aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/bn/bn_mul.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn/bn_mul.c')
-rw-r--r--crypto/bn/bn_mul.c2004
1 files changed, 1001 insertions, 1003 deletions
diff --git a/crypto/bn/bn_mul.c b/crypto/bn/bn_mul.c
index 12e5be80eb2b..b174850b6bb1 100644
--- a/crypto/bn/bn_mul.c
+++ b/crypto/bn/bn_mul.c
@@ -5,21 +5,21 @@
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
- *
+ *
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
+ *
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
- *
+ *
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
@@ -34,10 +34,10 @@
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
+ * 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
+ *
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
@@ -49,7 +49,7 @@
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
- *
+ *
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
@@ -57,7 +57,7 @@
*/
#ifndef BN_DEBUG
-# undef NDEBUG /* avoid conflicting definitions */
+# undef NDEBUG /* avoid conflicting definitions */
# define NDEBUG
#endif
@@ -67,319 +67,353 @@
#include "bn_lcl.h"
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
-/* Here follows specialised variants of bn_add_words() and
- bn_sub_words(). They have the property performing operations on
- arrays of different sizes. The sizes of those arrays is expressed through
- cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
- which is the delta between the two lengths, calculated as len(a)-len(b).
- All lengths are the number of BN_ULONGs... For the operations that require
- a result array as parameter, it must have the length cl+abs(dl).
- These functions should probably end up in bn_asm.c as soon as there are
- assembler counterparts for the systems that use assembler files. */
+/*
+ * Here follows specialised variants of bn_add_words() and bn_sub_words().
+ * They have the property performing operations on arrays of different sizes.
+ * The sizes of those arrays is expressed through cl, which is the common
+ * length ( basicall, min(len(a),len(b)) ), and dl, which is the delta
+ * between the two lengths, calculated as len(a)-len(b). All lengths are the
+ * number of BN_ULONGs... For the operations that require a result array as
+ * parameter, it must have the length cl+abs(dl). These functions should
+ * probably end up in bn_asm.c as soon as there are assembler counterparts
+ * for the systems that use assembler files.
+ */
BN_ULONG bn_sub_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
- {
- BN_ULONG c, t;
+ const BN_ULONG *a, const BN_ULONG *b,
+ int cl, int dl)
+{
+ BN_ULONG c, t;
- assert(cl >= 0);
- c = bn_sub_words(r, a, b, cl);
+ assert(cl >= 0);
+ c = bn_sub_words(r, a, b, cl);
- if (dl == 0)
- return c;
+ if (dl == 0)
+ return c;
- r += cl;
- a += cl;
- b += cl;
+ r += cl;
+ a += cl;
+ b += cl;
- if (dl < 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
-#endif
- for (;;)
- {
- t = b[0];
- r[0] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- t = b[1];
- r[1] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- t = b[2];
- r[2] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- t = b[3];
- r[3] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- b += 4;
- r += 4;
- }
- }
- else
- {
- int save_dl = dl;
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
-#endif
- while(c)
- {
- t = a[0];
- r[0] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- t = a[1];
- r[1] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- t = a[2];
- r[2] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- t = a[3];
- r[3] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- save_dl = dl;
- a += 4;
- r += 4;
- }
- if (dl > 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
-#endif
- if (save_dl > dl)
- {
- switch (save_dl - dl)
- {
- case 1:
- r[1] = a[1];
- if (--dl <= 0) break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0) break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0) break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
-#endif
- for(;;)
- {
- r[0] = a[0];
- if (--dl <= 0) break;
- r[1] = a[1];
- if (--dl <= 0) break;
- r[2] = a[2];
- if (--dl <= 0) break;
- r[3] = a[3];
- if (--dl <= 0) break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
- }
+ if (dl < 0) {
+# ifdef BN_COUNT
+ fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl,
+ dl, c);
+# endif
+ for (;;) {
+ t = b[0];
+ r[0] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ t = b[1];
+ r[1] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ t = b[2];
+ r[2] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ t = b[3];
+ r[3] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ b += 4;
+ r += 4;
+ }
+ } else {
+ int save_dl = dl;
+# ifdef BN_COUNT
+ fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl,
+ dl, c);
+# endif
+ while (c) {
+ t = a[0];
+ r[0] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ t = a[1];
+ r[1] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ t = a[2];
+ r[2] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ t = a[3];
+ r[3] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ save_dl = dl;
+ a += 4;
+ r += 4;
+ }
+ if (dl > 0) {
+# ifdef BN_COUNT
+ fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n",
