aboutsummaryrefslogtreecommitdiffstats
path: root/lib/tsan/rtl/tsan_rtl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/tsan/rtl/tsan_rtl.cpp')
-rw-r--r--lib/tsan/rtl/tsan_rtl.cpp1117
1 files changed, 1117 insertions, 0 deletions
diff --git a/lib/tsan/rtl/tsan_rtl.cpp b/lib/tsan/rtl/tsan_rtl.cpp
new file mode 100644
index 000000000000..3f3c0cce119c
--- /dev/null
+++ b/lib/tsan/rtl/tsan_rtl.cpp
@@ -0,0 +1,1117 @@
+//===-- tsan_rtl.cpp ------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of ThreadSanitizer (TSan), a race detector.
+//
+// Main file (entry points) for the TSan run-time.
+//===----------------------------------------------------------------------===//
+
+#include "sanitizer_common/sanitizer_atomic.h"
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_file.h"
+#include "sanitizer_common/sanitizer_libc.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "sanitizer_common/sanitizer_placement_new.h"
+#include "sanitizer_common/sanitizer_symbolizer.h"
+#include "tsan_defs.h"
+#include "tsan_platform.h"
+#include "tsan_rtl.h"
+#include "tsan_mman.h"
+#include "tsan_suppressions.h"
+#include "tsan_symbolize.h"
+#include "ubsan/ubsan_init.h"
+
+#ifdef __SSE3__
+// <emmintrin.h> transitively includes <stdlib.h>,
+// and it's prohibited to include std headers into tsan runtime.
+// So we do this dirty trick.
+#define _MM_MALLOC_H_INCLUDED
+#define __MM_MALLOC_H
+#include <emmintrin.h>
+typedef __m128i m128;
+#endif
+
+volatile int __tsan_resumed = 0;
+
+extern "C" void __tsan_resume() {
+ __tsan_resumed = 1;
+}
+
+namespace __tsan {
+
+#if !SANITIZER_GO && !SANITIZER_MAC
+__attribute__((tls_model("initial-exec")))
+THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
+#endif
+static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
+Context *ctx;
+
+// Can be overriden by a front-end.
+#ifdef TSAN_EXTERNAL_HOOKS
+bool OnFinalize(bool failed);
+void OnInitialize();
+#else
+SANITIZER_WEAK_CXX_DEFAULT_IMPL
+bool OnFinalize(bool failed) {
+ return failed;
+}
+SANITIZER_WEAK_CXX_DEFAULT_IMPL
+void OnInitialize() {}
+#endif
+
+static char thread_registry_placeholder[sizeof(ThreadRegistry)];
+
+static ThreadContextBase *CreateThreadContext(u32 tid) {
+ // Map thread trace when context is created.
+ char name[50];
+ internal_snprintf(name, sizeof(name), "trace %u", tid);
+ MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
+ const uptr hdr = GetThreadTraceHeader(tid);
+ internal_snprintf(name, sizeof(name), "trace header %u", tid);
+ MapThreadTrace(hdr, sizeof(Trace), name);
+ new((void*)hdr) Trace();
+ // We are going to use only a small part of the trace with the default
+ // value of history_size. However, the constructor writes to the whole trace.
+ // Unmap the unused part.
+ uptr hdr_end = hdr + sizeof(Trace);
+ hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
+ hdr_end = RoundUp(hdr_end, GetPageSizeCached());
+ if (hdr_end < hdr + sizeof(Trace))
+ UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
+ void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
+ return new(mem) ThreadContext(tid);
+}
+
+#if !SANITIZER_GO
+static const u32 kThreadQuarantineSize = 16;
+#else
+static const u32 kThreadQuarantineSize = 64;
+#endif
+
+Context::Context()
+ : initialized()
+ , report_mtx(MutexTypeReport, StatMtxReport)
+ , nreported()
+ , nmissed_expected()
+ , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
+ CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
+ , racy_mtx(MutexTypeRacy, StatMtxRacy)
+ , racy_stacks()
+ , racy_addresses()
+ , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
+ , clock_alloc("clock allocator") {
+ fired_suppressions.reserve(8);
+}
+
+// The objects are allocated in TLS, so one may rely on zero-initialization.
+ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
+ unsigned reuse_count,
+ uptr stk_addr, uptr stk_size,
+ uptr tls_addr, uptr tls_size)
+ : fast_state(tid, epoch)
+ // Do not touch these, rely on zero initialization,
+ // they may be accessed before the ctor.
