+ &nvroot) == 0);
+ if (error == 0)
+ error = spa_validate_aux(spa, nvroot, -1ULL,
+ VDEV_ALLOC_SPARE);
+ if (error == 0)
+ error = spa_validate_aux(spa, nvroot, -1ULL,
+ VDEV_ALLOC_L2CACHE);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ if (props != NULL)
+ spa_configfile_set(spa, props, B_FALSE);
+
+ if (error != 0 || (props && spa_writeable(spa) &&
+ (error = spa_prop_set(spa, props)))) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (error);
+ }
+
+ spa_async_resume(spa);
+
+ /*
+ * Override any spares and level 2 cache devices as specified by
+ * the user, as these may have correct device names/devids, etc.
+ */
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &spares, &nspares) == 0) {
+ if (spa->spa_spares.sav_config)
+ VERIFY(nvlist_remove(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
+ else
+ VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
+ NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_load_spares(spa);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ spa->spa_spares.sav_sync = B_TRUE;
+ }
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
+ &l2cache, &nl2cache) == 0) {
+ if (spa->spa_l2cache.sav_config)
+ VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
+ else
+ VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
+ NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa_load_l2cache(spa);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ spa->spa_l2cache.sav_sync = B_TRUE;
+ }
+
+ /*
+ * Check for any removed devices.
+ */
+ if (spa->spa_autoreplace) {
+ spa_aux_check_removed(&spa->spa_spares);
+ spa_aux_check_removed(&spa->spa_l2cache);
+ }
+
+ if (spa_writeable(spa)) {
+ /*
+ * Update the config cache to include the newly-imported pool.
+ */
+ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
+ }
+
+ /*
+ * It's possible that the pool was expanded while it was exported.
+ * We kick off an async task to handle this for us.
+ */
+ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
+
+ mutex_exit(&spa_namespace_lock);
+ spa_history_log_version(spa, LOG_POOL_IMPORT);
+
+ return (0);
+}
+
+nvlist_t *
+spa_tryimport(nvlist_t *tryconfig)
+{
+ nvlist_t *config = NULL;
+ char *poolname;
+ spa_t *spa;
+ uint64_t state;
+ int error;
+
+ if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
+ return (NULL);
+
+ if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
+ return (NULL);
+
+ /*
+ * Create and initialize the spa structure.
+ */
+ mutex_enter(&spa_namespace_lock);
+ spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
+ spa_activate(spa, FREAD);
+
+ /*
+ * Pass off the heavy lifting to spa_load().
+ * Pass TRUE for mosconfig because the user-supplied config
+ * is actually the one to trust when doing an import.
+ */
+ error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
+
+ /*
+ * If 'tryconfig' was at least parsable, return the current config.
+ */
+ if (spa->spa_root_vdev != NULL) {
+ config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
+ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
+ poolname) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
+ state) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
+ spa->spa_uberblock.ub_timestamp) == 0);
+
+ /*
+ * If the bootfs property exists on this pool then we
+ * copy it out so that external consumers can tell which
+ * pools are bootable.
+ */
+ if ((!error || error == EEXIST) && spa->spa_bootfs) {
+ char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
+
+ /*
+ * We have to play games with the name since the
+ * pool was opened as TRYIMPORT_NAME.
+ */
+ if (dsl_dsobj_to_dsname(spa_name(spa),
+ spa->spa_bootfs, tmpname) == 0) {
+ char *cp;
+ char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
+
+ cp = strchr(tmpname, '/');
+ if (cp == NULL) {
+ (void) strlcpy(dsname, tmpname,
+ MAXPATHLEN);
+ } else {
+ (void) snprintf(dsname, MAXPATHLEN,
+ "%s/%s", poolname, ++cp);
+ }
+ VERIFY(nvlist_add_string(config,
+ ZPOOL_CONFIG_BOOTFS, dsname) == 0);
+ kmem_free(dsname, MAXPATHLEN);
+ }
+ kmem_free(tmpname, MAXPATHLEN);
+ }
+
+ /*
+ * Add the list of hot spares and level 2 cache devices.
+ */
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+ spa_add_spares(spa, config);
+ spa_add_l2cache(spa, config);
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+ }
+
+ spa_unload(spa);
+ spa_deactivate(spa);
+ spa_remove(spa);
+ mutex_exit(&spa_namespace_lock);
+
+ return (config);
+}
+
+/*
+ * Pool export/destroy
+ *
+ * The act of destroying or exporting a pool is very simple. We make sure there
+ * is no more pending I/O and any references to the pool are gone. Then, we
+ * update the pool state and sync all the labels to disk, removing the
+ * configuration from the cache afterwards. If the 'hardforce' flag is set, then
+ * we don't sync the labels or remove the configuration cache.
+ */
+static int
+spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
+ boolean_t force, boolean_t hardforce)
+{
+ spa_t *spa;
+
+ if (oldconfig)
+ *oldconfig = NULL;
+
+ if (!(spa_mode_global & FWRITE))
+ return (EROFS);
+
+ mutex_enter(&spa_namespace_lock);
+ if ((spa = spa_lookup(pool)) == NULL) {
+ mutex_exit(&spa_namespace_lock);
+ return (ENOENT);
+ }
+
+ /*
+ * Put a hold on the pool, drop the namespace lock, stop async tasks,
+ * reacquire the namespace lock, and see if we can export.
+ */
+ spa_open_ref(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ spa_async_suspend(spa);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+
+ /*
+ * The pool will be in core if it's openable,
+ * in which case we can modify its state.
+ */
+ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
+ /*
+ * Objsets may be open only because they're dirty, so we
+ * have to force it to sync before checking spa_refcnt.
+ */
+ txg_wait_synced(spa->spa_dsl_pool, 0);
+
+ /*
+ * A pool cannot be exported or destroyed if there are active
+ * references. If we are resetting a pool, allow references by
+ * fault injection handlers.
+ */
+ if (!spa_refcount_zero(spa) ||
+ (spa->spa_inject_ref != 0 &&
+ new_state != POOL_STATE_UNINITIALIZED)) {
+ spa_async_resume(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (EBUSY);
+ }
+
+ /*
+ * A pool cannot be exported if it has an active shared spare.
+ * This is to prevent other pools stealing the active spare
+ * from an exported pool. At user's own will, such pool can
+ * be forcedly exported.
+ */
+ if (!force && new_state == POOL_STATE_EXPORTED &&
+ spa_has_active_shared_spare(spa)) {
+ spa_async_resume(spa);
+ mutex_exit(&spa_namespace_lock);
+ return (EXDEV);
+ }
+
+ /*
+ * We want this to be reflected on every label,
+ * so mark them all dirty. spa_unload() will do the
+ * final sync that pushes these changes out.
+ */
+ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ spa->spa_state = new_state;
+ spa->spa_final_txg = spa_last_synced_txg(spa) +
+ TXG_DEFER_SIZE + 1;
+ vdev_config_dirty(spa->spa_root_vdev);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ }
+ }
+
+ spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
+
+ if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ }
+
+ if (oldconfig && spa->spa_config)
+ VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
+
+ if (new_state != POOL_STATE_UNINITIALIZED) {
+ if (!hardforce)
+ spa_config_sync(spa, B_TRUE, B_TRUE);
+ spa_remove(spa);
+ }
+ mutex_exit(&spa_namespace_lock);
+
+ return (0);
+}
+
+/*
+ * Destroy a storage pool.
+ */
+int
+spa_destroy(char *pool)
+{
+ return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
+ B_FALSE, B_FALSE));
+}
+
+/*
+ * Export a storage pool.
+ */
+int
+spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
+ boolean_t hardforce)
+{
+ return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
+ force, hardforce));
+}
+
+/*
+ * Similar to spa_export(), this unloads the spa_t without actually removing it
+ * from the namespace in any way.
+ */
+int
+spa_reset(char *pool)
+{
+ return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
+ B_FALSE, B_FALSE));
+}
+
+/*
+ * ==========================================================================
+ * Device manipulation
+ * ==========================================================================
+ */
+
+/*
+ * Add a device to a storage pool.
+ */
+int
+spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
+{
+ uint64_t txg, id;
+ int error;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *vd, *tvd;
+ nvlist_t **spares, **l2cache;
+ uint_t nspares, nl2cache;
+
+ ASSERT(spa_writeable(spa));
+
+ txg = spa_vdev_enter(spa);
+
+ if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
+ VDEV_ALLOC_ADD)) != 0)
+ return (spa_vdev_exit(spa, NULL, txg, error));
+
+ spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
+
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
+ &nspares) != 0)
+ nspares = 0;
+
+ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
+ &nl2cache) != 0)
+ nl2cache = 0;
+
+ if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
+ return (spa_vdev_exit(spa, vd, txg, EINVAL));
+
+ if (vd->vdev_children != 0 &&
+ (error = vdev_create(vd, txg, B_FALSE)) != 0)
+ return (spa_vdev_exit(spa, vd, txg, error));
+
+ /*
+ * We must validate the spares and l2cache devices after checking the
+ * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
+ */
+ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
+ return (spa_vdev_exit(spa, vd, txg, error));
+
+ /*
+ * Transfer each new top-level vdev from vd to rvd.
