aboutsummaryrefslogtreecommitdiffstats
path: root/gnu/lib/libg++/g++-include/Vec.ccP
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/lib/libg++/g++-include/Vec.ccP')
-rw-r--r--gnu/lib/libg++/g++-include/Vec.ccP470
1 files changed, 470 insertions, 0 deletions
diff --git a/gnu/lib/libg++/g++-include/Vec.ccP b/gnu/lib/libg++/g++-include/Vec.ccP
new file mode 100644
index 000000000000..c9cbfb2109e6
--- /dev/null
+++ b/gnu/lib/libg++/g++-include/Vec.ccP
@@ -0,0 +1,470 @@
+// This may look like C code, but it is really -*- C++ -*-
+/*
+Copyright (C) 1988 Free Software Foundation
+ written by Doug Lea (dl@rocky.oswego.edu)
+
+This file is part of the GNU C++ Library. This library is free
+software; you can redistribute it and/or modify it under the terms of
+the GNU Library General Public License as published by the Free
+Software Foundation; either version 2 of the License, or (at your
+option) any later version. This library is distributed in the hope
+that it will be useful, but WITHOUT ANY WARRANTY; without even the
+implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
+PURPOSE. See the GNU Library General Public License for more details.
+You should have received a copy of the GNU Library General Public
+License along with this library; if not, write to the Free Software
+Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#ifdef __GNUG__
+#pragma implementation
+#endif
+#include <stream.h>
+#include <builtin.h>
+#include "<T>.Vec.h"
+
+// error handling
+
+
+void default_<T>Vec_error_handler(const char* msg)
+{
+ cerr << "Fatal <T>Vec error. " << msg << "\n";
+ exit(1);
+}
+
+one_arg_error_handler_t <T>Vec_error_handler = default_<T>Vec_error_handler;
+
+one_arg_error_handler_t set_<T>Vec_error_handler(one_arg_error_handler_t f)
+{
+ one_arg_error_handler_t old = <T>Vec_error_handler;
+ <T>Vec_error_handler = f;
+ return old;
+}
+
+void <T>Vec::error(const char* msg)
+{
+ (*<T>Vec_error_handler)(msg);
+}
+
+void <T>Vec::range_error()
+{
+ (*<T>Vec_error_handler)("Index out of range.");
+}
+
+<T>Vec::<T>Vec(<T>Vec& v)
+{
+ s = new <T> [len = v.len];
+ <T>* top = &(s[len]);
+ <T>* t = s;
+ <T>* u = v.s;
+ while (t < top) *t++ = *u++;
+}
+
+<T>Vec::<T>Vec(int l, <T&> fill_value)
+{
+ s = new <T> [len = l];
+ <T>* top = &(s[len]);
+ <T>* t = s;
+ while (t < top) *t++ = fill_value;
+}
+
+
+<T>Vec& <T>Vec::operator = (<T>Vec& v)
+{
+ if (this != &v)
+ {
+ delete [] s;
+ s = new <T> [len = v.len];
+ <T>* top = &(s[len]);
+ <T>* t = s;
+ <T>* u = v.s;
+ while (t < top) *t++ = *u++;
+ }
+ return *this;
+}
+
+void <T>Vec::apply(<T>Procedure f)
+{
+ <T>* top = &(s[len]);
+ <T>* t = s;
+ while (t < top) (*f)(*t++);
+}
+
+// can't just realloc since there may be need for constructors/destructors
+void <T>Vec::resize(int newl)
+{
+ <T>* news = new <T> [newl];
+ <T>* p = news;
+ int minl = (len < newl)? len : newl;
+ <T>* top = &(s[minl]);
+ <T>* t = s;
+ while (t < top) *p++ = *t++;
+ delete [] s;
+ s = news;
+ len = newl;
+}
+
+<T>Vec concat(<T>Vec & a, <T>Vec & b)
+{
+ int newl = a.len + b.len;
+ <T>* news = new <T> [newl];
+ <T>* p = news;
+ <T>* top = &(a.s[a.len]);
+ <T>* t = a.s;
+ while (t < top) *p++ = *t++;
+ top = &(b.s[b.len]);
+ t = b.s;
+ while (t < top) *p++ = *t++;
+ return <T>Vec(newl, news);
+}
+
+
+<T>Vec combine(<T>Combiner f, <T>Vec& a, <T>Vec& b)
+{
+ int newl = (a.len < b.len)? a.len : b.len;
+ <T>* news = new <T> [newl];
+ <T>* p = news;
+ <T>* top = &(a.s[newl]);
+ <T>* t = a.s;
+ <T>* u = b.s;
+ while (t < top) *p++ = (*f)(*t++, *u++);
+ return <T>Vec(newl, news);
+}
+
+<T> <T>Vec::reduce(<T>Combiner f, <T&> base)
+{
+ <T> r = base;
+ <T>* top = &(s[len]);
+ <T>* t = s;
+ while (t < top) r = (*f)(r, *t++);
+ return r;