+ // , ignore_reads_and_writes()
+ // , ignore_interceptors()
+ , clock(tid, reuse_count)
+#if !SANITIZER_GO
+ , jmp_bufs()
+#endif
+ , tid(tid)
+ , unique_id(unique_id)
+ , stk_addr(stk_addr)
+ , stk_size(stk_size)
+ , tls_addr(tls_addr)
+ , tls_size(tls_size)
+#if !SANITIZER_GO
+ , last_sleep_clock(tid)
+#endif
+{
+}
+
+#if !SANITIZER_GO
+static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
+ uptr n_threads;
+ uptr n_running_threads;
+ ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
+ InternalMmapVector<char> buf(4096);
+ WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
+ WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
+}
+
+static void BackgroundThread(void *arg) {
+ // This is a non-initialized non-user thread, nothing to see here.
+ // We don't use ScopedIgnoreInterceptors, because we want ignores to be
+ // enabled even when the thread function exits (e.g. during pthread thread
+ // shutdown code).
+ cur_thread_init();
+ cur_thread()->ignore_interceptors++;
+ const u64 kMs2Ns = 1000 * 1000;
+
+ fd_t mprof_fd = kInvalidFd;
+ if (flags()->profile_memory && flags()->profile_memory[0]) {
+ if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
+ mprof_fd = 1;
+ } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
+ mprof_fd = 2;
+ } else {
+ InternalScopedString filename(kMaxPathLength);
+ filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
+ fd_t fd = OpenFile(filename.data(), WrOnly);
+ if (fd == kInvalidFd) {
+ Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
+ &filename[0]);
+ } else {
+ mprof_fd = fd;
+ }
+ }
+ }
+
+ u64 last_flush = NanoTime();
+ uptr last_rss = 0;
+ for (int i = 0;
+ atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
+ i++) {
+ SleepForMillis(100);
+ u64 now = NanoTime();
+
+ // Flush memory if requested.
+ if (flags()->flush_memory_ms > 0) {
+ if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
+ VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
+ FlushShadowMemory();
+ last_flush = NanoTime();
+ }
+ }
+ // GetRSS can be expensive on huge programs, so don't do it every 100ms.
+ if (flags()->memory_limit_mb > 0) {
+ uptr rss = GetRSS();
+ uptr limit = uptr(flags()->memory_limit_mb) << 20;
+ VPrintf(1, "ThreadSanitizer: memory flush check"
+ " RSS=%llu LAST=%llu LIMIT=%llu\n",
+ (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
+ if (2 * rss > limit + last_rss) {
+ VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
+ FlushShadowMemory();
+ rss = GetRSS();
+ VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
+ }
+ last_rss = rss;
+ }
+
+ // Write memory profile if requested.
+ if (mprof_fd != kInvalidFd)
+ MemoryProfiler(ctx, mprof_fd, i);
+
+ // Flush symbolizer cache if requested.
+ if (flags()->flush_symbolizer_ms > 0) {
+ u64 last = atomic_load(&ctx->last_symbolize_time_ns,
+ memory_order_relaxed);
+ if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
+ Lock l(&ctx->report_mtx);
+ ScopedErrorReportLock l2;
+ SymbolizeFlush();
+ atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
+ }
+ }
+ }
+}
+
+static void StartBackgroundThread() {
+ ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
+}
+
+#ifndef __mips__
+static void StopBackgroundThread() {
+ atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
+ internal_join_thread(ctx->background_thread);
+ ctx->background_thread = 0;
+}
+#endif
+#endif
+
+void DontNeedShadowFor(uptr addr, uptr size) {
+ ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
+}
+
+#if !SANITIZER_GO
+void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
+ if (size == 0) return;
+ DontNeedShadowFor(addr, size);
+ ScopedGlobalProcessor sgp;
+ ctx->metamap.ResetRange(thr->proc(), addr, size);
+}
+#endif
+
+void MapShadow(uptr addr, uptr size) {
+ // Global data is not 64K aligned, but there are no adjacent mappings,
+ // so we can get away with unaligned mapping.
+ // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
+ const uptr kPageSize = GetPageSizeCached();
+ uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
+ uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
+ if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
+ Die();
+
+ // Meta shadow is 2:1, so tread carefully.
+ static bool data_mapped = false;
+ static uptr mapped_meta_end = 0;
+ uptr meta_begin = (uptr)MemToMeta(addr);
+ uptr meta_end = (uptr)MemToMeta(addr + size);
+ meta_begin = RoundDownTo(meta_begin, 64 << 10);
+ meta_end = RoundUpTo(meta_end, 64 << 10);
+ if (!data_mapped) {
+ // First call maps data+bss.