+ */
+ for (int c = 0; c < vd->vdev_children; c++) {
+
+ /*
+ * Set the vdev id to the first hole, if one exists.
+ */
+ for (id = 0; id < rvd->vdev_children; id++) {
+ if (rvd->vdev_child[id]->vdev_ishole) {
+ vdev_free(rvd->vdev_child[id]);
+ break;
+ }
+ }
+ tvd = vd->vdev_child[c];
+ vdev_remove_child(vd, tvd);
+ tvd->vdev_id = id;
+ vdev_add_child(rvd, tvd);
+ vdev_config_dirty(tvd);
+ }
+
+ if (nspares != 0) {
+ spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
+ ZPOOL_CONFIG_SPARES);
+ spa_load_spares(spa);
+ spa->spa_spares.sav_sync = B_TRUE;
+ }
+
+ if (nl2cache != 0) {
+ spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
+ ZPOOL_CONFIG_L2CACHE);
+ spa_load_l2cache(spa);
+ spa->spa_l2cache.sav_sync = B_TRUE;
+ }
+
+ /*
+ * We have to be careful when adding new vdevs to an existing pool.
+ * If other threads start allocating from these vdevs before we
+ * sync the config cache, and we lose power, then upon reboot we may
+ * fail to open the pool because there are DVAs that the config cache
+ * can't translate. Therefore, we first add the vdevs without
+ * initializing metaslabs; sync the config cache (via spa_vdev_exit());
+ * and then let spa_config_update() initialize the new metaslabs.
+ *
+ * spa_load() checks for added-but-not-initialized vdevs, so that
+ * if we lose power at any point in this sequence, the remaining
+ * steps will be completed the next time we load the pool.
+ */
+ (void) spa_vdev_exit(spa, vd, txg, 0);
+
+ mutex_enter(&spa_namespace_lock);
+ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
+ mutex_exit(&spa_namespace_lock);
+
+ return (0);
+}
+
+/*
+ * Attach a device to a mirror. The arguments are the path to any device
+ * in the mirror, and the nvroot for the new device. If the path specifies
+ * a device that is not mirrored, we automatically insert the mirror vdev.
+ *
+ * If 'replacing' is specified, the new device is intended to replace the
+ * existing device; in this case the two devices are made into their own
+ * mirror using the 'replacing' vdev, which is functionally identical to
+ * the mirror vdev (it actually reuses all the same ops) but has a few
+ * extra rules: you can't attach to it after it's been created, and upon
+ * completion of resilvering, the first disk (the one being replaced)
+ * is automatically detached.
+ */
+int
+spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
+{
+ uint64_t txg, dtl_max_txg;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
+ vdev_ops_t *pvops;
+ char *oldvdpath, *newvdpath;
+ int newvd_isspare;
+ int error;
+
+ ASSERT(spa_writeable(spa));
+
+ txg = spa_vdev_enter(spa);
+
+ oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
+
+ if (oldvd == NULL)
+ return (spa_vdev_exit(spa, NULL, txg, ENODEV));
+
+ if (!oldvd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ pvd = oldvd->vdev_parent;
+
+ if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
+ VDEV_ALLOC_ADD)) != 0)
+ return (spa_vdev_exit(spa, NULL, txg, EINVAL));
+
+ if (newrootvd->vdev_children != 1)
+ return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
+
+ newvd = newrootvd->vdev_child[0];
+
+ if (!newvd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
+
+ if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
+ return (spa_vdev_exit(spa, newrootvd, txg, error));
+
+ /*
+ * Spares can't replace logs
+ */
+ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+
+ if (!replacing) {
+ /*
+ * For attach, the only allowable parent is a mirror or the root
+ * vdev.
+ */
+ if (pvd->vdev_ops != &vdev_mirror_ops &&
+ pvd->vdev_ops != &vdev_root_ops)
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+
+ pvops = &vdev_mirror_ops;
+ } else {
+ /*
+ * Active hot spares can only be replaced by inactive hot
+ * spares.
+ */
+ if (pvd->vdev_ops == &vdev_spare_ops &&
+ oldvd->vdev_isspare &&
+ !spa_has_spare(spa, newvd->vdev_guid))
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+
+ /*
+ * If the source is a hot spare, and the parent isn't already a
+ * spare, then we want to create a new hot spare. Otherwise, we
+ * want to create a replacing vdev. The user is not allowed to
+ * attach to a spared vdev child unless the 'isspare' state is
+ * the same (spare replaces spare, non-spare replaces
+ * non-spare).
+ */
+ if (pvd->vdev_ops == &vdev_replacing_ops &&
+ spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+ } else if (pvd->vdev_ops == &vdev_spare_ops &&
+ newvd->vdev_isspare != oldvd->vdev_isspare) {
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+ }
+
+ if (newvd->vdev_isspare)
+ pvops = &vdev_spare_ops;
+ else
+ pvops = &vdev_replacing_ops;
+ }
+
+ /*
+ * Make sure the new device is big enough.
+ */
+ if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
+ return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
+
+ /*
+ * The new device cannot have a higher alignment requirement
+ * than the top-level vdev.
+ */
+ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
+ return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
+
+ /*
+ * If this is an in-place replacement, update oldvd's path and devid
+ * to make it distinguishable from newvd, and unopenable from now on.
+ */
+ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
+ spa_strfree(oldvd->vdev_path);
+ oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
+ KM_SLEEP);
+ (void) sprintf(oldvd->vdev_path, "%s/%s",
+ newvd->vdev_path, "old");
+ if (oldvd->vdev_devid != NULL) {
+ spa_strfree(oldvd->vdev_devid);
+ oldvd->vdev_devid = NULL;
+ }
+ }
+
+ /* mark the device being resilvered */
+ newvd->vdev_resilvering = B_TRUE;
+
+ /*
+ * If the parent is not a mirror, or if we're replacing, insert the new
+ * mirror/replacing/spare vdev above oldvd.
+ */
+ if (pvd->vdev_ops != pvops)
+ pvd = vdev_add_parent(oldvd, pvops);
+
+ ASSERT(pvd->vdev_top->vdev_parent == rvd);
+ ASSERT(pvd->vdev_ops == pvops);
+ ASSERT(oldvd->vdev_parent == pvd);
+
+ /*
+ * Extract the new device from its root and add it to pvd.
+ */
+ vdev_remove_child(newrootvd, newvd);
+ newvd->vdev_id = pvd->vdev_children;
+ newvd->vdev_crtxg = oldvd->vdev_crtxg;
+ vdev_add_child(pvd, newvd);
+
+ tvd = newvd->vdev_top;
+ ASSERT(pvd->vdev_top == tvd);
+ ASSERT(tvd->vdev_parent == rvd);
+
+ vdev_config_dirty(tvd);
+
+ /*
+ * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
+ * for any dmu_sync-ed blocks. It will propagate upward when
+ * spa_vdev_exit() calls vdev_dtl_reassess().
+ */
+ dtl_max_txg = txg + TXG_CONCURRENT_STATES;
+
+ vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
+ dtl_max_txg - TXG_INITIAL);
+
+ if (newvd->vdev_isspare) {
+ spa_spare_activate(newvd);
+ spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
+ }
+
+ oldvdpath = spa_strdup(oldvd->vdev_path);
+ newvdpath = spa_strdup(newvd->vdev_path);
+ newvd_isspare = newvd->vdev_isspare;
+
+ /*
+ * Mark newvd's DTL dirty in this txg.
+ */
+ vdev_dirty(tvd, VDD_DTL, newvd, txg);
+
+ /*
+ * Restart the resilver
+ */
+ dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
+
+ /*
+ * Commit the config
+ */
+ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
+
+ spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
+ "%s vdev=%s %s vdev=%s",
+ replacing && newvd_isspare ? "spare in" :
+ replacing ? "replace" : "attach", newvdpath,
+ replacing ? "for" : "to", oldvdpath);
+
+ spa_strfree(oldvdpath);
+ spa_strfree(newvdpath);
+
+ if (spa->spa_bootfs)
+ spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
+
+ return (0);
+}
+
+/*
+ * Detach a device from a mirror or replacing vdev.
+ * If 'replace_done' is specified, only detach if the parent
+ * is a replacing vdev.