+ cl, dl);
+# endif
+ if (save_dl > dl) {
+ switch (save_dl - dl) {
+ case 1:
+ r[1] = a[1];
+ if (--dl <= 0)
+ break;
+ case 2:
+ r[2] = a[2];
+ if (--dl <= 0)
+ break;
+ case 3:
+ r[3] = a[3];
+ if (--dl <= 0)
+ break;
+ }
+ a += 4;
+ r += 4;
+ }
+ }
+ if (dl > 0) {
+# ifdef BN_COUNT
+ fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n",
+ cl, dl);
+# endif
+ for (;;) {
+ r[0] = a[0];
+ if (--dl <= 0)
+ break;
+ r[1] = a[1];
+ if (--dl <= 0)
+ break;
+ r[2] = a[2];
+ if (--dl <= 0)
+ break;
+ r[3] = a[3];
+ if (--dl <= 0)
+ break;
+
+ a += 4;
+ r += 4;
+ }
+ }
+ }
+ return c;
+}
#endif
BN_ULONG bn_add_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
- {
- BN_ULONG c, l, t;
+ const BN_ULONG *a, const BN_ULONG *b,
+ int cl, int dl)
+{
+ BN_ULONG c, l, t;
- assert(cl >= 0);
- c = bn_add_words(r, a, b, cl);
+ assert(cl >= 0);
+ c = bn_add_words(r, a, b, cl);
- if (dl == 0)
- return c;
+ if (dl == 0)
+ return c;
- r += cl;
- a += cl;
- b += cl;
+ r += cl;
+ a += cl;
+ b += cl;
- if (dl < 0)
- {
- int save_dl = dl;
+ if (dl < 0) {
+ int save_dl = dl;
#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
+ fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl,
+ dl, c);
#endif
- while (c)
- {
- l=(c+b[0])&BN_MASK2;
- c=(l < c);
- r[0]=l;
- if (++dl >= 0) break;
-
- l=(c+b[1])&BN_MASK2;
- c=(l < c);
- r[1]=l;
- if (++dl >= 0) break;
-
- l=(c+b[2])&BN_MASK2;
- c=(l < c);
- r[2]=l;
- if (++dl >= 0) break;
-
- l=(c+b[3])&BN_MASK2;
- c=(l < c);
- r[3]=l;
- if (++dl >= 0) break;
-
- save_dl = dl;
- b+=4;
- r+=4;
- }
- if (dl < 0)
- {
+ while (c) {
+ l = (c + b[0]) & BN_MASK2;
+ c = (l < c);
+ r[0] = l;
+ if (++dl >= 0)
+ break;
+
+ l = (c + b[1]) & BN_MASK2;
+ c = (l < c);
+ r[1] = l;
+ if (++dl >= 0)
+ break;
+
+ l = (c + b[2]) & BN_MASK2;
+ c = (l < c);
+ r[2] = l;
+ if (++dl >= 0)
+ break;
+
+ l = (c + b[3]) & BN_MASK2;
+ c = (l < c);
+ r[3] = l;
+ if (++dl >= 0)
+ break;
+
+ save_dl = dl;
+ b += 4;
+ r += 4;
+ }
+ if (dl < 0) {
#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
+ fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n",
+ cl, dl);
#endif
- if (save_dl < dl)
- {
- switch (dl - save_dl)
- {
- case 1:
- r[1] = b[1];
- if (++dl >= 0) break;
- case 2:
- r[2] = b[2];
- if (++dl >= 0) break;
- case 3:
- r[3] = b[3];
- if (++dl >= 0) break;
- }
- b += 4;
- r += 4;
- }
- }
- if (dl < 0)
- {
+ if (save_dl < dl) {
+ switch (dl - save_dl) {
+ case 1:
+ r[1] = b[1];
+ if (++dl >= 0)
+ break;
+ case 2:
+ r[2] = b[2];
+ if (++dl >= 0)
+ break;
+ case 3:
+ r[3] = b[3];
+ if (++dl >= 0)
+ break;
+ }
+ b += 4;
+ r += 4;
+ }
+ }
+ if (dl < 0) {
#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
+ fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n",
+ cl, dl);
#endif
- for(;;)
- {
- r[0] = b[0];
- if (++dl >= 0) break;
- r[1] = b[1];
- if (++dl >= 0) break;
- r[2] = b[2];
- if (++dl >= 0) break;
- r[3] = b[3];
- if (++dl >= 0) break;
-
- b += 4;
- r += 4;
- }
- }
- }
- else
- {
- int save_dl = dl;
+ for (;;) {
+ r[0] = b[0];
+ if (++dl >= 0)
+ break;
+ r[1] = b[1];
+ if (++dl >= 0)
+ break;
+ r[2] = b[2];
+ if (++dl >= 0)
+ break;
+ r[3] = b[3];
+ if (++dl >= 0)
+ break;
+
+ b += 4;
+ r += 4;
+ }
+ }
+ } else {
+ int save_dl = dl;
#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
+ fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
#endif
- while (c)
- {
- t=(a[0]+c)&BN_MASK2;
- c=(t < c);
- r[0]=t;
- if (--dl <= 0) break;
-
- t=(a[1]+c)&BN_MASK2;
- c=(t < c);
- r[1]=t;
- if (--dl <= 0) break;
-
- t=(a[2]+c)&BN_MASK2;
- c=(t < c);
- r[2]=t;
- if (--dl <= 0) break;
-
- t=(a[3]+c)&BN_MASK2;
- c=(t < c);
- r[3]=t;
- if (--dl <= 0) break;
-
- save_dl = dl;
- a+=4;
- r+=4;
- }
+ while (c) {
+ t = (a[0] + c) & BN_MASK2;
+ c = (t < c);
+ r[0] = t;
+ if (--dl <= 0)
+ break;
+
+ t = (a[1] + c) & BN_MASK2;
+ c = (t < c);
+ r[1] = t;
+ if (--dl <= 0)
+ break;
+
+ t = (a[2] + c) & BN_MASK2;
+ c = (t < c);
+ r[2] = t;
+ if (--dl <= 0)
+ break;
+
+ t = (a[3] + c) & BN_MASK2;
+ c = (t < c);
+ r[3] = t;
+ if (--dl <= 0)
+ break;
+
+ save_dl = dl;
+ a += 4;
+ r += 4;
+ }
#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
+ fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl,
+ dl);
#endif
- if (dl > 0)
- {
- if (save_dl > dl)
- {
- switch (save_dl - dl)
- {
- case 1:
- r[1] = a[1];
- if (--dl <= 0) break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0) break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0) break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0)
- {
+ if (dl > 0) {
+ if (save_dl > dl) {
+ switch (save_dl - dl) {
+ case 1:
+ r[1] = a[1];
+ if (--dl <= 0)
+ break;
+ case 2:
+ r[2] = a[2];
+ if (--dl <= 0)
+ break;
+ case 3:
+ r[3] = a[3];
+ if (--dl <= 0)
+ break;
+ }
+ a += 4;
+ r += 4;
+ }
+ }
+ if (dl > 0) {
#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
+ fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n",
+ cl, dl);
#endif
- for(;;)
- {
- r[0] = a[0];
- if (--dl <= 0) break;
- r[1] = a[1];
- if (--dl <= 0) break;
- r[2] = a[2];
- if (--dl <= 0) break;
- r[3] = a[3];
- if (--dl <= 0) break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
- }
+ for (;;) {
+ r[0] = a[0];
+ if (--dl <= 0)
+ break;
+ r[1] = a[1];
+ if (--dl <= 0)
+ break;
+ r[2] = a[2];
+ if (--dl <= 0)
+ break;