+ data_mapped = true;
+ if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
+ Die();
+ } else {
+ // Mapping continous heap.
+ // Windows wants 64K alignment.
+ meta_begin = RoundDownTo(meta_begin, 64 << 10);
+ meta_end = RoundUpTo(meta_end, 64 << 10);
+ if (meta_end <= mapped_meta_end)
+ return;
+ if (meta_begin < mapped_meta_end)
+ meta_begin = mapped_meta_end;
+ if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
+ Die();
+ mapped_meta_end = meta_end;
+ }
+ VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
+ addr, addr+size, meta_begin, meta_end);
+}
+
+void MapThreadTrace(uptr addr, uptr size, const char *name) {
+ DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
+ CHECK_GE(addr, TraceMemBeg());
+ CHECK_LE(addr + size, TraceMemEnd());
+ CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
+ if (!MmapFixedNoReserve(addr, size, name)) {
+ Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
+ addr, size);
+ Die();
+ }
+}
+
+static void CheckShadowMapping() {
+ uptr beg, end;
+ for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
+ // Skip cases for empty regions (heap definition for architectures that
+ // do not use 64-bit allocator).
+ if (beg == end)
+ continue;
+ VPrintf(3, "checking shadow region %p-%p\n", beg, end);
+ uptr prev = 0;
+ for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
+ for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
+ const uptr p = RoundDown(p0 + x, kShadowCell);
+ if (p < beg || p >= end)
+ continue;
+ const uptr s = MemToShadow(p);
+ const uptr m = (uptr)MemToMeta(p);
+ VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m);
+ CHECK(IsAppMem(p));
+ CHECK(IsShadowMem(s));
+ CHECK_EQ(p, ShadowToMem(s));
+ CHECK(IsMetaMem(m));
+ if (prev) {
+ // Ensure that shadow and meta mappings are linear within a single
+ // user range. Lots of code that processes memory ranges assumes it.
+ const uptr prev_s = MemToShadow(prev);
+ const uptr prev_m = (uptr)MemToMeta(prev);
+ CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
+ CHECK_EQ((m - prev_m) / kMetaShadowSize,
+ (p - prev) / kMetaShadowCell);
+ }
+ prev = p;
+ }
+ }
+ }
+}
+
+#if !SANITIZER_GO
+static void OnStackUnwind(const SignalContext &sig, const void *,
+ BufferedStackTrace *stack) {
+ stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
+ common_flags()->fast_unwind_on_fatal);
+}
+
+static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
+ HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
+}
+#endif
+
+void Initialize(ThreadState *thr) {
+ // Thread safe because done before all threads exist.
+ static bool is_initialized = false;
+ if (is_initialized)
+ return;
+ is_initialized = true;
+ // We are not ready to handle interceptors yet.
+ ScopedIgnoreInterceptors ignore;
+ SanitizerToolName = "ThreadSanitizer";
+ // Install tool-specific callbacks in sanitizer_common.
+ SetCheckFailedCallback(TsanCheckFailed);
+
+ ctx = new(ctx_placeholder) Context;
+ const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
+ const char *options = GetEnv(env_name);
+ CacheBinaryName();
+ CheckASLR();
+ InitializeFlags(&ctx->flags, options, env_name);
+ AvoidCVE_2016_2143();
+ __sanitizer::InitializePlatformEarly();
+ __tsan::InitializePlatformEarly();
+
+#if !SANITIZER_GO
+ // Re-exec ourselves if we need to set additional env or command line args.
+ MaybeReexec();
+
+ InitializeAllocator();
+ ReplaceSystemMalloc();
+#endif
+ if (common_flags()->detect_deadlocks)
+ ctx->dd = DDetector::Create(flags());
+ Processor *proc = ProcCreate();
+ ProcWire(proc, thr);
+ InitializeInterceptors();
+ CheckShadowMapping();
+ InitializePlatform();
+ InitializeMutex();
+ InitializeDynamicAnnotations();
+#if !SANITIZER_GO
+ InitializeShadowMemory();
+ InitializeAllocatorLate();
+ InstallDeadlySignalHandlers(TsanOnDeadlySignal);
+#endif
+ // Setup correct file descriptor for error reports.