+ */
+int
+spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
+{
+ uint64_t txg;
+ int error;
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *vd, *pvd, *cvd, *tvd;
+ boolean_t unspare = B_FALSE;
+ uint64_t unspare_guid;
+ char *vdpath;
+
+ ASSERT(spa_writeable(spa));
+
+ txg = spa_vdev_enter(spa);
+
+ vd = spa_lookup_by_guid(spa, guid, B_FALSE);
+
+ if (vd == NULL)
+ return (spa_vdev_exit(spa, NULL, txg, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ pvd = vd->vdev_parent;
+
+ /*
+ * If the parent/child relationship is not as expected, don't do it.
+ * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
+ * vdev that's replacing B with C. The user's intent in replacing
+ * is to go from M(A,B) to M(A,C). If the user decides to cancel
+ * the replace by detaching C, the expected behavior is to end up
+ * M(A,B). But suppose that right after deciding to detach C,
+ * the replacement of B completes. We would have M(A,C), and then
+ * ask to detach C, which would leave us with just A -- not what
+ * the user wanted. To prevent this, we make sure that the
+ * parent/child relationship hasn't changed -- in this example,
+ * that C's parent is still the replacing vdev R.
+ */
+ if (pvd->vdev_guid != pguid && pguid != 0)
+ return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+
+ /*
+ * Only 'replacing' or 'spare' vdevs can be replaced.
+ */
+ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
+ pvd->vdev_ops != &vdev_spare_ops)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
+ spa_version(spa) >= SPA_VERSION_SPARES);
+
+ /*
+ * Only mirror, replacing, and spare vdevs support detach.
+ */
+ if (pvd->vdev_ops != &vdev_replacing_ops &&
+ pvd->vdev_ops != &vdev_mirror_ops &&
+ pvd->vdev_ops != &vdev_spare_ops)
+ return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
+
+ /*
+ * If this device has the only valid copy of some data,
+ * we cannot safely detach it.
+ */
+ if (vdev_dtl_required(vd))
+ return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+
+ ASSERT(pvd->vdev_children >= 2);
+
+ /*
+ * If we are detaching the second disk from a replacing vdev, then
+ * check to see if we changed the original vdev's path to have "/old"
+ * at the end in spa_vdev_attach(). If so, undo that change now.
+ */
+ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
+ vd->vdev_path != NULL) {
+ size_t len = strlen(vd->vdev_path);
+
+ for (int c = 0; c < pvd->vdev_children; c++) {
+ cvd = pvd->vdev_child[c];
+
+ if (cvd == vd || cvd->vdev_path == NULL)
+ continue;
+
+ if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
+ strcmp(cvd->vdev_path + len, "/old") == 0) {
+ spa_strfree(cvd->vdev_path);
+ cvd->vdev_path = spa_strdup(vd->vdev_path);
+ break;
+ }
+ }
+ }
+
+ /*
+ * If we are detaching the original disk from a spare, then it implies
+ * that the spare should become a real disk, and be removed from the
+ * active spare list for the pool.
+ */
+ if (pvd->vdev_ops == &vdev_spare_ops &&
+ vd->vdev_id == 0 &&
+ pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
+ unspare = B_TRUE;
+
+ /*
+ * Erase the disk labels so the disk can be used for other things.
+ * This must be done after all other error cases are handled,
+ * but before we disembowel vd (so we can still do I/O to it).
+ * But if we can't do it, don't treat the error as fatal --
+ * it may be that the unwritability of the disk is the reason
+ * it's being detached!
+ */
+ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
+
+ /*
+ * Remove vd from its parent and compact the parent's children.
+ */
+ vdev_remove_child(pvd, vd);
+ vdev_compact_children(pvd);
+
+ /*
+ * Remember one of the remaining children so we can get tvd below.
+ */
+ cvd = pvd->vdev_child[pvd->vdev_children - 1];
+
+ /*
+ * If we need to remove the remaining child from the list of hot spares,
+ * do it now, marking the vdev as no longer a spare in the process.
+ * We must do this before vdev_remove_parent(), because that can
+ * change the GUID if it creates a new toplevel GUID. For a similar
+ * reason, we must remove the spare now, in the same txg as the detach;
+ * otherwise someone could attach a new sibling, change the GUID, and
+ * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
+ */
+ if (unspare) {
+ ASSERT(cvd->vdev_isspare);
+ spa_spare_remove(cvd);
+ unspare_guid = cvd->vdev_guid;
+ (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
+ cvd->vdev_unspare = B_TRUE;
+ }
+
+ /*
+ * If the parent mirror/replacing vdev only has one child,
+ * the parent is no longer needed. Remove it from the tree.
+ */
+ if (pvd->vdev_children == 1) {
+ if (pvd->vdev_ops == &vdev_spare_ops)
+ cvd->vdev_unspare = B_FALSE;
+ vdev_remove_parent(cvd);
+ cvd->vdev_resilvering = B_FALSE;
+ }
+
+
+ /*
+ * We don't set tvd until now because the parent we just removed
+ * may have been the previous top-level vdev.
+ */
+ tvd = cvd->vdev_top;
+ ASSERT(tvd->vdev_parent == rvd);
+
+ /*
+ * Reevaluate the parent vdev state.
+ */
+ vdev_propagate_state(cvd);
+
+ /*
+ * If the 'autoexpand' property is set on the pool then automatically
+ * try to expand the size of the pool. For example if the device we
+ * just detached was smaller than the others, it may be possible to
+ * add metaslabs (i.e. grow the pool). We need to reopen the vdev
+ * first so that we can obtain the updated sizes of the leaf vdevs.
+ */
+ if (spa->spa_autoexpand) {
+ vdev_reopen(tvd);
+ vdev_expand(tvd, txg);
+ }
+
+ vdev_config_dirty(tvd);
+
+ /*
+ * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
+ * vd->vdev_detached is set and free vd's DTL object in syncing context.
+ * But first make sure we're not on any *other* txg's DTL list, to
+ * prevent vd from being accessed after it's freed.
+ */
+ vdpath = spa_strdup(vd->vdev_path);
+ for (int t = 0; t < TXG_SIZE; t++)
+ (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
+ vd->vdev_detached = B_TRUE;
+ vdev_dirty(tvd, VDD_DTL, vd, txg);
+
+ spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
+
+ /* hang on to the spa before we release the lock */
+ spa_open_ref(spa, FTAG);
+
+ error = spa_vdev_exit(spa, vd, txg, 0);
+
+ spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
+ "vdev=%s", vdpath);
+ spa_strfree(vdpath);
+
+ /*
+ * If this was the removal of the original device in a hot spare vdev,
+ * then we want to go through and remove the device from the hot spare
+ * list of every other pool.
+ */
+ if (unspare) {
+ spa_t *altspa = NULL;
+
+ mutex_enter(&spa_namespace_lock);
+ while ((altspa = spa_next(altspa)) != NULL) {
+ if (altspa->spa_state != POOL_STATE_ACTIVE ||
+ altspa == spa)
+ continue;
+
+ spa_open_ref(altspa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(altspa, FTAG);
+ }
+ mutex_exit(&spa_namespace_lock);
+
+ /* search the rest of the vdevs for spares to remove */
+ spa_vdev_resilver_done(spa);
+ }
+
+ /* all done with the spa; OK to release */
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+
+ return (error);
+}
+
+/*
+ * Split a set of devices from their mirrors, and create a new pool from them.
