aboutsummaryrefslogtreecommitdiffstats
path: root/common/unicode/u8_textprep.c
diff options
context:
space:
mode:
Diffstat (limited to 'common/unicode/u8_textprep.c')
-rw-r--r--common/unicode/u8_textprep.c2132
1 files changed, 2132 insertions, 0 deletions
diff --git a/common/unicode/u8_textprep.c b/common/unicode/u8_textprep.c
new file mode 100644
index 000000000000..8faf1a97e47e
--- /dev/null
+++ b/common/unicode/u8_textprep.c
@@ -0,0 +1,2132 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+
+/*
+ * UTF-8 text preparation functions (PSARC/2007/149, PSARC/2007/458).
+ *
+ * Man pages: u8_textprep_open(9F), u8_textprep_buf(9F), u8_textprep_close(9F),
+ * u8_textprep_str(9F), u8_strcmp(9F), and u8_validate(9F). See also
+ * the section 3C man pages.
+ * Interface stability: Committed.
+ */
+
+#include <sys/types.h>
+#ifdef _KERNEL
+#include <sys/param.h>
+#include <sys/sysmacros.h>
+#include <sys/systm.h>
+#include <sys/debug.h>
+#include <sys/kmem.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#else
+#include <sys/u8_textprep.h>
+#include <strings.h>
+#endif /* _KERNEL */
+#include <sys/byteorder.h>
+#include <sys/errno.h>
+#include <sys/u8_textprep_data.h>
+
+
+/* The maximum possible number of bytes in a UTF-8 character. */
+#define U8_MB_CUR_MAX (4)
+
+/*
+ * The maximum number of bytes needed for a UTF-8 character to cover
+ * U+0000 - U+FFFF, i.e., the coding space of now deprecated UCS-2.
+ */
+#define U8_MAX_BYTES_UCS2 (3)
+
+/* The maximum possible number of bytes in a Stream-Safe Text. */
+#define U8_STREAM_SAFE_TEXT_MAX (128)
+
+/*
+ * The maximum number of characters in a combining/conjoining sequence and
+ * the actual upperbound limit of a combining/conjoining sequence.
+ */
+#define U8_MAX_CHARS_A_SEQ (32)
+#define U8_UPPER_LIMIT_IN_A_SEQ (31)
+
+/* The combining class value for Starter. */
+#define U8_COMBINING_CLASS_STARTER (0)
+
+/*
+ * Some Hangul related macros at below.
+ *
+ * The first and the last of Hangul syllables, Hangul Jamo Leading consonants,
+ * Vowels, and optional Trailing consonants in Unicode scalar values.
+ *
+ * Please be noted that the U8_HANGUL_JAMO_T_FIRST is 0x11A7 at below not
+ * the actual U+11A8. This is due to that the trailing consonant is optional
+ * and thus we are doing a pre-calculation of subtracting one.
+ *
+ * Each of 19 modern leading consonants has total 588 possible syllables since
+ * Hangul has 21 modern vowels and 27 modern trailing consonants plus 1 for
+ * no trailing consonant case, i.e., 21 x 28 = 588.
+ *
+ * We also have bunch of Hangul related macros at below. Please bear in mind
+ * that the U8_HANGUL_JAMO_1ST_BYTE can be used to check whether it is
+ * a Hangul Jamo or not but the value does not guarantee that it is a Hangul
+ * Jamo; it just guarantee that it will be most likely.