+ __sanitizer_set_report_path(common_flags()->log_path);
+ InitializeSuppressions();
+#if !SANITIZER_GO
+ InitializeLibIgnore();
+ Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
+#endif
+
+ VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
+ (int)internal_getpid());
+
+ // Initialize thread 0.
+ int tid = ThreadCreate(thr, 0, 0, true);
+ CHECK_EQ(tid, 0);
+ ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
+#if TSAN_CONTAINS_UBSAN
+ __ubsan::InitAsPlugin();
+#endif
+ ctx->initialized = true;
+
+#if !SANITIZER_GO
+ Symbolizer::LateInitialize();
+#endif
+
+ if (flags()->stop_on_start) {
+ Printf("ThreadSanitizer is suspended at startup (pid %d)."
+ " Call __tsan_resume().\n",
+ (int)internal_getpid());
+ while (__tsan_resumed == 0) {}
+ }
+
+ OnInitialize();
+}
+
+void MaybeSpawnBackgroundThread() {
+ // On MIPS, TSan initialization is run before
+ // __pthread_initialize_minimal_internal() is finished, so we can not spawn
+ // new threads.
+#if !SANITIZER_GO && !defined(__mips__)
+ static atomic_uint32_t bg_thread = {};
+ if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
+ atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
+ StartBackgroundThread();
+ SetSandboxingCallback(StopBackgroundThread);
+ }
+#endif
+}
+
+
+int Finalize(ThreadState *thr) {
+ bool failed = false;
+
+ if (common_flags()->print_module_map == 1) PrintModuleMap();
+
+ if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
+ SleepForMillis(flags()->atexit_sleep_ms);
+
+ // Wait for pending reports.
+ ctx->report_mtx.Lock();
+ { ScopedErrorReportLock l; }
+ ctx->report_mtx.Unlock();
+
+#if !SANITIZER_GO
+ if (Verbosity()) AllocatorPrintStats();
+#endif
+
+ ThreadFinalize(thr);
+
+ if (ctx->nreported) {
+ failed = true;
+#if !SANITIZER_GO
+ Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
+#else
+ Printf("Found %d data race(s)\n", ctx->nreported);
+#endif
+ }
+
+ if (ctx->nmissed_expected) {
+ failed = true;
+ Printf("ThreadSanitizer: missed %d expected races\n",
+ ctx->nmissed_expected);
+ }
+
+ if (common_flags()->print_suppressions)
+ PrintMatchedSuppressions();
+#if !SANITIZER_GO
+ if (flags()->print_benign)
+ PrintMatchedBenignRaces();
+#endif
+
+ failed = OnFinalize(failed);
+
+#if TSAN_COLLECT_STATS
+ StatAggregate(ctx->stat, thr->stat);
+ StatOutput(ctx->stat);
+#endif
+
+ return failed ? common_flags()->exitcode : 0;
+}
+
+#if !SANITIZER_GO
+void ForkBefore(ThreadState *thr, uptr pc) {
+ ctx->thread_registry->Lock();
+ ctx->report_mtx.Lock();
+}
+
+void ForkParentAfter(ThreadState *thr, uptr pc) {
+ ctx->report_mtx.Unlock();
+ ctx->thread_registry->Unlock();
+}
+
+void ForkChildAfter(ThreadState *thr, uptr pc) {
+ ctx->report_mtx.Unlock();
+ ctx->thread_registry->Unlock();
+
+ uptr nthread = 0;
+ ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
+ VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
+ " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
+ if (nthread == 1) {
+ StartBackgroundThread();
+ } else {
+ // We've just forked a multi-threaded process. We cannot reasonably function
+ // after that (some mutexes may be locked before fork). So just enable
+ // ignores for everything in the hope that we will exec soon.
+ ctx->after_multithreaded_fork = true;
+ thr->ignore_interceptors++;
+ ThreadIgnoreBegin(thr, pc);
+ ThreadIgnoreSyncBegin(thr, pc);
+ }
+}
+#endif
+
+#if SANITIZER_GO
+NOINLINE
+void GrowShadowStack(ThreadState *thr) {
+ const int sz = thr->shadow_stack_end - thr->shadow_stack;
+ const int newsz = 2 * sz;
+ uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
+ newsz * sizeof(uptr));
+ internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
+ internal_free(thr->shadow_stack);
+ thr->shadow_stack = newstack;
+ thr->shadow_stack_pos = newstack + sz;
+ thr->shadow_stack_end = newstack + newsz;
+}
+#endif
+
+u32 CurrentStackId(ThreadState *thr, uptr pc) {
+ if (!thr->is_inited) // May happen during bootstrap.