+ r[3] = a[3];
+ if (--dl <= 0)
+ break;
+
+ a += 4;
+ r += 4;
+ }
+ }
+ }
+ return c;
+}
#ifdef BN_RECURSION
-/* Karatsuba recursive multiplication algorithm
- * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
+/*
+ * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
+ * Computer Programming, Vol. 2)
+ */
-/* r is 2*n2 words in size,
+/*-
+ * r is 2*n2 words in size,
* a and b are both n2 words in size.
* n2 must be a power of 2.
* We multiply and return the result.
@@ -391,776 +425,740 @@ BN_ULONG bn_add_part_words(BN_ULONG *r,
*/
/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- int dna, int dnb, BN_ULONG *t)
- {
- int n=n2/2,c1,c2;
- int tna=n+dna, tnb=n+dnb;
- unsigned int neg,zero;
- BN_ULONG ln,lo,*p;
+ int dna, int dnb, BN_ULONG *t)
+{
+ int n = n2 / 2, c1, c2;
+ int tna = n + dna, tnb = n + dnb;
+ unsigned int neg, zero;
+ BN_ULONG ln, lo, *p;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
+ fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n", n2, dna, n2, dnb);
# endif
# ifdef BN_MUL_COMBA
# if 0
- if (n2 == 4)
- {
- bn_mul_comba4(r,a,b);
- return;
- }
+ if (n2 == 4) {
+ bn_mul_comba4(r, a, b);
+ return;
+ }
# endif
- /* Only call bn_mul_comba 8 if n2 == 8 and the
- * two arrays are complete [steve]
- */
- if (n2 == 8 && dna == 0 && dnb == 0)
- {
- bn_mul_comba8(r,a,b);
- return;
- }
-# endif /* BN_MUL_COMBA */
- /* Else do normal multiply */
- if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
- {
- bn_mul_normal(r,a,n2+dna,b,n2+dnb);
- if ((dna + dnb) < 0)
- memset(&r[2*n2 + dna + dnb], 0,
- sizeof(BN_ULONG) * -(dna + dnb));
- return;
- }
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
- c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
- zero=neg=0;
- switch (c1*3+c2)
- {
- case -4:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
- break;
- case -3:
- zero=1;
- break;
- case -2:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
- neg=1;
- break;
- case -1:
- case 0:
- case 1:
- zero=1;
- break;
- case 2:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
- neg=1;
- break;
- case 3:
- zero=1;
- break;
- case 4:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
- break;
- }
+ /*
+ * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
+ * [steve]
+ */
+ if (n2 == 8 && dna == 0 && dnb == 0) {
+ bn_mul_comba8(r, a, b);
+ return;
+ }
+# endif /* BN_MUL_COMBA */
+ /* Else do normal multiply */
+ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
+ if ((dna + dnb) < 0)
+ memset(&r[2 * n2 + dna + dnb], 0,
+ sizeof(BN_ULONG) * -(dna + dnb));
+ return;
+ }
+ /* r=(a[0]-a[1])*(b[1]-b[0]) */
+ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
+ c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
+ zero = neg = 0;
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ break;
+ case -3:
+ zero = 1;
+ break;
+ case -2:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ zero = 1;
+ break;
+ case 2:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ neg = 1;
+ break;
+ case 3:
+ zero = 1;
+ break;
+ case 4:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
+ break;
+ }
# ifdef BN_MUL_COMBA
- if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
- extra args to do this well */
- {
- if (!zero)
- bn_mul_comba4(&(t[n2]),t,&(t[n]));
- else
- memset(&(t[n2]),0,8*sizeof(BN_ULONG));
-
- bn_mul_comba4(r,a,b);
- bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
- }
- else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
- take extra args to do this
- well */
- {
- if (!zero)
- bn_mul_comba8(&(t[n2]),t,&(t[n]));
- else
- memset(&(t[n2]),0,16*sizeof(BN_ULONG));
-
- bn_mul_comba8(r,a,b);
- bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
- }
- else
-# endif /* BN_MUL_COMBA */
- {
- p= &(t[n2*2]);
- if (!zero)
- bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
- else
- memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
- bn_mul_recursive(r,a,b,n,0,0,p);
- bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
- }
-
- /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
-
- c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
-
- if (neg) /* if t[32] is negative */
- {
- c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
- }
- else
- {
- /* Might have a carry */
- c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
- }
-
- /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
- if (c1)
- {
- p= &(r[n+n2]);
- lo= *p;
- ln=(lo+c1)&BN_MASK2;
- *p=ln;
-
- /* The overflow will stop before we over write
- * words we should not overwrite */
- if (ln < (BN_ULONG)c1)
- {
- do {
- p++;
- lo= *p;
- ln=(lo+1)&BN_MASK2;
- *p=ln;
- } while (ln == 0);
- }
- }
- }
-
-/* n+tn is the word length
- * t needs to be n*4 is size, as does r */
+ if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
+ * extra args to do this well */
+ if (!zero)
+ bn_mul_comba4(&(t[n2]), t, &(t[n]));
+ else
+ memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
+
+ bn_mul_comba4(r, a, b);
+ bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
+ } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
+ * take extra args to do
+ * this well */
+ if (!zero)
+ bn_mul_comba8(&(t[n2]), t, &(t[n]));
+ else
+ memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
+
+ bn_mul_comba8(r, a, b);
+ bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
+ } else
+# endif /* BN_MUL_COMBA */
+ {
+ p = &(t[n2 * 2]);
+ if (!zero)
+ bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
+ else
+ memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
+ bn_mul_recursive(r, a, b, n, 0, 0, p);
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ if (neg) { /* if t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+ } else {
+ /* Might have a carry */
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ * c1 holds the carry bits
+ */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /*
+ * The overflow will stop before we over write words we should not
+ * overwrite
+ */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+/*
+ * n+tn is the word length t needs to be n*4 is size, as does r
+ */
/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
- int tna, int tnb, BN_ULONG *t)
- {
- int i,j,n2=n*2;
- int c1,c2,neg;
- BN_ULONG ln,lo,*p;
+ int tna, int tnb, BN_ULONG *t)
+{
+ int i, j, n2 = n * 2;
+ int c1, c2, neg;
+ BN_ULONG ln, lo, *p;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
- n, tna, n, tnb);
+ fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
+ n, tna, n, tnb);
# endif
- if (n < 8)
- {
- bn_mul_normal(r,a,n+tna,b,n+tnb);
- return;
- }
-
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
- c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
- neg=0;
- switch (c1*3+c2)
- {
- case -4:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
- break;
- case -3:
- /* break; */
- case -2:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
- neg=1;
- break;
- case -1:
- case 0:
- case 1:
- /* break; */
- case 2:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
- neg=1;
- break;
- case 3:
- /* break; */
- case 4:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
- break;
- }
- /* The zero case isn't yet implemented here. The speedup
- would probably be negligible. */
+ if (n < 8) {
+ bn_mul_normal(r, a, n + tna, b, n + tnb);
+ return;
+ }
+
+ /* r=(a[0]-a[1])*(b[1]-b[0]) */
+ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
+ c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
+ neg = 0;
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ break;
+ case -3:
+ /* break; */
+ case -2:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ /* break; */
+ case 2:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ neg = 1;
+ break;
+ case 3:
+ /* break; */
+ case 4:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
+ break;
+ }
+ /*
+ * The zero case isn't yet implemented here. The speedup would probably
+ * be negligible.
+ */
# if 0
- if (n == 4)
- {
- bn_mul_comba4(&(t[n2]),t,&(t[n]));
- bn_mul_comba4(r,a,b);
- bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
- memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
- }
- else
+ if (n == 4) {
+ bn_mul_comba4(&(t[n2]), t, &(t[n]));
+ bn_mul_comba4(r, a, b);
+ bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
+ memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));
+ } else
# endif
- if (n == 8)
- {
- bn_mul_comba8(&(t[n2]),t,&(t[n]));
- bn_mul_comba8(r,a,b);
- bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
- memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
- }
- else
- {
- p= &(t[n2*2]);
- bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
- bn_mul_recursive(r,a,b,n,0,0,p);
- i=n/2;
- /* If there is only a bottom half to the number,
- * just do it */
- if (tna > tnb)
- j = tna - i;
- else
- j = tnb - i;
- if (j == 0)
- {
- bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
- memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
- }
- else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
- {
- bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
- memset(&(r[n2+tna+tnb]),0,
- sizeof(BN_ULONG)*(n2-tna-tnb));
- }
- else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
- {
- memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
- if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
- && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
- {
- bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
- }
- else
- {
- for (;;)
- {
- i/=2;
- /* these simplified conditions work
- * exclusively because difference
- * between tna and tnb is 1 or 0 */
- if (i < tna || i < tnb)
- {
- bn_mul_part_recursive(&(r[n2]),
- &(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
- break;
- }
- else if (i == tna || i == tnb)
- {
- bn_mul_recursive(&(r[n2]),
- &(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
- break;
- }
- }
- }
- }
- }
-
- /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
-
- c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
-
- if (neg) /* if t[32] is negative */
- {
- c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
- }
- else
- {
- /* Might have a carry */
- c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
- }
-
- /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
- if (c1)
- {
- p= &(r[n+n2]);
- lo= *p;
- ln=(lo+c1)&BN_MASK2;
- *p=ln;
-
- /* The overflow will stop before we over write
- * words we should not overwrite */
- if (ln < (BN_ULONG)c1)
- {
- do {
- p++;
- lo= *p;
- ln=(lo+1)&BN_MASK2;
- *p=ln;
- } while (ln == 0);
- }
- }
- }
-
-/* a and b must be the same size, which is n2.