+ */
+#define U8_HANGUL_SYL_FIRST (0xAC00U)
+#define U8_HANGUL_SYL_LAST (0xD7A3U)
+
+#define U8_HANGUL_JAMO_L_FIRST (0x1100U)
+#define U8_HANGUL_JAMO_L_LAST (0x1112U)
+#define U8_HANGUL_JAMO_V_FIRST (0x1161U)
+#define U8_HANGUL_JAMO_V_LAST (0x1175U)
+#define U8_HANGUL_JAMO_T_FIRST (0x11A7U)
+#define U8_HANGUL_JAMO_T_LAST (0x11C2U)
+
+#define U8_HANGUL_V_COUNT (21)
+#define U8_HANGUL_VT_COUNT (588)
+#define U8_HANGUL_T_COUNT (28)
+
+#define U8_HANGUL_JAMO_1ST_BYTE (0xE1U)
+
+#define U8_SAVE_HANGUL_AS_UTF8(s, i, j, k, b) \
+ (s)[(i)] = (uchar_t)(0xE0U | ((uint32_t)(b) & 0xF000U) >> 12); \
+ (s)[(j)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x0FC0U) >> 6); \
+ (s)[(k)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x003FU));
+
+#define U8_HANGUL_JAMO_L(u) \
+ ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_L_LAST)
+
+#define U8_HANGUL_JAMO_V(u) \
+ ((u) >= U8_HANGUL_JAMO_V_FIRST && (u) <= U8_HANGUL_JAMO_V_LAST)
+
+#define U8_HANGUL_JAMO_T(u) \
+ ((u) > U8_HANGUL_JAMO_T_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST)
+
+#define U8_HANGUL_JAMO(u) \
+ ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST)
+
+#define U8_HANGUL_SYLLABLE(u) \
+ ((u) >= U8_HANGUL_SYL_FIRST && (u) <= U8_HANGUL_SYL_LAST)
+
+#define U8_HANGUL_COMPOSABLE_L_V(s, u) \
+ ((s) == U8_STATE_HANGUL_L && U8_HANGUL_JAMO_V((u)))
+
+#define U8_HANGUL_COMPOSABLE_LV_T(s, u) \
+ ((s) == U8_STATE_HANGUL_LV && U8_HANGUL_JAMO_T((u)))
+
+/* The types of decomposition mappings. */
+#define U8_DECOMP_BOTH (0xF5U)
+#define U8_DECOMP_CANONICAL (0xF6U)
+
+/* The indicator for 16-bit table. */
+#define U8_16BIT_TABLE_INDICATOR (0x8000U)
+
+/* The following are some convenience macros. */
+#define U8_PUT_3BYTES_INTO_UTF32(u, b1, b2, b3) \
+ (u) = ((uint32_t)(b1) & 0x0F) << 12 | ((uint32_t)(b2) & 0x3F) << 6 | \
+ (uint32_t)(b3) & 0x3F;
+
+#define U8_SIMPLE_SWAP(a, b, t) \
+ (t) = (a); \
+ (a) = (b); \
+ (b) = (t);
+
+#define U8_ASCII_TOUPPER(c) \
+ (((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 'A' : (c))
+
+#define U8_ASCII_TOLOWER(c) \
+ (((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' + 'a' : (c))
+
+#define U8_ISASCII(c) (((uchar_t)(c)) < 0x80U)
+/*
+ * The following macro assumes that the two characters that are to be
+ * swapped are adjacent to each other and 'a' comes before 'b'.
+ *
+ * If the assumptions are not met, then, the macro will fail.
+ */
+#define U8_SWAP_COMB_MARKS(a, b) \
+ for (k = 0; k < disp[(a)]; k++) \
+ u8t[k] = u8s[start[(a)] + k]; \
+ for (k = 0; k < disp[(b)]; k++) \
+ u8s[start[(a)] + k] = u8s[start[(b)] + k]; \
+ start[(b)] = start[(a)] + disp[(b)]; \
+ for (k = 0; k < disp[(a)]; k++) \
+ u8s[start[(b)] + k] = u8t[k]; \
+ U8_SIMPLE_SWAP(comb_class[(a)], comb_class[(b)], tc); \
+ U8_SIMPLE_SWAP(disp[(a)], disp[(b)], tc);
+
+/* The possible states during normalization. */
+typedef enum {
+ U8_STATE_START = 0,
+ U8_STATE_HANGUL_L = 1,
+ U8_STATE_HANGUL_LV = 2,
+ U8_STATE_HANGUL_LVT = 3,
+ U8_STATE_HANGUL_V = 4,
+ U8_STATE_HANGUL_T = 5,
+ U8_STATE_COMBINING_MARK = 6
+} u8_normalization_states_t;
+
+/*
+ * The three vectors at below are used to check bytes of a given UTF-8
+ * character are valid and not containing any malformed byte values.