+ return 0;
+ if (pc != 0) {
+#if !SANITIZER_GO
+ DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
+#else
+ if (thr->shadow_stack_pos == thr->shadow_stack_end)
+ GrowShadowStack(thr);
+#endif
+ thr->shadow_stack_pos[0] = pc;
+ thr->shadow_stack_pos++;
+ }
+ u32 id = StackDepotPut(
+ StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
+ if (pc != 0)
+ thr->shadow_stack_pos--;
+ return id;
+}
+
+void TraceSwitch(ThreadState *thr) {
+#if !SANITIZER_GO
+ if (ctx->after_multithreaded_fork)
+ return;
+#endif
+ thr->nomalloc++;
+ Trace *thr_trace = ThreadTrace(thr->tid);
+ Lock l(&thr_trace->mtx);
+ unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
+ TraceHeader *hdr = &thr_trace->headers[trace];
+ hdr->epoch0 = thr->fast_state.epoch();
+ ObtainCurrentStack(thr, 0, &hdr->stack0);
+ hdr->mset0 = thr->mset;
+ thr->nomalloc--;
+}
+
+Trace *ThreadTrace(int tid) {
+ return (Trace*)GetThreadTraceHeader(tid);
+}
+
+uptr TraceTopPC(ThreadState *thr) {
+ Event *events = (Event*)GetThreadTrace(thr->tid);
+ uptr pc = events[thr->fast_state.GetTracePos()];
+ return pc;
+}
+
+uptr TraceSize() {
+ return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
+}
+
+uptr TraceParts() {
+ return TraceSize() / kTracePartSize;
+}
+
+#if !SANITIZER_GO
+extern "C" void __tsan_trace_switch() {
+ TraceSwitch(cur_thread());
+}
+
+extern "C" void __tsan_report_race() {
+ ReportRace(cur_thread());
+}
+#endif
+
+ALWAYS_INLINE
+Shadow LoadShadow(u64 *p) {
+ u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
+ return Shadow(raw);
+}
+
+ALWAYS_INLINE
+void StoreShadow(u64 *sp, u64 s) {
+ atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
+}
+
+ALWAYS_INLINE
+void StoreIfNotYetStored(u64 *sp, u64 *s) {
+ StoreShadow(sp, *s);
+ *s = 0;
+}
+
+ALWAYS_INLINE
+void HandleRace(ThreadState *thr, u64 *shadow_mem,
+ Shadow cur, Shadow old) {
+ thr->racy_state[0] = cur.raw();
+ thr->racy_state[1] = old.raw();
+ thr->racy_shadow_addr = shadow_mem;
+#if !SANITIZER_GO
+ HACKY_CALL(__tsan_report_race);
+#else
+ ReportRace(thr);
+#endif
+}
+
+static inline bool HappensBefore(Shadow old, ThreadState *thr) {
+ return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
+}
+
+ALWAYS_INLINE
+void MemoryAccessImpl1(ThreadState *thr, uptr addr,
+ int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
+ u64 *shadow_mem, Shadow cur) {
+ StatInc(thr, StatMop);
+ StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
+ StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
+
+ // This potentially can live in an MMX/SSE scratch register.
+ // The required intrinsics are:
+ // __m128i _mm_move_epi64(__m128i*);
+ // _mm_storel_epi64(u64*, __m128i);
+ u64 store_word = cur.raw();
+ bool stored = false;
+
+ // scan all the shadow values and dispatch to 4 categories:
+ // same, replace, candidate and race (see comments below).
+ // we consider only 3 cases regarding access sizes:
+ // equal, intersect and not intersect. initially I considered
+ // larger and smaller as well, it allowed to replace some
+ // 'candidates' with 'same' or 'replace', but I think
+ // it's just not worth it (performance- and complexity-wise).
+
+ Shadow old(0);
+
+ // It release mode we manually unroll the loop,
+ // because empirically gcc generates better code this way.
+ // However, we can't afford unrolling in debug mode, because the function
+ // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
+ // threads, which is not enough for the unrolled loop.