+ */
+int
+spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
+ nvlist_t *props, boolean_t exp)
+{
+ int error = 0;
+ uint64_t txg, *glist;
+ spa_t *newspa;
+ uint_t c, children, lastlog;
+ nvlist_t **child, *nvl, *tmp;
+ dmu_tx_t *tx;
+ char *altroot = NULL;
+ vdev_t *rvd, **vml = NULL; /* vdev modify list */
+ boolean_t activate_slog;
+
+ ASSERT(spa_writeable(spa));
+
+ txg = spa_vdev_enter(spa);
+
+ /* clear the log and flush everything up to now */
+ activate_slog = spa_passivate_log(spa);
+ (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
+ error = spa_offline_log(spa);
+ txg = spa_vdev_config_enter(spa);
+
+ if (activate_slog)
+ spa_activate_log(spa);
+
+ if (error != 0)
+ return (spa_vdev_exit(spa, NULL, txg, error));
+
+ /* check new spa name before going any further */
+ if (spa_lookup(newname) != NULL)
+ return (spa_vdev_exit(spa, NULL, txg, EEXIST));
+
+ /*
+ * scan through all the children to ensure they're all mirrors
+ */
+ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
+ nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
+ &children) != 0)
+ return (spa_vdev_exit(spa, NULL, txg, EINVAL));
+
+ /* first, check to ensure we've got the right child count */
+ rvd = spa->spa_root_vdev;
+ lastlog = 0;
+ for (c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *vd = rvd->vdev_child[c];
+
+ /* don't count the holes & logs as children */
+ if (vd->vdev_islog || vd->vdev_ishole) {
+ if (lastlog == 0)
+ lastlog = c;
+ continue;
+ }
+
+ lastlog = 0;
+ }
+ if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
+ return (spa_vdev_exit(spa, NULL, txg, EINVAL));
+
+ /* next, ensure no spare or cache devices are part of the split */
+ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
+ nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
+ return (spa_vdev_exit(spa, NULL, txg, EINVAL));
+
+ vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
+ glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
+
+ /* then, loop over each vdev and validate it */
+ for (c = 0; c < children; c++) {
+ uint64_t is_hole = 0;
+
+ (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
+ &is_hole);
+
+ if (is_hole != 0) {
+ if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
+ spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
+ continue;
+ } else {
+ error = EINVAL;
+ break;
+ }
+ }
+
+ /* which disk is going to be split? */
+ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
+ &glist[c]) != 0) {
+ error = EINVAL;
+ break;
+ }
+
+ /* look it up in the spa */
+ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
+ if (vml[c] == NULL) {
+ error = ENODEV;
+ break;
+ }
+
+ /* make sure there's nothing stopping the split */
+ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
+ vml[c]->vdev_islog ||
+ vml[c]->vdev_ishole ||
+ vml[c]->vdev_isspare ||
+ vml[c]->vdev_isl2cache ||
+ !vdev_writeable(vml[c]) ||
+ vml[c]->vdev_children != 0 ||
+ vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
+ c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
+ error = EINVAL;
+ break;
+ }
+
+ if (vdev_dtl_required(vml[c])) {
+ error = EBUSY;
+ break;
+ }
+
+ /* we need certain info from the top level */
+ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
+ vml[c]->vdev_top->vdev_ms_array) == 0);
+ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
+ vml[c]->vdev_top->vdev_ms_shift) == 0);
+ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
+ vml[c]->vdev_top->vdev_asize) == 0);
+ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
+ vml[c]->vdev_top->vdev_ashift) == 0);
+ }
+
+ if (error != 0) {
+ kmem_free(vml, children * sizeof (vdev_t *));
+ kmem_free(glist, children * sizeof (uint64_t));
+ return (spa_vdev_exit(spa, NULL, txg, error));
+ }
+
+ /* stop writers from using the disks */
+ for (c = 0; c < children; c++) {
+ if (vml[c] != NULL)
+ vml[c]->vdev_offline = B_TRUE;
+ }
+ vdev_reopen(spa->spa_root_vdev);
+
+ /*
+ * Temporarily record the splitting vdevs in the spa config. This
+ * will disappear once the config is regenerated.
+ */
+ VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
+ glist, children) == 0);
+ kmem_free(glist, children * sizeof (uint64_t));
+
+ mutex_enter(&spa->spa_props_lock);
+ VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
+ nvl) == 0);
+ mutex_exit(&spa->spa_props_lock);
+ spa->spa_config_splitting = nvl;
+ vdev_config_dirty(spa->spa_root_vdev);
+
+ /* configure and create the new pool */
+ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
+ exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
+ spa_version(spa)) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
+ spa->spa_config_txg) == 0);
+ VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
+ spa_generate_guid(NULL)) == 0);
+ (void) nvlist_lookup_string(props,
+ zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
+
+ /* add the new pool to the namespace */
+ newspa = spa_add(newname, config, altroot);
+ newspa->spa_config_txg = spa->spa_config_txg;
+ spa_set_log_state(newspa, SPA_LOG_CLEAR);
+
+ /* release the spa config lock, retaining the namespace lock */
+ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
+
+ if (zio_injection_enabled)
+ zio_handle_panic_injection(spa, FTAG, 1);
+
+ spa_activate(newspa, spa_mode_global);
+ spa_async_suspend(newspa);
+
+ /* create the new pool from the disks of the original pool */
+ error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
+ if (error)
+ goto out;
+
+ /* if that worked, generate a real config for the new pool */
+ if (newspa->spa_root_vdev != NULL) {
+ VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
+ NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
+ ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
+ spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
+ B_TRUE));
+ }
+
+ /* set the props */
+ if (props != NULL) {
+ spa_configfile_set(newspa, props, B_FALSE);
+ error = spa_prop_set(newspa, props);
+ if (error)
+ goto out;
+ }
+
+ /* flush everything */
+ txg = spa_vdev_config_enter(newspa);
+ vdev_config_dirty(newspa->spa_root_vdev);
+ (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
+
+ if (zio_injection_enabled)
+ zio_handle_panic_injection(spa, FTAG, 2);
+
+ spa_async_resume(newspa);
+
+ /* finally, update the original pool's config */
+ txg = spa_vdev_config_enter(spa);
+ tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
+ error = dmu_tx_assign(tx, TXG_WAIT);
+ if (error != 0)
+ dmu_tx_abort(tx);
+ for (c = 0; c < children; c++) {
+ if (vml[c] != NULL) {
+ vdev_split(vml[c]);
+ if (error == 0)
+ spa_history_log_internal(LOG_POOL_VDEV_DETACH,
+ spa, tx, "vdev=%s",
+ vml[c]->vdev_path);
+ vdev_free(vml[c]);
+ }
+ }
+ vdev_config_dirty(spa->spa_root_vdev);
+ spa->spa_config_splitting = NULL;
+ nvlist_free(nvl);
+ if (error == 0)
+ dmu_tx_commit(tx);
+ (void) spa_vdev_exit(spa, NULL, txg, 0);
+
+ if (zio_injection_enabled)
+ zio_handle_panic_injection(spa, FTAG, 3);
+
+ /* split is complete; log a history record */
+ spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
+ "split new pool %s from pool %s", newname, spa_name(spa));
+
+ kmem_free(vml, children * sizeof (vdev_t *));
+
+ /* if we're not going to mount the filesystems in userland, export */
+ if (exp)
+ error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
+ B_FALSE, B_FALSE);
+
+ return (error);
+
+out:
+ spa_unload(newspa);
+ spa_deactivate(newspa);
+ spa_remove(newspa);
+
+ txg = spa_vdev_config_enter(spa);
+
+ /* re-online all offlined disks */
+ for (c = 0; c < children; c++) {
+ if (vml[c] != NULL)
+ vml[c]->vdev_offline = B_FALSE;
+ }
+ vdev_reopen(spa->spa_root_vdev);
+
+ nvlist_free(spa->spa_config_splitting);
+ spa->spa_config_splitting = NULL;
+ (void) spa_vdev_exit(spa, NULL, txg, error);
+
+ kmem_free(vml, children * sizeof (vdev_t *));
+ return (error);
+}
+
+static nvlist_t *
+spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
+{
+ for (int i = 0; i < count; i++) {
+ uint64_t guid;
+
+ VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
+ &guid) == 0);
+
+ if (guid == target_guid)
+ return (nvpp[i]);
+ }
+
+ return (NULL);
+}
+
+static void
+spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
+ nvlist_t *dev_to_remove)
+{
+ nvlist_t **newdev = NULL;
+
+ if (count > 1)
+ newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
+
+ for (int i = 0, j = 0; i < count; i++) {
+ if (dev[i] == dev_to_remove)
+ continue;
+ VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
+ }
+
+ VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
+ VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
+
+ for (int i = 0; i < count - 1; i++)
+ nvlist_free(newdev[i]);
+
+ if (count > 1)
+ kmem_free(newdev, (count - 1) * sizeof (void *));
+}
+
+/*
+ * Evacuate the device.
+ */
+static int
+spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
+{
+ uint64_t txg;
+ int error = 0;
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * Evacuate the device. We don't hold the config lock as writer
+ * since we need to do I/O but we do keep the
+ * spa_namespace_lock held. Once this completes the device
+ * should no longer have any blocks allocated on it.
+ */
+ if (vd->vdev_islog) {
+ if (vd->vdev_stat.vs_alloc != 0)
+ error = spa_offline_log(spa);
+ } else {
+ error = ENOTSUP;
+ }
+
+ if (error)
+ return (error);
+
+ /*
+ * The evacuation succeeded. Remove any remaining MOS metadata
+ * associated with this vdev, and wait for these changes to sync.
+ */
+ ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
+ txg = spa_vdev_config_enter(spa);
+ vd->vdev_removing = B_TRUE;
+ vdev_dirty(vd, 0, NULL, txg);
+ vdev_config_dirty(vd);
+ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
+
+ return (0);
+}
+
+/*
+ * Complete the removal by cleaning up the namespace.
+ */
+static void
+spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
+{
+ vdev_t *rvd = spa->spa_root_vdev;
+ uint64_t id = vd->vdev_id;
+ boolean_t last_vdev = (id == (rvd->vdev_children - 1));
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * Only remove any devices which are empty.