+ *
+ * We used to have a quite relaxed UTF-8 binary representation but then there
+ * was some security related issues and so the Unicode Consortium defined
+ * and announced the UTF-8 Corrigendum at Unicode 3.1 and then refined it
+ * one more time at the Unicode 3.2. The following three tables are based on
+ * that.
+ */
+
+#define U8_ILLEGAL_NEXT_BYTE_COMMON(c) ((c) < 0x80 || (c) > 0xBF)
+
+#define I_ U8_ILLEGAL_CHAR
+#define O_ U8_OUT_OF_RANGE_CHAR
+
+const int8_t u8_number_of_bytes[0x100] = {
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+
+/* 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F */
+ I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_,
+
+/* 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F */
+ I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_,
+
+/* A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF */
+ I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_,
+
+/* B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF */
+ I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_,
+
+/* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF */
+ I_, I_, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+
+/* D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF */
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+
+/* E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF */
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+
+/* F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF */
+ 4, 4, 4, 4, 4, O_, O_, O_, O_, O_, O_, O_, O_, O_, O_, O_,
+};
+
+#undef I_
+#undef O_
+
+const uint8_t u8_valid_min_2nd_byte[0x100] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+/* C0 C1 C2 C3 C4 C5 C6 C7 */
+ 0, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+/* C8 C9 CA CB CC CD CE CF */
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+/* D0 D1 D2 D3 D4 D5 D6 D7 */
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+/* D8 D9 DA DB DC DD DE DF */
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+/* E0 E1 E2 E3 E4 E5 E6 E7 */
+ 0xa0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+/* E8 E9 EA EB EC ED EE EF */
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+/* F0 F1 F2 F3 F4 F5 F6 F7 */
+ 0x90, 0x80, 0x80, 0x80, 0x80, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+};
+
+const uint8_t u8_valid_max_2nd_byte[0x100] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+/* C0 C1 C2 C3 C4 C5 C6 C7 */
+ 0, 0, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
+/* C8 C9 CA CB CC CD CE CF */
+ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
+/* D0 D1 D2 D3 D4 D5 D6 D7 */
+ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
+/* D8 D9 DA DB DC DD DE DF */
+ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
+/* E0 E1 E2 E3 E4 E5 E6 E7 */
+ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
+/* E8 E9 EA EB EC ED EE EF */
+ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0x9f, 0xbf, 0xbf,
+/* F0 F1 F2 F3 F4 F5 F6 F7 */
+ 0xbf, 0xbf, 0xbf, 0xbf, 0x8f, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+};
+
+
+/*
+ * The u8_validate() validates on the given UTF-8 character string and
+ * calculate the byte length. It is quite similar to mblen(3C) except that
+ * this will validate against the list of characters if required and
+ * specific to UTF-8 and Unicode.
+ */
+int
+u8_validate(char *u8str, size_t n, char **list, int flag, int *errnum)
+{
+ uchar_t *ib;
+ uchar_t *ibtail;
+ uchar_t **p;
+ uchar_t *s1;
+ uchar_t *s2;
+ uchar_t f;
+ int sz;
+ size_t i;
+ int ret_val;
+ boolean_t second;
+ boolean_t no_need_to_validate_entire;
+ boolean_t check_additional;
+ boolean_t validate_ucs2_range_only;
+
+ if (! u8str)
+ return (0);
+
+ ib = (uchar_t *)u8str;
+ ibtail = ib + n;
+
+ ret_val = 0;
+
+ no_need_to_validate_entire = ! (flag & U8_VALIDATE_ENTIRE);
+ check_additional = flag & U8_VALIDATE_CHECK_ADDITIONAL;
+ validate_ucs2_range_only = flag & U8_VALIDATE_UCS2_RANGE;
+
+ while (ib < ibtail) {
+ /*
+ * The first byte of a UTF-8 character tells how many
+ * bytes will follow for the character. If the first byte
+ * is an illegal byte value or out of range value, we just
+ * return -1 with an appropriate error number.