+#if SANITIZER_DEBUG
+ for (int idx = 0; idx < 4; idx++) {
+#include "tsan_update_shadow_word_inl.h"
+ }
+#else
+ int idx = 0;
+#include "tsan_update_shadow_word_inl.h"
+ idx = 1;
+ if (stored) {
+#include "tsan_update_shadow_word_inl.h"
+ } else {
+#include "tsan_update_shadow_word_inl.h"
+ }
+ idx = 2;
+ if (stored) {
+#include "tsan_update_shadow_word_inl.h"
+ } else {
+#include "tsan_update_shadow_word_inl.h"
+ }
+ idx = 3;
+ if (stored) {
+#include "tsan_update_shadow_word_inl.h"
+ } else {
+#include "tsan_update_shadow_word_inl.h"
+ }
+#endif
+
+ // we did not find any races and had already stored
+ // the current access info, so we are done
+ if (LIKELY(stored))
+ return;
+ // choose a random candidate slot and replace it
+ StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
+ StatInc(thr, StatShadowReplace);
+ return;
+ RACE:
+ HandleRace(thr, shadow_mem, cur, old);
+ return;
+}
+
+void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
+ int size, bool kAccessIsWrite, bool kIsAtomic) {
+ while (size) {
+ int size1 = 1;
+ int kAccessSizeLog = kSizeLog1;
+ if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
+ size1 = 8;
+ kAccessSizeLog = kSizeLog8;
+ } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
+ size1 = 4;
+ kAccessSizeLog = kSizeLog4;
+ } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
+ size1 = 2;
+ kAccessSizeLog = kSizeLog2;
+ }
+ MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
+ addr += size1;
+ size -= size1;
+ }
+}
+
+ALWAYS_INLINE
+bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
+ Shadow cur(a);
+ for (uptr i = 0; i < kShadowCnt; i++) {
+ Shadow old(LoadShadow(&s[i]));
+ if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
+ old.TidWithIgnore() == cur.TidWithIgnore() &&
+ old.epoch() > sync_epoch &&
+ old.IsAtomic() == cur.IsAtomic() &&
+ old.IsRead() <= cur.IsRead())
+ return true;
+ }
+ return false;
+}
+
+#if defined(__SSE3__)
+#define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
+ _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
+ (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
+ALWAYS_INLINE
+bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
+ // This is an optimized version of ContainsSameAccessSlow.
+ // load current access into access[0:63]
+ const m128 access = _mm_cvtsi64_si128(a);
+ // duplicate high part of access in addr0:
+ // addr0[0:31] = access[32:63]
+ // addr0[32:63] = access[32:63]
+ // addr0[64:95] = access[32:63]
+ // addr0[96:127] = access[32:63]
+ const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
+ // load 4 shadow slots
+ const m128 shadow0 = _mm_load_si128((__m128i*)s);
+ const m128 shadow1 = _mm_load_si128((__m128i*)s + 1);
+ // load high parts of 4 shadow slots into addr_vect:
+ // addr_vect[0:31] = shadow0[32:63]
+ // addr_vect[32:63] = shadow0[96:127]
+ // addr_vect[64:95] = shadow1[32:63]
+ // addr_vect[96:127] = shadow1[96:127]
+ m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
+ if (!is_write) {
+ // set IsRead bit in addr_vect
+ const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
+ const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
+ addr_vect = _mm_or_si128(addr_vect, rw_mask);
+ }
+ // addr0 == addr_vect?
+ const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
+ // epoch1[0:63] = sync_epoch
+ const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
+ // epoch[0:31] = sync_epoch[0:31]
+ // epoch[32:63] = sync_epoch[0:31]
+ // epoch[64:95] = sync_epoch[0:31]
+ // epoch[96:127] = sync_epoch[0:31]
+ const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
+ // load low parts of shadow cell epochs into epoch_vect:
+ // epoch_vect[0:31] = shadow0[0:31]
+ // epoch_vect[32:63] = shadow0[64:95]
+ // epoch_vect[64:95] = shadow1[0:31]
+ // epoch_vect[96:127] = shadow1[64:95]
+ const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
+ // epoch_vect >= sync_epoch?
+ const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
+ // addr_res & epoch_res
+ const m128 res = _mm_and_si128(addr_res, epoch_res);
+ // mask[0] = res[7]
+ // mask[1] = res[15]
+ // ...
+ // mask[15] = res[127]
+ const int mask = _mm_movemask_epi8(res);
+ return mask != 0;
+}
+#endif
+
+ALWAYS_INLINE
+bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
+#if defined(__SSE3__)
+ bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
+ // NOTE: this check can fail if the shadow is concurrently mutated
+ // by other threads. But it still can be useful if you modify
+ // ContainsSameAccessFast and want to ensure that it's not completely broken.
+ // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
+ return res;
+#else
+ return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
+#endif
+}
+
+ALWAYS_INLINE USED
+void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
+ int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
+ u64 *shadow_mem = (u64*)MemToShadow(addr);
+ DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
+ " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
+ (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
+ (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
+ (uptr)shadow_mem[0], (uptr)shadow_mem[1],
+ (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
+#if SANITIZER_DEBUG
+ if (!IsAppMem(addr)) {
+ Printf("Access to non app mem %zx\n", addr);
+ DCHECK(IsAppMem(addr));
+ }
+ if (!IsShadowMem((uptr)shadow_mem)) {
+ Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
+ DCHECK(IsShadowMem((uptr)shadow_mem));
+ }
+#endif
+
+ if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
+ // Access to .rodata section, no races here.
+ // Measurements show that it can be 10-20% of all memory accesses.
+ StatInc(thr, StatMop);
+ StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
+ StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
+ StatInc(thr, StatMopRodata);
+ return;
+ }
+
+ FastState fast_state = thr->fast_state;
+ if (UNLIKELY(fast_state.GetIgnoreBit())) {
+ StatInc(thr, StatMop);
+ StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
+ StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
+ StatInc(thr, StatMopIgnored);
+ return;
+ }
+
+ Shadow cur(fast_state);
+ cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
+ cur.SetWrite(kAccessIsWrite);
+ cur.SetAtomic(kIsAtomic);
+
+ if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
+ thr->fast_synch_epoch, kAccessIsWrite))) {
+ StatInc(thr, StatMop);
+ StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
+ StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
+ StatInc(thr, StatMopSame);
+ return;
+ }
+
+ if (kCollectHistory) {
+ fast_state.IncrementEpoch();
+ thr->fast_state = fast_state;
+ TraceAddEvent(thr, fast_state, EventTypeMop, pc);
+ cur.IncrementEpoch();
+ }
+
+ MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
+ shadow_mem, cur);
+}
+
+// Called by MemoryAccessRange in tsan_rtl_thread.cpp
+ALWAYS_INLINE USED
+void MemoryAccessImpl(ThreadState *thr, uptr addr,
+ int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
+ u64 *shadow_mem, Shadow cur) {
+ if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
+ thr->fast_synch_epoch, kAccessIsWrite))) {
+ StatInc(thr, StatMop);
+ StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
+ StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
+ StatInc(thr, StatMopSame);
+ return;
+ }
+
+ MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
+ shadow_mem, cur);
+}
+
+static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
+ u64 val) {
+ (void)thr;
+ (void)pc;
+ if (size == 0)
+ return;
+ // FIXME: fix me.
+ uptr offset = addr % kShadowCell;
+ if (offset) {
+ offset = kShadowCell - offset;
+ if (size <= offset)
+ return;
+ addr += offset;
+ size -= offset;
+ }
+ DCHECK_EQ(addr % 8, 0);
+ // If a user passes some insane arguments (memset(0)),
+ // let it just crash as usual.
+ if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
+ return;
+ // Don't want to touch lots of shadow memory.
+ // If a program maps 10MB stack, there is no need reset the whole range.
+ size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
+ // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
+ if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
+ u64 *p = (u64*)MemToShadow(addr);
+ CHECK(IsShadowMem((uptr)p));
+ CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
+ // FIXME: may overwrite a part outside the region
+ for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
+ p[i++] = val;
+ for (uptr j = 1; j < kShadowCnt; j++)
+ p[i++] = 0;
+ }
+ } else {
+ // The region is big, reset only beginning and end.
+ const uptr kPageSize = GetPageSizeCached();
+ u64 *begin = (u64*)MemToShadow(addr);
+ u64 *end = begin + size / kShadowCell * kShadowCnt;
+ u64 *p = begin;
+ // Set at least first kPageSize/2 to page boundary.
+ while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
+ *p++ = val;
+ for (uptr j = 1; j < kShadowCnt; j++)
+ *p++ = 0;
+ }
+ // Reset middle part.
+ u64 *p1 = p;
+ p = RoundDown(end, kPageSize);
+ UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
+ if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1))
+ Die();
+ // Set the ending.
+ while (p < end) {
+ *p++ = val;
+ for (uptr j = 1; j < kShadowCnt; j++)
+ *p++ = 0;
+ }
+ }
+}
+
+void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
+ MemoryRangeSet(thr, pc, addr, size, 0);
+}
+
+void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
+ // Processing more than 1k (4k of shadow) is expensive,
+ // can cause excessive memory consumption (user does not necessary touch
+ // the whole range) and most likely unnecessary.