+ if (n == 8) {
+ bn_mul_comba8(&(t[n2]), t, &(t[n]));
+ bn_mul_comba8(r, a, b);
+ bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
+ memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
+ } else {
+ p = &(t[n2 * 2]);
+ bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
+ bn_mul_recursive(r, a, b, n, 0, 0, p);
+ i = n / 2;
+ /*
+ * If there is only a bottom half to the number, just do it
+ */
+ if (tna > tnb)
+ j = tna - i;
+ else
+ j = tnb - i;
+ if (j == 0) {
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
+ } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
+ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ memset(&(r[n2 + tna + tnb]), 0,
+ sizeof(BN_ULONG) * (n2 - tna - tnb));
+ } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
+
+ memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
+ if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
+ && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
+ } else {
+ for (;;) {
+ i /= 2;
+ /*
+ * these simplified conditions work exclusively because
+ * difference between tna and tnb is 1 or 0
+ */
+ if (i < tna || i < tnb) {
+ bn_mul_part_recursive(&(r[n2]),
+ &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ break;
+ } else if (i == tna || i == tnb) {
+ bn_mul_recursive(&(r[n2]),
+ &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ if (neg) { /* if t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+ } else {
+ /* Might have a carry */
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ * c1 holds the carry bits
+ */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /*
+ * The overflow will stop before we over write words we should not
+ * overwrite
+ */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+/*-
+ * a and b must be the same size, which is n2.
* r needs to be n2 words and t needs to be n2*2
*/
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- BN_ULONG *t)
- {
- int n=n2/2;
+ BN_ULONG *t)
+{
+ int n = n2 / 2;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
+ fprintf(stderr, " bn_mul_low_recursive %d * %d\n", n2, n2);
# endif
- bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
- if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
- {
- bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
- bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
- bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
- bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
- }
- else
- {
- bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
- bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
- bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
- bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
- }
- }
-
-/* a and b must be the same size, which is n2.
+ bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
+ if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
+ bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
+ bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
+ bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
+ } else {
+ bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
+ bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
+ bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
+ bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
+ }
+}
+
+/*-
+ * a and b must be the same size, which is n2.
* r needs to be n2 words and t needs to be n2*2
* l is the low words of the output.
* t needs to be n2*3
*/
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
- BN_ULONG *t)
- {
- int i,n;
- int c1,c2;
- int neg,oneg,zero;
- BN_ULONG ll,lc,*lp,*mp;
+ BN_ULONG *t)
+{
+ int i, n;
+ int c1, c2;
+ int neg, oneg, zero;
+ BN_ULONG ll, lc, *lp, *mp;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
+ fprintf(stderr, " bn_mul_high %d * %d\n", n2, n2);
# endif
- n=n2/2;
-
- /* Calculate (al-ah)*(bh-bl) */
- neg=zero=0;
- c1=bn_cmp_words(&(a[0]),&(a[n]),n);
- c2=bn_cmp_words(&(b[n]),&(b[0]),n);
- switch (c1*3+c2)
- {
- case -4:
- bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
- bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
- break;
- case -3:
- zero=1;
- break;
- case -2:
- bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
- bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
- neg=1;
- break;
- case -1:
- case 0:
- case 1:
- zero=1;
- break;
- case 2:
- bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
- bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
- neg=1;
- break;
- case 3:
- zero=1;
- break;
- case 4:
- bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
- bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
- break;
- }
-
- oneg=neg;
- /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
- /* r[10] = (a[1]*b[1]) */
+ n = n2 / 2;
+