+ */
+ sz = u8_number_of_bytes[*ib];
+ if (sz == U8_ILLEGAL_CHAR) {
+ *errnum = EILSEQ;
+ return (-1);
+ }
+
+ if (sz == U8_OUT_OF_RANGE_CHAR ||
+ (validate_ucs2_range_only && sz > U8_MAX_BYTES_UCS2)) {
+ *errnum = ERANGE;
+ return (-1);
+ }
+
+ /*
+ * If we don't have enough bytes to check on, that's also
+ * an error. As you can see, we give illegal byte sequence
+ * checking higher priority then EINVAL cases.
+ */
+ if ((ibtail - ib) < sz) {
+ *errnum = EINVAL;
+ return (-1);
+ }
+
+ if (sz == 1) {
+ ib++;
+ ret_val++;
+ } else {
+ /*
+ * Check on the multi-byte UTF-8 character. For more
+ * details on this, see comment added for the used
+ * data structures at the beginning of the file.
+ */
+ f = *ib++;
+ ret_val++;
+ second = B_TRUE;
+ for (i = 1; i < sz; i++) {
+ if (second) {
+ if (*ib < u8_valid_min_2nd_byte[f] ||
+ *ib > u8_valid_max_2nd_byte[f]) {
+ *errnum = EILSEQ;
+ return (-1);
+ }
+ second = B_FALSE;
+ } else if (U8_ILLEGAL_NEXT_BYTE_COMMON(*ib)) {
+ *errnum = EILSEQ;
+ return (-1);
+ }
+ ib++;
+ ret_val++;
+ }
+ }
+
+ if (check_additional) {
+ for (p = (uchar_t **)list, i = 0; p[i]; i++) {
+ s1 = ib - sz;
+ s2 = p[i];
+ while (s1 < ib) {
+ if (*s1 != *s2 || *s2 == '\0')
+ break;
+ s1++;
+ s2++;
+ }
+
+ if (s1 >= ib && *s2 == '\0') {
+ *errnum = EBADF;
+ return (-1);
+ }
+ }
+ }
+
+ if (no_need_to_validate_entire)
+ break;
+ }
+
+ return (ret_val);
+}
+
+/*
+ * The do_case_conv() looks at the mapping tables and returns found
+ * bytes if any. If not found, the input bytes are returned. The function
+ * always terminate the return bytes with a null character assuming that
+ * there are plenty of room to do so.
+ *
+ * The case conversions are simple case conversions mapping a character to
+ * another character as specified in the Unicode data. The byte size of
+ * the mapped character could be different from that of the input character.
+ *
+ * The return value is the byte length of the returned character excluding
+ * the terminating null byte.
+ */
+static size_t
+do_case_conv(int uv, uchar_t *u8s, uchar_t *s, int sz, boolean_t is_it_toupper)
+{
+ size_t i;
+ uint16_t b1 = 0;
+ uint16_t b2 = 0;
+ uint16_t b3 = 0;
+ uint16_t b3_tbl;
+ uint16_t b3_base;
+ uint16_t b4 = 0;
+ size_t start_id;
+ size_t end_id;
+
+ /*
+ * At this point, the only possible values for sz are 2, 3, and 4.
+ * The u8s should point to a vector that is well beyond the size of
+ * 5 bytes.
+ */
+ if (sz == 2) {
+ b3 = u8s[0] = s[0];
+ b4 = u8s[1] = s[1];
+ } else if (sz == 3) {
+ b2 = u8s[0] = s[0];
+ b3 = u8s[1] = s[1];
+ b4 = u8s[2] = s[2];
+ } else if (sz == 4) {
+ b1 = u8s[0] = s[0];
+ b2 = u8s[1] = s[1];
+ b3 = u8s[2] = s[2];
+ b4 = u8s[3] = s[3];
+ } else {
+ /* This is not possible but just in case as a fallback. */
+ if (is_it_toupper)
+ *u8s = U8_ASCII_TOUPPER(*s);
+ else
+ *u8s = U8_ASCII_TOLOWER(*s);
+ u8s[1] = '\0';
+
+ return (1);
+ }
+ u8s[sz] = '\0';
+
+ /*
+ * Let's find out if we have a corresponding character.