+ */
+ if (vd->vdev_stat.vs_alloc != 0)
+ return;
+
+ (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
+
+ if (list_link_active(&vd->vdev_state_dirty_node))
+ vdev_state_clean(vd);
+ if (list_link_active(&vd->vdev_config_dirty_node))
+ vdev_config_clean(vd);
+
+ vdev_free(vd);
+
+ if (last_vdev) {
+ vdev_compact_children(rvd);
+ } else {
+ vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
+ vdev_add_child(rvd, vd);
+ }
+ vdev_config_dirty(rvd);
+
+ /*
+ * Reassess the health of our root vdev.
+ */
+ vdev_reopen(rvd);
+}
+
+/*
+ * Remove a device from the pool -
+ *
+ * Removing a device from the vdev namespace requires several steps
+ * and can take a significant amount of time. As a result we use
+ * the spa_vdev_config_[enter/exit] functions which allow us to
+ * grab and release the spa_config_lock while still holding the namespace
+ * lock. During each step the configuration is synced out.
+ */
+
+/*
+ * Remove a device from the pool. Currently, this supports removing only hot
+ * spares, slogs, and level 2 ARC devices.
+ */
+int
+spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
+{
+ vdev_t *vd;
+ metaslab_group_t *mg;
+ nvlist_t **spares, **l2cache, *nv;
+ uint64_t txg = 0;
+ uint_t nspares, nl2cache;
+ int error = 0;
+ boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
+
+ ASSERT(spa_writeable(spa));
+
+ if (!locked)
+ txg = spa_vdev_enter(spa);
+
+ vd = spa_lookup_by_guid(spa, guid, B_FALSE);
+
+ if (spa->spa_spares.sav_vdevs != NULL &&
+ nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
+ (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
+ /*
+ * Only remove the hot spare if it's not currently in use
+ * in this pool.
+ */
+ if (vd == NULL || unspare) {
+ spa_vdev_remove_aux(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, spares, nspares, nv);
+ spa_load_spares(spa);
+ spa->spa_spares.sav_sync = B_TRUE;
+ } else {
+ error = EBUSY;
+ }
+ } else if (spa->spa_l2cache.sav_vdevs != NULL &&
+ nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
+ (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
+ /*
+ * Cache devices can always be removed.
+ */
+ spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
+ spa_load_l2cache(spa);
+ spa->spa_l2cache.sav_sync = B_TRUE;
+ } else if (vd != NULL && vd->vdev_islog) {
+ ASSERT(!locked);
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * XXX - Once we have bp-rewrite this should
+ * become the common case.
+ */
+
+ mg = vd->vdev_mg;
+
+ /*
+ * Stop allocating from this vdev.
+ */
+ metaslab_group_passivate(mg);
+
+ /*
+ * Wait for the youngest allocations and frees to sync,
+ * and then wait for the deferral of those frees to finish.
+ */
+ spa_vdev_config_exit(spa, NULL,
+ txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
+
+ /*
+ * Attempt to evacuate the vdev.
+ */
+ error = spa_vdev_remove_evacuate(spa, vd);
+
+ txg = spa_vdev_config_enter(spa);
+
+ /*
+ * If we couldn't evacuate the vdev, unwind.
+ */
+ if (error) {
+ metaslab_group_activate(mg);
+ return (spa_vdev_exit(spa, NULL, txg, error));
+ }
+
+ /*
+ * Clean up the vdev namespace.
+ */
+ spa_vdev_remove_from_namespace(spa, vd);
+
+ } else if (vd != NULL) {
+ /*
+ * Normal vdevs cannot be removed (yet).
+ */
+ error = ENOTSUP;
+ } else {
+ /*
+ * There is no vdev of any kind with the specified guid.
+ */
+ error = ENOENT;
+ }
+
+ if (!locked)
+ return (spa_vdev_exit(spa, NULL, txg, error));
+
+ return (error);
+}
+
+/*
+ * Find any device that's done replacing, or a vdev marked 'unspare' that's
+ * current spared, so we can detach it.
+ */
+static vdev_t *
+spa_vdev_resilver_done_hunt(vdev_t *vd)
+{
+ vdev_t *newvd, *oldvd;
+
+ for (int c = 0; c < vd->vdev_children; c++) {
+ oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
+ if (oldvd != NULL)
+ return (oldvd);
+ }
+
+ /*
+ * Check for a completed replacement. We always consider the first
+ * vdev in the list to be the oldest vdev, and the last one to be
+ * the newest (see spa_vdev_attach() for how that works). In
+ * the case where the newest vdev is faulted, we will not automatically
+ * remove it after a resilver completes. This is OK as it will require
+ * user intervention to determine which disk the admin wishes to keep.
+ */
+ if (vd->vdev_ops == &vdev_replacing_ops) {
+ ASSERT(vd->vdev_children > 1);
+
+ newvd = vd->vdev_child[vd->vdev_children - 1];
+ oldvd = vd->vdev_child[0];
+
+ if (vdev_dtl_empty(newvd, DTL_MISSING) &&
+ vdev_dtl_empty(newvd, DTL_OUTAGE) &&
+ !vdev_dtl_required(oldvd))
+ return (oldvd);
+ }
+
+ /*
+ * Check for a completed resilver with the 'unspare' flag set.
+ */
+ if (vd->vdev_ops == &vdev_spare_ops) {
+ vdev_t *first = vd->vdev_child[0];
+ vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
+
+ if (last->vdev_unspare) {
+ oldvd = first;
+ newvd = last;
+ } else if (first->vdev_unspare) {
+ oldvd = last;
+ newvd = first;
+ } else {
+ oldvd = NULL;
+ }
+
+ if (oldvd != NULL &&
+ vdev_dtl_empty(newvd, DTL_MISSING) &&
+ vdev_dtl_empty(newvd, DTL_OUTAGE) &&
+ !vdev_dtl_required(oldvd))
+ return (oldvd);
+
+ /*
+ * If there are more than two spares attached to a disk,
+ * and those spares are not required, then we want to
+ * attempt to free them up now so that they can be used
+ * by other pools. Once we're back down to a single
+ * disk+spare, we stop removing them.
+ */
+ if (vd->vdev_children > 2) {
+ newvd = vd->vdev_child[1];
+
+ if (newvd->vdev_isspare && last->vdev_isspare &&
+ vdev_dtl_empty(last, DTL_MISSING) &&
+ vdev_dtl_empty(last, DTL_OUTAGE) &&
+ !vdev_dtl_required(newvd))
+ return (newvd);
+ }
+ }
+
+ return (NULL);
+}
+
+static void
+spa_vdev_resilver_done(spa_t *spa)
+{
+ vdev_t *vd, *pvd, *ppvd;
+ uint64_t guid, sguid, pguid, ppguid;
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+
+ while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
+ pvd = vd->vdev_parent;
+ ppvd = pvd->vdev_parent;
+ guid = vd->vdev_guid;
+ pguid = pvd->vdev_guid;
+ ppguid = ppvd->vdev_guid;
+ sguid = 0;
+ /*
+ * If we have just finished replacing a hot spared device, then
+ * we need to detach the parent's first child (the original hot
+ * spare) as well.
+ */
+ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
+ ppvd->vdev_children == 2) {
+ ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
+ sguid = ppvd->vdev_child[1]->vdev_guid;
+ }
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
+ return;
+ if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
+ return;
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+ }
+
+ spa_config_exit(spa, SCL_ALL, FTAG);
+}
+
+/*
+ * Update the stored path or FRU for this vdev.
+ */
+int
+spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
+ boolean_t ispath)
+{
+ vdev_t *vd;
+ boolean_t sync = B_FALSE;
+
+ ASSERT(spa_writeable(spa));
+
+ spa_vdev_state_enter(spa, SCL_ALL);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENOENT));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ if (ispath) {
+ if (strcmp(value, vd->vdev_path) != 0) {
+ spa_strfree(vd->vdev_path);
+ vd->vdev_path = spa_strdup(value);
+ sync = B_TRUE;
+ }
+ } else {
+ if (vd->vdev_fru == NULL) {
+ vd->vdev_fru = spa_strdup(value);
+ sync = B_TRUE;
+ } else if (strcmp(value, vd->vdev_fru) != 0) {
+ spa_strfree(vd->vdev_fru);
+ vd->vdev_fru = spa_strdup(value);
+ sync = B_TRUE;
+ }
+ }
+
+ return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
+}
+
+int
+spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
+{
+ return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
+}
+
+int
+spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
+{
+ return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
+}
+
+/*
+ * ==========================================================================
+ * SPA Scanning
+ * ==========================================================================
+ */
+
+int
+spa_scan_stop(spa_t *spa)
+{
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
+ if (dsl_scan_resilvering(spa->spa_dsl_pool))
+ return (EBUSY);
+ return (dsl_scan_cancel(spa->spa_dsl_pool));
+}
+
+int
+spa_scan(spa_t *spa, pool_scan_func_t func)
+{
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
+
+ if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
+ return (ENOTSUP);
+
+ /*
+ * If a resilver was requested, but there is no DTL on a
+ * writeable leaf device, we have nothing to do.