+ if (size > 1024)
+ size = 1024;
+ CHECK_EQ(thr->is_freeing, false);
+ thr->is_freeing = true;
+ MemoryAccessRange(thr, pc, addr, size, true);
+ thr->is_freeing = false;
+ if (kCollectHistory) {
+ thr->fast_state.IncrementEpoch();
+ TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
+ }
+ Shadow s(thr->fast_state);
+ s.ClearIgnoreBit();
+ s.MarkAsFreed();
+ s.SetWrite(true);
+ s.SetAddr0AndSizeLog(0, 3);
+ MemoryRangeSet(thr, pc, addr, size, s.raw());
+}
+
+void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
+ if (kCollectHistory) {
+ thr->fast_state.IncrementEpoch();
+ TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
+ }
+ Shadow s(thr->fast_state);
+ s.ClearIgnoreBit();
+ s.SetWrite(true);
+ s.SetAddr0AndSizeLog(0, 3);
+ MemoryRangeSet(thr, pc, addr, size, s.raw());
+}
+
+void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
+ uptr size) {
+ if (thr->ignore_reads_and_writes == 0)
+ MemoryRangeImitateWrite(thr, pc, addr, size);
+ else
+ MemoryResetRange(thr, pc, addr, size);
+}
+
+ALWAYS_INLINE USED
+void FuncEntry(ThreadState *thr, uptr pc) {
+ StatInc(thr, StatFuncEnter);
+ DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
+ if (kCollectHistory) {
+ thr->fast_state.IncrementEpoch();
+ TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
+ }
+
+ // Shadow stack maintenance can be replaced with
+ // stack unwinding during trace switch (which presumably must be faster).
+ DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
+#if !SANITIZER_GO
+ DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
+#else
+ if (thr->shadow_stack_pos == thr->shadow_stack_end)
+ GrowShadowStack(thr);
+#endif
+ thr->shadow_stack_pos[0] = pc;
+ thr->shadow_stack_pos++;
+}
+
+ALWAYS_INLINE USED
+void FuncExit(ThreadState *thr) {
+ StatInc(thr, StatFuncExit);
+ DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
+ if (kCollectHistory) {
+ thr->fast_state.IncrementEpoch();
+ TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
+ }
+
+ DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
+#if !SANITIZER_GO
+ DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
+#endif
+ thr->shadow_stack_pos--;
+}
+
+void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
+ DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
+ thr->ignore_reads_and_writes++;
+ CHECK_GT(thr->ignore_reads_and_writes, 0);
+ thr->fast_state.SetIgnoreBit();
+#if !SANITIZER_GO
+ if (save_stack && !ctx->after_multithreaded_fork)
+ thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
+#endif
+}
+
+void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
+ DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
+ CHECK_GT(thr->ignore_reads_and_writes, 0);
+ thr->ignore_reads_and_writes--;
+ if (thr->ignore_reads_and_writes == 0) {
+ thr->fast_state.ClearIgnoreBit();
+#if !SANITIZER_GO
+ thr->mop_ignore_set.Reset();
+#endif
+ }
+}
+
+#if !SANITIZER_GO
+extern "C" SANITIZER_INTERFACE_ATTRIBUTE
+uptr __tsan_testonly_shadow_stack_current_size() {
+ ThreadState *thr = cur_thread();
+ return thr->shadow_stack_pos - thr->shadow_stack;
+}
+#endif
+
+void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
+ DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
+ thr->ignore_sync++;
+ CHECK_GT(thr->ignore_sync, 0);
+#if !SANITIZER_GO
+ if (save_stack && !ctx->after_multithreaded_fork)
+ thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
+#endif
+}
+
+void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
+ DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
+ CHECK_GT(thr->ignore_sync, 0);
+ thr->ignore_sync--;
+#if !SANITIZER_GO
+ if (thr->ignore_sync == 0)
+ thr->sync_ignore_set.Reset();
+#endif
+}
+
+bool MD5Hash::operator==(const MD5Hash &other) const {
+ return hash[0] == other.hash[0] && hash[1] == other.hash[1];
+}
+
+#if SANITIZER_DEBUG
+void build_consistency_debug() {}
+#else
+void build_consistency_release() {}
+#endif
+
+#if TSAN_COLLECT_STATS
+void build_consistency_stats() {}
+#else
+void build_consistency_nostats() {}
+#endif
+
+} // namespace __tsan
+
+#if !SANITIZER_GO
+// Must be included in this file to make sure everything is inlined.
+#include "tsan_interface_inl.h"
+#endif