+ /* Calculate (al-ah)*(bh-bl) */
+ neg = zero = 0;
+ c1 = bn_cmp_words(&(a[0]), &(a[n]), n);
+ c2 = bn_cmp_words(&(b[n]), &(b[0]), n);
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
+ bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
+ break;
+ case -3:
+ zero = 1;
+ break;
+ case -2:
+ bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
+ bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ zero = 1;
+ break;
+ case 2:
+ bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
+ bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
+ neg = 1;
+ break;
+ case 3:
+ zero = 1;
+ break;
+ case 4:
+ bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
+ bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
+ break;
+ }
+
+ oneg = neg;
+ /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
+ /* r[10] = (a[1]*b[1]) */
# ifdef BN_MUL_COMBA
- if (n == 8)
- {
- bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
- bn_mul_comba8(r,&(a[n]),&(b[n]));
- }
- else
+ if (n == 8) {
+ bn_mul_comba8(&(t[0]), &(r[0]), &(r[n]));
+ bn_mul_comba8(r, &(a[n]), &(b[n]));
+ } else
# endif
- {
- bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
- bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
- }
-
- /* s0 == low(al*bl)
- * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
- * We know s0 and s1 so the only unknown is high(al*bl)
- * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
- * high(al*bl) == s1 - (r[0]+l[0]+t[0])
- */
- if (l != NULL)
- {
- lp= &(t[n2+n]);
- c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
- }
- else
- {
- c1=0;
- lp= &(r[0]);
- }
-
- if (neg)
- neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
- else
- {
- bn_add_words(&(t[n2]),lp,&(t[0]),n);
- neg=0;
- }
-
- if (l != NULL)
- {
- bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
- }
- else
- {
- lp= &(t[n2+n]);
- mp= &(t[n2]);
- for (i=0; i<n; i++)
- lp[i]=((~mp[i])+1)&BN_MASK2;
- }
-
- /* s[0] = low(al*bl)
- * t[3] = high(al*bl)
- * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
- * r[10] = (a[1]*b[1])
- */
- /* R[10] = al*bl
- * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
- * R[32] = ah*bh
- */
- /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
- * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
- * R[3]=r[1]+(carry/borrow)
- */
- if (l != NULL)
- {
- lp= &(t[n2]);
- c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
- }
- else
- {
- lp= &(t[n2+n]);
- c1=0;
- }
- c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
- if (oneg)
- c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
- else
- c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
-
- c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
- c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
- if (oneg)
- c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
- else
- c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
-
- if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
- {
- i=0;
- if (c1 > 0)
- {
- lc=c1;
- do {
- ll=(r[i]+lc)&BN_MASK2;
- r[i++]=ll;
- lc=(lc > ll);
- } while (lc);
- }
- else
- {
- lc= -c1;
- do {
- ll=r[i];
- r[i++]=(ll-lc)&BN_MASK2;
- lc=(lc > ll);
- } while (lc);
- }
- }
- if (c2 != 0) /* Add starting at r[1] */
- {
- i=n;
- if (c2 > 0)
- {
- lc=c2;
- do {
- ll=(r[i]+lc)&BN_MASK2;
- r[i++]=ll;
- lc=(lc > ll);
- } while (lc);
- }
- else
- {
- lc= -c2;
- do {
- ll=r[i];
- r[i++]=(ll-lc)&BN_MASK2;
- lc=(lc > ll);
- } while (lc);
- }
- }
- }
-#endif /* BN_RECURSION */
+ {
+ bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2]));
+ bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2]));
+ }
+
+ /*-
+ * s0 == low(al*bl)
+ * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
+ * We know s0 and s1 so the only unknown is high(al*bl)
+ * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
+ * high(al*bl) == s1 - (r[0]+l[0]+t[0])
+ */
+ if (l != NULL) {
+ lp = &(t[n2 + n]);
+ c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n));
+ } else {
+ c1 = 0;
+ lp = &(r[0]);
+ }
+
+ if (neg)
+ neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n));
+ else {
+ bn_add_words(&(t[n2]), lp, &(t[0]), n);
+ neg = 0;
+ }
+
+ if (l != NULL) {
+ bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n);
+ } else {
+ lp = &(t[n2 + n]);
+ mp = &(t[n2]);
+ for (i = 0; i < n; i++)
+ lp[i] = ((~mp[i]) + 1) & BN_MASK2;
+ }
+
+ /*-
+ * s[0] = low(al*bl)
+ * t[3] = high(al*bl)
+ * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
+ * r[10] = (a[1]*b[1])
+ */
+ /*-
+ * R[10] = al*bl
+ * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
+ * R[32] = ah*bh
+ */
+ /*-
+ * R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
+ * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
+ * R[3]=r[1]+(carry/borrow)
+ */
+ if (l != NULL) {