+}
+
+<T>Vec reverse(<T>Vec& a)
+{
+ <T>* news = new <T> [a.len];
+ if (a.len != 0)
+ {
+ <T>* lo = news;
+ <T>* hi = &(news[a.len - 1]);
+ while (lo < hi)
+ {
+ <T> tmp = *lo;
+ *lo++ = *hi;
+ *hi-- = tmp;
+ }
+ }
+ return <T>Vec(a.len, news);
+}
+
+void <T>Vec::reverse()
+{
+ if (len != 0)
+ {
+ <T>* lo = s;
+ <T>* hi = &(s[len - 1]);
+ while (lo < hi)
+ {
+ <T> tmp = *lo;
+ *lo++ = *hi;
+ *hi-- = tmp;
+ }
+ }
+}
+
+int <T>Vec::index(<T&> targ)
+{
+ for (int i = 0; i < len; ++i) if (<T>EQ(targ, s[i])) return i;
+ return -1;
+}
+
+<T>Vec map(<T>Mapper f, <T>Vec& a)
+{
+ <T>* news = new <T> [a.len];
+ <T>* p = news;
+ <T>* top = &(a.s[a.len]);
+ <T>* t = a.s;
+ while(t < top) *p++ = (*f)(*t++);
+ return <T>Vec(a.len, news);
+}
+
+int operator == (<T>Vec& a, <T>Vec& b)
+{
+ if (a.len != b.len)
+ return 0;
+ <T>* top = &(a.s[a.len]);
+ <T>* t = a.s;
+ <T>* u = b.s;
+ while (t < top) if (!(<T>EQ(*t++, *u++))) return 0;
+ return 1;
+}
+
+void <T>Vec::fill(<T&> val, int from, int n)
+{
+ int to;
+ if (n < 0)
+ to = len - 1;
+ else
+ to = from + n - 1;
+ if ((unsigned)from > (unsigned)to)
+ range_error();
+ <T>* t = &(s[from]);
+ <T>* top = &(s[to]);
+ while (t <= top) *t++ = val;
+}
+
+<T>Vec <T>Vec::at(int from, int n)
+{
+ int to;
+ if (n < 0)
+ {
+ n = len - from;
+ to = len - 1;
+ }
+ else
+ to = from + n - 1;
+ if ((unsigned)from > (unsigned)to)
+ range_error();
+ <T>* news = new <T> [n];
+ <T>* p = news;
+ <T>* t = &(s[from]);
+ <T>* top = &(s[to]);
+ while (t <= top) *p++ = *t++;
+ return <T>Vec(n, news);
+}
+
+<T>Vec merge(<T>Vec & a, <T>Vec & b, <T>Comparator f)
+{
+ int newl = a.len + b.len;
+ <T>* news = new <T> [newl];
+ <T>* p = news;
+ <T>* topa = &(a.s[a.len]);
+ <T>* as = a.s;
+ <T>* topb = &(b.s[b.len]);
+ <T>* bs = b.s;
+
+ for (;;)
+ {
+ if (as >= topa)
+ {
+ while (bs < topb) *p++ = *bs++;
+ break;
+ }
+ else if (bs >= topb)
+ {
+ while (as < topa) *p++ = *as++;
+ break;
+ }
+ else if ((*f)(*as, *bs) <= 0)
+ *p++ = *as++;
+ else
+ *p++ = *bs++;
+ }
+ return <T>Vec(newl, news);
+}
+
+static int gsort(<T>*, int, <T>Comparator);
+
+void <T>Vec::sort (<T>Comparator compar)
+{
+ gsort(s, len, compar);
+}
+
+
+// An adaptation of Schmidt's new quicksort
+
+static inline void SWAP(<T>* A, <T>* B)
+{
+ <T> tmp = *A; *A = *B; *B = tmp;
+}
+
+/* This should be replaced by a standard ANSI macro. */
+#define BYTES_PER_WORD 8
+#define BYTES_PER_LONG 4
+
+/* The next 4 #defines implement a very fast in-line stack abstraction. */
+
+#define STACK_SIZE (BYTES_PER_WORD * BYTES_PER_LONG)
+#define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
+#define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
+#define STACK_NOT_EMPTY (stack < top)
+
+/* Discontinue quicksort algorithm when partition gets below this size.
+ This particular magic number was chosen to work best on a Sun 4/260. */
+#define MAX_THRESH 4
+
+
+/* Order size using quicksort. This implementation incorporates
+ four optimizations discussed in Sedgewick:
+
+ 1. Non-recursive, using an explicit stack of pointer that
+ store the next array partition to sort. To save time, this
+ maximum amount of space required to store an array of
+ MAX_INT is allocated on the stack. Assuming a 32-bit integer,
+ this needs only 32 * sizeof (stack_node) == 136 bits. Pretty
+ cheap, actually.
+
+ 2. Chose the pivot element using a median-of-three decision tree.
+ This reduces the probability of selecting a bad pivot value and
+ eliminates certain extraneous comparisons.
+
+ 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
+ insertion sort to order the MAX_THRESH items within each partition.
+ This is a big win, since insertion sort is faster for small, mostly
+ sorted array segements.