+ */
+ if (func == POOL_SCAN_RESILVER &&
+ !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
+ spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
+ return (0);
+ }
+
+ return (dsl_scan(spa->spa_dsl_pool, func));
+}
+
+/*
+ * ==========================================================================
+ * SPA async task processing
+ * ==========================================================================
+ */
+
+static void
+spa_async_remove(spa_t *spa, vdev_t *vd)
+{
+ if (vd->vdev_remove_wanted) {
+ vd->vdev_remove_wanted = B_FALSE;
+ vd->vdev_delayed_close = B_FALSE;
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
+
+ /*
+ * We want to clear the stats, but we don't want to do a full
+ * vdev_clear() as that will cause us to throw away
+ * degraded/faulted state as well as attempt to reopen the
+ * device, all of which is a waste.
+ */
+ vd->vdev_stat.vs_read_errors = 0;
+ vd->vdev_stat.vs_write_errors = 0;
+ vd->vdev_stat.vs_checksum_errors = 0;
+
+ vdev_state_dirty(vd->vdev_top);
+ }
+
+ for (int c = 0; c < vd->vdev_children; c++)
+ spa_async_remove(spa, vd->vdev_child[c]);
+}
+
+static void
+spa_async_probe(spa_t *spa, vdev_t *vd)
+{
+ if (vd->vdev_probe_wanted) {
+ vd->vdev_probe_wanted = B_FALSE;
+ vdev_reopen(vd); /* vdev_open() does the actual probe */
+ }
+
+ for (int c = 0; c < vd->vdev_children; c++)
+ spa_async_probe(spa, vd->vdev_child[c]);
+}
+
+static void
+spa_async_autoexpand(spa_t *spa, vdev_t *vd)
+{
+ sysevent_id_t eid;
+ nvlist_t *attr;
+ char *physpath;
+
+ if (!spa->spa_autoexpand)
+ return;
+
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+ spa_async_autoexpand(spa, cvd);
+ }
+
+ if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
+ return;
+
+ physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
+ (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
+
+ VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
+
+ (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
+ ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
+
+ nvlist_free(attr);
+ kmem_free(physpath, MAXPATHLEN);
+}
+
+static void
+spa_async_thread(spa_t *spa)
+{
+ int tasks;
+
+ ASSERT(spa->spa_sync_on);
+
+ mutex_enter(&spa->spa_async_lock);
+ tasks = spa->spa_async_tasks;
+ spa->spa_async_tasks = 0;
+ mutex_exit(&spa->spa_async_lock);
+
+ /*
+ * See if the config needs to be updated.
+ */
+ if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
+ uint64_t old_space, new_space;
+
+ mutex_enter(&spa_namespace_lock);
+ old_space = metaslab_class_get_space(spa_normal_class(spa));
+ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
+ new_space = metaslab_class_get_space(spa_normal_class(spa));
+ mutex_exit(&spa_namespace_lock);
+
+ /*
+ * If the pool grew as a result of the config update,
+ * then log an internal history event.
+ */
+ if (new_space != old_space) {
+ spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
+ spa, NULL,
+ "pool '%s' size: %llu(+%llu)",
+ spa_name(spa), new_space, new_space - old_space);
+ }
+ }
+
+ /*
+ * See if any devices need to be marked REMOVED.
+ */
+ if (tasks & SPA_ASYNC_REMOVE) {
+ spa_vdev_state_enter(spa, SCL_NONE);
+ spa_async_remove(spa, spa->spa_root_vdev);
+ for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
+ spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
+ for (int i = 0; i < spa->spa_spares.sav_count; i++)
+ spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
+ (void) spa_vdev_state_exit(spa, NULL, 0);
+ }
+
+ if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+ spa_async_autoexpand(spa, spa->spa_root_vdev);
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+ }
+
+ /*
+ * See if any devices need to be probed.
+ */
+ if (tasks & SPA_ASYNC_PROBE) {
+ spa_vdev_state_enter(spa, SCL_NONE);
+ spa_async_probe(spa, spa->spa_root_vdev);
+ (void) spa_vdev_state_exit(spa, NULL, 0);
+ }
+
+ /*
+ * If any devices are done replacing, detach them.
+ */
+ if (tasks & SPA_ASYNC_RESILVER_DONE)
+ spa_vdev_resilver_done(spa);
+
+ /*
+ * Kick off a resilver.
+ */
+ if (tasks & SPA_ASYNC_RESILVER)
+ dsl_resilver_restart(spa->spa_dsl_pool, 0);
+
+ /*
+ * Let the world know that we're done.
+ */
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_async_thread = NULL;
+ cv_broadcast(&spa->spa_async_cv);
+ mutex_exit(&spa->spa_async_lock);
+ thread_exit();
+}
+
+void
+spa_async_suspend(spa_t *spa)
+{
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_async_suspended++;
+ while (spa->spa_async_thread != NULL)
+ cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
+ mutex_exit(&spa->spa_async_lock);
+}
+
+void
+spa_async_resume(spa_t *spa)
+{
+ mutex_enter(&spa->spa_async_lock);
+ ASSERT(spa->spa_async_suspended != 0);
+ spa->spa_async_suspended--;
+ mutex_exit(&spa->spa_async_lock);
+}
+
+static void
+spa_async_dispatch(spa_t *spa)
+{
+ mutex_enter(&spa->spa_async_lock);
+ if (spa->spa_async_tasks && !spa->spa_async_suspended &&
+ spa->spa_async_thread == NULL &&
+ rootdir != NULL && !vn_is_readonly(rootdir))
+ spa->spa_async_thread = thread_create(NULL, 0,
+ spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
+ mutex_exit(&spa->spa_async_lock);
+}
+
+void
+spa_async_request(spa_t *spa, int task)
+{
+ zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_async_tasks |= task;
+ mutex_exit(&spa->spa_async_lock);
+}
+
+/*
+ * ==========================================================================
+ * SPA syncing routines
+ * ==========================================================================
+ */
+
+static int
+bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
+{
+ bpobj_t *bpo = arg;
+ bpobj_enqueue(bpo, bp, tx);
+ return (0);
+}
+
+static int
+spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
+{
+ zio_t *zio = arg;
+
+ zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
+ zio->io_flags));
+ return (0);
+}
+
+static void
+spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
+{
+ char *packed = NULL;
+ size_t bufsize;
+ size_t nvsize = 0;
+ dmu_buf_t *db;
+
+ VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
+
+ /*
+ * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
+ * information. This avoids the dbuf_will_dirty() path and
+ * saves us a pre-read to get data we don't actually care about.
+ */
+ bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
+ packed = kmem_alloc(bufsize, KM_SLEEP);
+
+ VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
+ KM_SLEEP) == 0);
+ bzero(packed + nvsize, bufsize - nvsize);
+
+ dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
+
+ kmem_free(packed, bufsize);
+
+ VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
+ dmu_buf_will_dirty(db, tx);
+ *(uint64_t *)db->db_data = nvsize;
+ dmu_buf_rele(db, FTAG);
+}
+
+static void
+spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
+ const char *config, const char *entry)
+{
+ nvlist_t *nvroot;
+ nvlist_t **list;
+ int i;
+
+ if (!sav->sav_sync)
+ return;
+
+ /*
+ * Update the MOS nvlist describing the list of available devices.
+ * spa_validate_aux() will have already made sure this nvlist is
+ * valid and the vdevs are labeled appropriately.
+ */
+ if (sav->sav_object == 0) {
+ sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
+ DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
+ sizeof (uint64_t), tx);
+ VERIFY(zap_update(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
+ &sav->sav_object, tx) == 0);
+ }
+
+ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
+ if (sav->sav_count == 0) {
+ VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
+ } else {
+ list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
+ for (i = 0; i < sav->sav_count; i++)
+ list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
+ B_FALSE, VDEV_CONFIG_L2CACHE);
+ VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
+ sav->sav_count) == 0);
+ for (i = 0; i < sav->sav_count; i++)
+ nvlist_free(list[i]);
+ kmem_free(list, sav->sav_count * sizeof (void *));
+ }
+
+ spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
+ nvlist_free(nvroot);
+
+ sav->sav_sync = B_FALSE;
+}
+
+static void
+spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
+{
+ nvlist_t *config;
+
+ if (list_is_empty(&spa->spa_config_dirty_list))
+ return;
+
+ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+
+ config = spa_config_generate(spa, spa->spa_root_vdev,
+ dmu_tx_get_txg(tx), B_FALSE);
+
+ spa_config_exit(spa, SCL_STATE, FTAG);
+
+ if (spa->spa_config_syncing)
+ nvlist_free(spa->spa_config_syncing);
+ spa->spa_config_syncing = config;
+
+ spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
+}
+
+/*
+ * Set zpool properties.