+ lp = &(t[n2]);
+ c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n));
+ } else {
+ lp = &(t[n2 + n]);
+ c1 = 0;
+ }
+ c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n));
+ if (oneg)
+ c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n));
+ else
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n));
+
+ c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n));
+ c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n));
+ if (oneg)
+ c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n));
+ else
+ c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n));
+
+ if (c1 != 0) { /* Add starting at r[0], could be +ve or -ve */
+ i = 0;
+ if (c1 > 0) {
+ lc = c1;
+ do {
+ ll = (r[i] + lc) & BN_MASK2;
+ r[i++] = ll;
+ lc = (lc > ll);
+ } while (lc);
+ } else {
+ lc = -c1;
+ do {
+ ll = r[i];
+ r[i++] = (ll - lc) & BN_MASK2;
+ lc = (lc > ll);
+ } while (lc);
+ }
+ }
+ if (c2 != 0) { /* Add starting at r[1] */
+ i = n;
+ if (c2 > 0) {
+ lc = c2;
+ do {
+ ll = (r[i] + lc) & BN_MASK2;
+ r[i++] = ll;
+ lc = (lc > ll);
+ } while (lc);
+ } else {
+ lc = -c2;
+ do {
+ ll = r[i];
+ r[i++] = (ll - lc) & BN_MASK2;
+ lc = (lc > ll);
+ } while (lc);
+ }
+ }
+}
+#endif /* BN_RECURSION */
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- int ret=0;
- int top,al,bl;
- BIGNUM *rr;
+{
+ int ret = 0;
+ int top, al, bl;
+ BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- int i;
+ int i;
#endif
#ifdef BN_RECURSION
- BIGNUM *t=NULL;
- int j=0,k;
+ BIGNUM *t = NULL;
+ int j = 0, k;
#endif
#ifdef BN_COUNT
- fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
+ fprintf(stderr, "BN_mul %d * %d\n", a->top, b->top);
#endif
- bn_check_top(a);
- bn_check_top(b);
- bn_check_top(r);
-
- al=a->top;
- bl=b->top;
-
- if ((al == 0) || (bl == 0))
- {
- BN_zero(r);
- return(1);
- }
- top=al+bl;
-
- BN_CTX_start(ctx);
- if ((r == a) || (r == b))
- {
- if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
- }
- else
- rr = r;
- rr->neg=a->neg^b->neg;
+ bn_check_top(a);
+ bn_check_top(b);
+ bn_check_top(r);
+
+ al = a->top;
+ bl = b->top;
+
+ if ((al == 0) || (bl == 0)) {
+ BN_zero(r);
+ return (1);
+ }
+ top = al + bl;
+
+ BN_CTX_start(ctx);
+ if ((r == a) || (r == b)) {
+ if ((rr = BN_CTX_get(ctx)) == NULL)
+ goto err;
+ } else
+ rr = r;
+ rr->neg = a->neg ^ b->neg;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
- i = al-bl;
+ i = al - bl;
#endif
#ifdef BN_MUL_COMBA
- if (i == 0)
- {
+ if (i == 0) {
# if 0
- if (al == 4)
- {
- if (bn_wexpand(rr,8) == NULL) goto err;
- rr->top=8;
- bn_mul_comba4(rr->d,a->d,b->d);
- goto end;
- }
+ if (al == 4) {
+ if (bn_wexpand(rr, 8) == NULL)
+ goto err;
+ rr->top = 8;
+ bn_mul_comba4(rr->d, a->d, b->d);
+ goto end;
+ }
# endif
- if (al == 8)
- {
- if (bn_wexpand(rr,16) == NULL) goto err;
- rr->top=16;
- bn_mul_comba8(rr->d,a->d,b->d);
- goto end;
- }
- }
-#endif /* BN_MUL_COMBA */
+ if (al == 8) {
+ if (bn_wexpand(rr, 16) == NULL)
+ goto err;
+ rr->top = 16;
+ bn_mul_comba8(rr->d, a->d, b->d);
+ goto end;
+ }
+ }
+#endif /* BN_MUL_COMBA */
#ifdef BN_RECURSION
- if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
- {
- if (i >= -1 && i <= 1)
- {
- /* Find out the power of two lower or equal
- to the longest of the two numbers */
- if (i >= 0)
- {
- j = BN_num_bits_word((BN_ULONG)al);
- }
- if (i == -1)
- {
- j = BN_num_bits_word((BN_ULONG)bl);
- }
- j = 1<<(j-1);
- assert(j <= al || j <= bl);
- k = j+j;
- t = BN_CTX_get(ctx);
- if (t == NULL)
- goto err;
- if (al > j || bl > j)
- {
- if (bn_wexpand(t,k*4) == NULL) goto err;
- if (bn_wexpand(rr,k*4) == NULL) goto err;
- bn_mul_part_recursive(rr->d,a->d,b->d,
- j,al-j,bl-j,t->d);
- }
- else /* al <= j || bl <= j */
- {
- if (bn_wexpand(t,k*2) == NULL) goto err;
- if (bn_wexpand(rr,k*2) == NULL) goto err;
- bn_mul_recursive(rr->d,a->d,b->d,
- j,al-j,bl-j,t->d);
- }
- rr->top=top;
- goto end;
- }
-#if 0
- if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
- {
- BIGNUM *tmp_bn = (BIGNUM *)b;
- if (bn_wexpand(tmp_bn,al) == NULL) goto err;
- tmp_bn->d[bl]=0;
- bl++;
- i--;
- }
- else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
- {
- BIGNUM *tmp_bn = (BIGNUM *)a;
- if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
- tmp_bn->d[al]=0;
- al++;
- i++;
- }
- if (i == 0)
- {
- /* symmetric and > 4 */
- /* 16 or larger */
- j=BN_num_bits_word((BN_ULONG)al);
- j=1<<(j-1);
- k=j+j;
- t = BN_CTX_get(ctx);
- if (al == j) /* exact multiple */
- {
- if (bn_wexpand(t,k*2) == NULL) goto err;
- if (bn_wexpand(rr,k*2) == NULL) goto err;
- bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
- }
- else
- {
- if (bn_wexpand(t,k*4) == NULL) goto err;
- if (bn_wexpand(rr,k*4) == NULL) goto err;
- bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
- }
- rr->top=top;