+
+ 4. The larger of the two sub-partitions is always pushed onto the
+ stack first, with the algorithm then concentrating on the
+ smaller partition. This *guarantees* no more than log (n)
+ stack size is needed! */
+
+static int gsort (<T> *base_ptr, int total_elems, <T>Comparator cmp)
+{
+/* Stack node declarations used to store unfulfilled partition obligations. */
+ struct stack_node { <T> *lo; <T> *hi; };
+ <T> pivot_buffer;
+ int max_thresh = MAX_THRESH;
+
+ if (total_elems > MAX_THRESH)
+ {
+ <T> *lo = base_ptr;
+ <T> *hi = lo + (total_elems - 1);
+ <T> *left_ptr;
+ <T> *right_ptr;
+ stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
+ stack_node *top = stack + 1;
+
+ while (STACK_NOT_EMPTY)
+ {
+ {
+ <T> *pivot = &pivot_buffer;
+ {
+ /* Select median value from among LO, MID, and HI. Rearrange
+ LO and HI so the three values are sorted. This lowers the
+ probability of picking a pathological pivot value and
+ skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
+
+ <T> *mid = lo + ((hi - lo) >> 1);
+
+ if ((*cmp) (*mid, *lo) < 0)
+ SWAP (mid, lo);
+ if ((*cmp) (*hi, *mid) < 0)
+ {
+ SWAP (mid, hi);
+ if ((*cmp) (*mid, *lo) < 0)
+ SWAP (mid, lo);
+ }
+ *pivot = *mid;
+ pivot = &pivot_buffer;
+ }
+ left_ptr = lo + 1;
+ right_ptr = hi - 1;
+
+ /* Here's the famous ``collapse the walls'' section of quicksort.
+ Gotta like those tight inner loops! They are the main reason
+ that this algorithm runs much faster than others. */
+ do
+ {
+ while ((*cmp) (*left_ptr, *pivot) < 0)
+ left_ptr += 1;
+
+ while ((*cmp) (*pivot, *right_ptr) < 0)
+ right_ptr -= 1;
+
+ if (left_ptr < right_ptr)
+ {
+ SWAP (left_ptr, right_ptr);
+ left_ptr += 1;
+ right_ptr -= 1;
+ }
+ else if (left_ptr == right_ptr)
+ {
+ left_ptr += 1;
+ right_ptr -= 1;
+ break;
+ }
+ }
+ while (left_ptr <= right_ptr);
+
+ }
+
+ /* Set up pointers for next iteration. First determine whether
+ left and right partitions are below the threshold size. If so,
+ ignore one or both. Otherwise, push the larger partition's
+ bounds on the stack and continue sorting the smaller one. */
+
+ if ((right_ptr - lo) <= max_thresh)
+ {
+ if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */
+ POP (lo, hi);
+ else /* Ignore small left partition. */
+ lo = left_ptr;
+ }
+ else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */
+ hi = right_ptr;
+ else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */
+ {
+ PUSH (lo, right_ptr);
+ lo = left_ptr;
+ }
+ else /* Push larger right partition indices. */
+ {
+ PUSH (left_ptr, hi);
+ hi = right_ptr;
+ }
+ }
+ }
+
+ /* Once the BASE_PTR array is partially sorted by quicksort the rest
+ is completely sorted using insertion sort, since this is efficient
+ for partitions below MAX_THRESH size. BASE_PTR points to the beginning
+ of the array to sort, and END_PTR points at the very last element in
+ the array (*not* one beyond it!). */
+
+
+ {
+ <T> *end_ptr = base_ptr + 1 * (total_elems - 1);
+ <T> *run_ptr;
+ <T> *tmp_ptr = base_ptr;
+ <T> *thresh = (end_ptr < (base_ptr + max_thresh))?
+ end_ptr : (base_ptr + max_thresh);
+
+ /* Find smallest element in first threshold and place it at the
+ array's beginning. This is the smallest array element,
+ and the operation speeds up insertion sort's inner loop. */
+
+ for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr += 1)
+ if ((*cmp) (*run_ptr, *tmp_ptr) < 0)
+ tmp_ptr = run_ptr;
+
+ if (tmp_ptr != base_ptr)
+ SWAP (tmp_ptr, base_ptr);
+
+ /* Insertion sort, running from left-hand-side up to `right-hand-side.'
+ Pretty much straight out of the original GNU qsort routine. */
+
+ for (run_ptr = base_ptr + 1; (tmp_ptr = run_ptr += 1) <= end_ptr; )
+ {
+
+ while ((*cmp) (*run_ptr, *(tmp_ptr -= 1)) < 0)
+ ;
+
+ if ((tmp_ptr += 1) != run_ptr)
+ {
+ <T> *trav;
+
+ for (trav = run_ptr + 1; --trav >= run_ptr;)
+ {
+ <T> c = *trav;
+ <T> *hi, *lo;
+
+ for (hi = lo = trav; (lo -= 1) >= tmp_ptr; hi = lo)
+ *hi = *lo;
+ *hi = c;
+ }
+ }
+
+ }
+ }
+ return 1;
+}