+ */
+static void
+spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
+{
+ spa_t *spa = arg1;
+ objset_t *mos = spa->spa_meta_objset;
+ nvlist_t *nvp = arg2;
+ nvpair_t *elem;
+ uint64_t intval;
+ char *strval;
+ zpool_prop_t prop;
+ const char *propname;
+ zprop_type_t proptype;
+
+ mutex_enter(&spa->spa_props_lock);
+
+ elem = NULL;
+ while ((elem = nvlist_next_nvpair(nvp, elem))) {
+ switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
+ case ZPOOL_PROP_VERSION:
+ /*
+ * Only set version for non-zpool-creation cases
+ * (set/import). spa_create() needs special care
+ * for version setting.
+ */
+ if (tx->tx_txg != TXG_INITIAL) {
+ VERIFY(nvpair_value_uint64(elem,
+ &intval) == 0);
+ ASSERT(intval <= SPA_VERSION);
+ ASSERT(intval >= spa_version(spa));
+ spa->spa_uberblock.ub_version = intval;
+ vdev_config_dirty(spa->spa_root_vdev);
+ }
+ break;
+
+ case ZPOOL_PROP_ALTROOT:
+ /*
+ * 'altroot' is a non-persistent property. It should
+ * have been set temporarily at creation or import time.
+ */
+ ASSERT(spa->spa_root != NULL);
+ break;
+
+ case ZPOOL_PROP_READONLY:
+ case ZPOOL_PROP_CACHEFILE:
+ /*
+ * 'readonly' and 'cachefile' are also non-persisitent
+ * properties.
+ */
+ break;
+ default:
+ /*
+ * Set pool property values in the poolprops mos object.
+ */
+ if (spa->spa_pool_props_object == 0) {
+ VERIFY((spa->spa_pool_props_object =
+ zap_create(mos, DMU_OT_POOL_PROPS,
+ DMU_OT_NONE, 0, tx)) > 0);
+
+ VERIFY(zap_update(mos,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
+ 8, 1, &spa->spa_pool_props_object, tx)
+ == 0);
+ }
+
+ /* normalize the property name */
+ propname = zpool_prop_to_name(prop);
+ proptype = zpool_prop_get_type(prop);
+
+ if (nvpair_type(elem) == DATA_TYPE_STRING) {
+ ASSERT(proptype == PROP_TYPE_STRING);
+ VERIFY(nvpair_value_string(elem, &strval) == 0);
+ VERIFY(zap_update(mos,
+ spa->spa_pool_props_object, propname,
+ 1, strlen(strval) + 1, strval, tx) == 0);
+
+ } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
+ VERIFY(nvpair_value_uint64(elem, &intval) == 0);
+
+ if (proptype == PROP_TYPE_INDEX) {
+ const char *unused;
+ VERIFY(zpool_prop_index_to_string(
+ prop, intval, &unused) == 0);
+ }
+ VERIFY(zap_update(mos,
+ spa->spa_pool_props_object, propname,
+ 8, 1, &intval, tx) == 0);
+ } else {
+ ASSERT(0); /* not allowed */
+ }
+
+ switch (prop) {
+ case ZPOOL_PROP_DELEGATION:
+ spa->spa_delegation = intval;
+ break;
+ case ZPOOL_PROP_BOOTFS:
+ spa->spa_bootfs = intval;
+ break;
+ case ZPOOL_PROP_FAILUREMODE:
+ spa->spa_failmode = intval;
+ break;
+ case ZPOOL_PROP_AUTOEXPAND:
+ spa->spa_autoexpand = intval;
+ if (tx->tx_txg != TXG_INITIAL)
+ spa_async_request(spa,
+ SPA_ASYNC_AUTOEXPAND);
+ break;
+ case ZPOOL_PROP_DEDUPDITTO:
+ spa->spa_dedup_ditto = intval;
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* log internal history if this is not a zpool create */
+ if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
+ tx->tx_txg != TXG_INITIAL) {
+ spa_history_log_internal(LOG_POOL_PROPSET,
+ spa, tx, "%s %lld %s",
+ nvpair_name(elem), intval, spa_name(spa));
+ }
+ }
+
+ mutex_exit(&spa->spa_props_lock);
+}
+
+/*
+ * Perform one-time upgrade on-disk changes. spa_version() does not
+ * reflect the new version this txg, so there must be no changes this
+ * txg to anything that the upgrade code depends on after it executes.
+ * Therefore this must be called after dsl_pool_sync() does the sync
+ * tasks.
+ */
+static void
+spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
+{
+ dsl_pool_t *dp = spa->spa_dsl_pool;
+
+ ASSERT(spa->spa_sync_pass == 1);
+
+ if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
+ spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
+ dsl_pool_create_origin(dp, tx);
+
+ /* Keeping the origin open increases spa_minref */
+ spa->spa_minref += 3;
+ }
+
+ if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
+ spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
+ dsl_pool_upgrade_clones(dp, tx);
+ }
+
+ if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
+ spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
+ dsl_pool_upgrade_dir_clones(dp, tx);
+
+ /* Keeping the freedir open increases spa_minref */
+ spa->spa_minref += 3;
+ }
+}
+
+/*
+ * Sync the specified transaction group. New blocks may be dirtied as
+ * part of the process, so we iterate until it converges.
+ */
+void
+spa_sync(spa_t *spa, uint64_t txg)
+{
+ dsl_pool_t *dp = spa->spa_dsl_pool;
+ objset_t *mos = spa->spa_meta_objset;
+ bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
+ bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
+ vdev_t *rvd = spa->spa_root_vdev;
+ vdev_t *vd;
+ dmu_tx_t *tx;
+ int error;
+
+ VERIFY(spa_writeable(spa));
+
+ /*
+ * Lock out configuration changes.
+ */
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ spa->spa_syncing_txg = txg;
+ spa->spa_sync_pass = 0;
+
+ /*
+ * If there are any pending vdev state changes, convert them
+ * into config changes that go out with this transaction group.
+ */
+ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+ while (list_head(&spa->spa_state_dirty_list) != NULL) {
+ /*
+ * We need the write lock here because, for aux vdevs,
+ * calling vdev_config_dirty() modifies sav_config.
+ * This is ugly and will become unnecessary when we
+ * eliminate the aux vdev wart by integrating all vdevs
+ * into the root vdev tree.
+ */
+ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
+ spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
+ while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
+ vdev_state_clean(vd);
+ vdev_config_dirty(vd);
+ }
+ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
+ spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
+ }
+ spa_config_exit(spa, SCL_STATE, FTAG);
+
+ tx = dmu_tx_create_assigned(dp, txg);
+
+ /*
+ * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
+ * set spa_deflate if we have no raid-z vdevs.
+ */
+ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
+ spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
+ int i;
+
+ for (i = 0; i < rvd->vdev_children; i++) {
+ vd = rvd->vdev_child[i];
+ if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
+ break;
+ }
+ if (i == rvd->vdev_children) {
+ spa->spa_deflate = TRUE;
+ VERIFY(0 == zap_add(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
+ sizeof (uint64_t), 1, &spa->spa_deflate, tx));
+ }
+ }
+
+ /*
+ * If anything has changed in this txg, or if someone is waiting
+ * for this txg to sync (eg, spa_vdev_remove()), push the
+ * deferred frees from the previous txg. If not, leave them
+ * alone so that we don't generate work on an otherwise idle
+ * system.
+ */
+ if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
+ !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
+ !txg_list_empty(&dp->dp_sync_tasks, txg) ||
+ ((dsl_scan_active(dp->dp_scan) ||
+ txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
+ zio_t *zio = zio_root(spa, NULL, NULL, 0);
+ VERIFY3U(bpobj_iterate(defer_bpo,
+ spa_free_sync_cb, zio, tx), ==, 0);
+ VERIFY3U(zio_wait(zio), ==, 0);
+ }
+
+ /*
+ * Iterate to convergence.
+ */
+ do {
+ int pass = ++spa->spa_sync_pass;
+
+ spa_sync_config_object(spa, tx);
+ spa_sync_aux_dev(spa, &spa->spa_spares, tx,
+ ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
+ spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
+ ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
+ spa_errlog_sync(spa, txg);
+ dsl_pool_sync(dp, txg);
+
+ if (pass <= SYNC_PASS_DEFERRED_FREE) {
+ zio_t *zio = zio_root(spa, NULL, NULL, 0);
+ bplist_iterate(free_bpl, spa_free_sync_cb,
+ zio, tx);
+ VERIFY(zio_wait(zio) == 0);
+ } else {
+ bplist_iterate(free_bpl, bpobj_enqueue_cb,
+ defer_bpo, tx);
+ }
+
+ ddt_sync(spa, txg);
+ dsl_scan_sync(dp, tx);
+
+ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
+ vdev_sync(vd, txg);
+
+ if (pass == 1)
+ spa_sync_upgrades(spa, tx);
+
+ } while (dmu_objset_is_dirty(mos, txg));
+
+ /*
+ * Rewrite the vdev configuration (which includes the uberblock)
+ * to commit the transaction group.