- goto end;
- }
-#endif
- }
-#endif /* BN_RECURSION */
- if (bn_wexpand(rr,top) == NULL) goto err;
- rr->top=top;
- bn_mul_normal(rr->d,a->d,al,b->d,bl);
+ if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
+ if (i >= -1 && i <= 1) {
+ /*
+ * Find out the power of two lower or equal to the longest of the
+ * two numbers
+ */
+ if (i >= 0) {
+ j = BN_num_bits_word((BN_ULONG)al);
+ }
+ if (i == -1) {
+ j = BN_num_bits_word((BN_ULONG)bl);
+ }
+ j = 1 << (j - 1);
+ assert(j <= al || j <= bl);
+ k = j + j;
+ t = BN_CTX_get(ctx);
+ if (t == NULL)
+ goto err;
+ if (al > j || bl > j) {
+ if (bn_wexpand(t, k * 4) == NULL)
+ goto err;
+ if (bn_wexpand(rr, k * 4) == NULL)
+ goto err;
+ bn_mul_part_recursive(rr->d, a->d, b->d,
+ j, al - j, bl - j, t->d);
+ } else { /* al <= j || bl <= j */
+
+ if (bn_wexpand(t, k * 2) == NULL)
+ goto err;
+ if (bn_wexpand(rr, k * 2) == NULL)
+ goto err;
+ bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
+ }
+ rr->top = top;
+ goto end;
+ }
+# if 0
+ if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) {
+ BIGNUM *tmp_bn = (BIGNUM *)b;
+ if (bn_wexpand(tmp_bn, al) == NULL)
+ goto err;
+ tmp_bn->d[bl] = 0;
+ bl++;
+ i--;
+ } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
+ BIGNUM *tmp_bn = (BIGNUM *)a;
+ if (bn_wexpand(tmp_bn, bl) == NULL)
+ goto err;
+ tmp_bn->d[al] = 0;
+ al++;
+ i++;
+ }
+ if (i == 0) {
+ /* symmetric and > 4 */
+ /* 16 or larger */
+ j = BN_num_bits_word((BN_ULONG)al);
+ j = 1 << (j - 1);
+ k = j + j;
+ t = BN_CTX_get(ctx);
+ if (al == j) { /* exact multiple */
+ if (bn_wexpand(t, k * 2) == NULL)
+ goto err;
+ if (bn_wexpand(rr, k * 2) == NULL)
+ goto err;
+ bn_mul_recursive(rr->d, a->d, b->d, al, t->d);
+ } else {
+ if (bn_wexpand(t, k * 4) == NULL)
+ goto err;
+ if (bn_wexpand(rr, k * 4) == NULL)
+ goto err;
+ bn_mul_part_recursive(rr->d, a->d, b->d, al - j, j, t->d);
+ }
+ rr->top = top;
+ goto end;
+ }
+# endif
+ }
+#endif /* BN_RECURSION */
+ if (bn_wexpand(rr, top) == NULL)
+ goto err;
+ rr->top = top;
+ bn_mul_normal(rr->d, a->d, al, b->d, bl);
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
-end:
+ end:
#endif
- bn_correct_top(rr);
- if (r != rr) BN_copy(r,rr);
- ret=1;
-err:
- bn_check_top(r);
- BN_CTX_end(ctx);
- return(ret);
- }
+ bn_correct_top(rr);
+ if (r != rr)
+ BN_copy(r, rr);
+ ret = 1;
+ err:
+ bn_check_top(r);
+ BN_CTX_end(ctx);
+ return (ret);
+}
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
- {
- BN_ULONG *rr;
+{
+ BN_ULONG *rr;
#ifdef BN_COUNT
- fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
+ fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb);
#endif
- if (na < nb)
- {
- int itmp;
- BN_ULONG *ltmp;
-
- itmp=na; na=nb; nb=itmp;
- ltmp=a; a=b; b=ltmp;
-
- }
- rr= &(r[na]);
- if (nb <= 0)
- {
- (void)bn_mul_words(r,a,na,0);
- return;
- }
- else
- rr[0]=bn_mul_words(r,a,na,b[0]);
-
- for (;;)
- {
- if (--nb <= 0) return;
- rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
- if (--nb <= 0) return;
- rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
- if (--nb <= 0) return;
- rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
- if (--nb <= 0) return;
- rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
- rr+=4;
- r+=4;
- b+=4;
- }
- }
+ if (na < nb) {
+ int itmp;
+ BN_ULONG *ltmp;
+
+ itmp = na;
+ na = nb;
+ nb = itmp;
+ ltmp = a;
+ a = b;
+ b = ltmp;
+
+ }
+ rr = &(r[na]);
+ if (nb <= 0) {
+ (void)bn_mul_words(r, a, na, 0);
+ return;
+ } else
+ rr[0] = bn_mul_words(r, a, na, b[0]);
+
+ for (;;) {
+ if (--nb <= 0)
+ return;
+ rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
+ if (--nb <= 0)
+ return;
+ rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
+ if (--nb <= 0)
+ return;
+ rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
+ if (--nb <= 0)
+ return;
+ rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
+ rr += 4;
+ r += 4;
+ b += 4;
+ }
+}
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
- {
+{
#ifdef BN_COUNT
- fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
+ fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n);
#endif
- bn_mul_words(r,a,n,b[0]);
-
- for (;;)
- {
- if (--n <= 0) return;
- bn_mul_add_words(&(r[1]),a,n,b[1]);
- if (--n <= 0) return;
- bn_mul_add_words(&(r[2]),a,n,b[2]);
- if (--n <= 0) return;
- bn_mul_add_words(&(r[3]),a,n,b[3]);
- if (--n <= 0) return;
- bn_mul_add_words(&(r[4]),a,n,b[4]);
- r+=4;
- b+=4;
- }
- }
+ bn_mul_words(r, a, n, b[0]);
+
+ for (;;) {
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[1]), a, n, b[1]);
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[2]), a, n, b[2]);
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[3]), a, n, b[3]);
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[4]), a, n, b[4]);
+ r += 4;
+ b += 4;
+ }
+}