+ *
+ * If there are no dirty vdevs, we sync the uberblock to a few
+ * random top-level vdevs that are known to be visible in the
+ * config cache (see spa_vdev_add() for a complete description).
+ * If there *are* dirty vdevs, sync the uberblock to all vdevs.
+ */
+ for (;;) {
+ /*
+ * We hold SCL_STATE to prevent vdev open/close/etc.
+ * while we're attempting to write the vdev labels.
+ */
+ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+
+ if (list_is_empty(&spa->spa_config_dirty_list)) {
+ vdev_t *svd[SPA_DVAS_PER_BP];
+ int svdcount = 0;
+ int children = rvd->vdev_children;
+ int c0 = spa_get_random(children);
+
+ for (int c = 0; c < children; c++) {
+ vd = rvd->vdev_child[(c0 + c) % children];
+ if (vd->vdev_ms_array == 0 || vd->vdev_islog)
+ continue;
+ svd[svdcount++] = vd;
+ if (svdcount == SPA_DVAS_PER_BP)
+ break;
+ }
+ error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
+ if (error != 0)
+ error = vdev_config_sync(svd, svdcount, txg,
+ B_TRUE);
+ } else {
+ error = vdev_config_sync(rvd->vdev_child,
+ rvd->vdev_children, txg, B_FALSE);
+ if (error != 0)
+ error = vdev_config_sync(rvd->vdev_child,
+ rvd->vdev_children, txg, B_TRUE);
+ }
+
+ spa_config_exit(spa, SCL_STATE, FTAG);
+
+ if (error == 0)
+ break;
+ zio_suspend(spa, NULL);
+ zio_resume_wait(spa);
+ }
+ dmu_tx_commit(tx);
+
+ /*
+ * Clear the dirty config list.
+ */
+ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
+ vdev_config_clean(vd);
+
+ /*
+ * Now that the new config has synced transactionally,
+ * let it become visible to the config cache.
+ */
+ if (spa->spa_config_syncing != NULL) {
+ spa_config_set(spa, spa->spa_config_syncing);
+ spa->spa_config_txg = txg;
+ spa->spa_config_syncing = NULL;
+ }
+
+ spa->spa_ubsync = spa->spa_uberblock;
+
+ dsl_pool_sync_done(dp, txg);
+
+ /*
+ * Update usable space statistics.
+ */
+ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
+ vdev_sync_done(vd, txg);
+
+ spa_update_dspace(spa);
+
+ /*
+ * It had better be the case that we didn't dirty anything
+ * since vdev_config_sync().
+ */
+ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
+ ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
+ ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
+
+ spa->spa_sync_pass = 0;
+
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+ spa_handle_ignored_writes(spa);
+
+ /*
+ * If any async tasks have been requested, kick them off.
+ */
+ spa_async_dispatch(spa);
+}
+
+/*
+ * Sync all pools. We don't want to hold the namespace lock across these
+ * operations, so we take a reference on the spa_t and drop the lock during the
+ * sync.
+ */
+void
+spa_sync_allpools(void)
+{
+ spa_t *spa = NULL;
+ mutex_enter(&spa_namespace_lock);
+ while ((spa = spa_next(spa)) != NULL) {
+ if (spa_state(spa) != POOL_STATE_ACTIVE ||
+ !spa_writeable(spa) || spa_suspended(spa))
+ continue;
+ spa_open_ref(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ txg_wait_synced(spa_get_dsl(spa), 0);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+ }
+ mutex_exit(&spa_namespace_lock);
+}
+
+/*
+ * ==========================================================================
+ * Miscellaneous routines
+ * ==========================================================================
+ */
+
+/*
+ * Remove all pools in the system.
+ */
+void
+spa_evict_all(void)
+{
+ spa_t *spa;
+
+ /*
+ * Remove all cached state. All pools should be closed now,
+ * so every spa in the AVL tree should be unreferenced.
+ */
+ mutex_enter(&spa_namespace_lock);
+ while ((spa = spa_next(NULL)) != NULL) {
+ /*
+ * Stop async tasks. The async thread may need to detach
+ * a device that's been replaced, which requires grabbing
+ * spa_namespace_lock, so we must drop it here.
+ */
+ spa_open_ref(spa, FTAG);
+ mutex_exit(&spa_namespace_lock);
+ spa_async_suspend(spa);
+ mutex_enter(&spa_namespace_lock);
+ spa_close(spa, FTAG);
+
+ if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
+ spa_unload(spa);
+ spa_deactivate(spa);
+ }
+ spa_remove(spa);
+ }
+ mutex_exit(&spa_namespace_lock);
+}
+
+vdev_t *
+spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
+{
+ vdev_t *vd;
+ int i;
+
+ if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
+ return (vd);
+
+ if (aux) {
+ for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
+ vd = spa->spa_l2cache.sav_vdevs[i];
+ if (vd->vdev_guid == guid)
+ return (vd);
+ }
+
+ for (i = 0; i < spa->spa_spares.sav_count; i++) {
+ vd = spa->spa_spares.sav_vdevs[i];
+ if (vd->vdev_guid == guid)
+ return (vd);
+ }
+ }
+
+ return (NULL);
+}
+
+void
+spa_upgrade(spa_t *spa, uint64_t version)
+{
+ ASSERT(spa_writeable(spa));
+
+ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
+
+ /*
+ * This should only be called for a non-faulted pool, and since a
+ * future version would result in an unopenable pool, this shouldn't be
+ * possible.
+ */
+ ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
+ ASSERT(version >= spa->spa_uberblock.ub_version);
+
+ spa->spa_uberblock.ub_version = version;
+ vdev_config_dirty(spa->spa_root_vdev);
+
+ spa_config_exit(spa, SCL_ALL, FTAG);
+
+ txg_wait_synced(spa_get_dsl(spa), 0);
+}
+
+boolean_t
+spa_has_spare(spa_t *spa, uint64_t guid)
+{
+ int i;
+ uint64_t spareguid;
+ spa_aux_vdev_t *sav = &spa->spa_spares;
+
+ for (i = 0; i < sav->sav_count; i++)
+ if (sav->sav_vdevs[i]->vdev_guid == guid)
+ return (B_TRUE);
+
+ for (i = 0; i < sav->sav_npending; i++) {
+ if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
+ &spareguid) == 0 && spareguid == guid)
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Check if a pool has an active shared spare device.
+ * Note: reference count of an active spare is 2, as a spare and as a replace
+ */
+static boolean_t
+spa_has_active_shared_spare(spa_t *spa)
+{
+ int i, refcnt;
+ uint64_t pool;
+ spa_aux_vdev_t *sav = &spa->spa_spares;
+
+ for (i = 0; i < sav->sav_count; i++) {
+ if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
+ &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
+ refcnt > 2)
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Post a sysevent corresponding to the given event. The 'name' must be one of
+ * the event definitions in sys/sysevent/eventdefs.h. The payload will be
+ * filled in from the spa and (optionally) the vdev. This doesn't do anything
+ * in the userland libzpool, as we don't want consumers to misinterpret ztest
+ * or zdb as real changes.
+ */
+void
+spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
+{
+#ifdef _KERNEL
+ sysevent_t *ev;
+ sysevent_attr_list_t *attr = NULL;
+ sysevent_value_t value;
+ sysevent_id_t eid;
+
+ ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
+ SE_SLEEP);
+
+ value.value_type = SE_DATA_TYPE_STRING;
+ value.value.sv_string = spa_name(spa);
+ if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
+ goto done;
+
+ value.value_type = SE_DATA_TYPE_UINT64;
+ value.value.sv_uint64 = spa_guid(spa);
+ if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
+ goto done;
+
+ if (vd) {
+ value.value_type = SE_DATA_TYPE_UINT64;
+ value.value.sv_uint64 = vd->vdev_guid;
+ if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
+ SE_SLEEP) != 0)
+ goto done;
+
+ if (vd->vdev_path) {
+ value.value_type = SE_DATA_TYPE_STRING;
+ value.value.sv_string = vd->vdev_path;
+ if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
+ &value, SE_SLEEP) != 0)
+ goto done;
+ }
+ }
+
+ if (sysevent_attach_attributes(ev, attr) != 0)
+ goto done;
+ attr = NULL;
+
+ (void) log_sysevent(ev, SE_SLEEP, &eid);
+
+done:
+ if (attr)
+ sysevent_free_attr(attr);
+ sysevent_free(ev);
+#endif
+}