+ */
+ b1 = u8_common_b1_tbl[uv][b1];
+ if (b1 == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ b2 = u8_case_common_b2_tbl[uv][b1][b2];
+ if (b2 == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ if (is_it_toupper) {
+ b3_tbl = u8_toupper_b3_tbl[uv][b2][b3].tbl_id;
+ if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ start_id = u8_toupper_b4_tbl[uv][b3_tbl][b4];
+ end_id = u8_toupper_b4_tbl[uv][b3_tbl][b4 + 1];
+
+ /* Either there is no match or an error at the table. */
+ if (start_id >= end_id || (end_id - start_id) > U8_MB_CUR_MAX)
+ return ((size_t)sz);
+
+ b3_base = u8_toupper_b3_tbl[uv][b2][b3].base;
+
+ for (i = 0; start_id < end_id; start_id++)
+ u8s[i++] = u8_toupper_final_tbl[uv][b3_base + start_id];
+ } else {
+ b3_tbl = u8_tolower_b3_tbl[uv][b2][b3].tbl_id;
+ if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ start_id = u8_tolower_b4_tbl[uv][b3_tbl][b4];
+ end_id = u8_tolower_b4_tbl[uv][b3_tbl][b4 + 1];
+
+ if (start_id >= end_id || (end_id - start_id) > U8_MB_CUR_MAX)
+ return ((size_t)sz);
+
+ b3_base = u8_tolower_b3_tbl[uv][b2][b3].base;
+
+ for (i = 0; start_id < end_id; start_id++)
+ u8s[i++] = u8_tolower_final_tbl[uv][b3_base + start_id];
+ }
+
+ /*
+ * If i is still zero, that means there is no corresponding character.
+ */
+ if (i == 0)
+ return ((size_t)sz);
+
+ u8s[i] = '\0';
+
+ return (i);
+}
+
+/*
+ * The do_case_compare() function compares the two input strings, s1 and s2,
+ * one character at a time doing case conversions if applicable and return
+ * the comparison result as like strcmp().
+ *
+ * Since, in empirical sense, most of text data are 7-bit ASCII characters,
+ * we treat the 7-bit ASCII characters as a special case trying to yield
+ * faster processing time.
+ */
+static int
+do_case_compare(size_t uv, uchar_t *s1, uchar_t *s2, size_t n1,
+ size_t n2, boolean_t is_it_toupper, int *errnum)
+{
+ int f;
+ int sz1;
+ int sz2;
+ size_t j;
+ size_t i1;
+ size_t i2;
+ uchar_t u8s1[U8_MB_CUR_MAX + 1];
+ uchar_t u8s2[U8_MB_CUR_MAX + 1];
+
+ i1 = i2 = 0;
+ while (i1 < n1 && i2 < n2) {
+ /*
+ * Find out what would be the byte length for this UTF-8
+ * character at string s1 and also find out if this is
+ * an illegal start byte or not and if so, issue a proper
+ * error number and yet treat this byte as a character.
+ */
+ sz1 = u8_number_of_bytes[*s1];
+ if (sz1 < 0) {
+ *errnum = EILSEQ;
+ sz1 = 1;
+ }
+
+ /*
+ * For 7-bit ASCII characters mainly, we do a quick case
+ * conversion right at here.
+ *
+ * If we don't have enough bytes for this character, issue
+ * an EINVAL error and use what are available.
+ *
+ * If we have enough bytes, find out if there is
+ * a corresponding uppercase character and if so, copy over
+ * the bytes for a comparison later. If there is no
+ * corresponding uppercase character, then, use what we have
+ * for the comparison.
+ */
+ if (sz1 == 1) {
+ if (is_it_toupper)
+ u8s1[0] = U8_ASCII_TOUPPER(*s1);
+ else
+ u8s1[0] = U8_ASCII_TOLOWER(*s1);
+ s1++;
+ u8s1[1] = '\0';
+ } else if ((i1 + sz1) > n1) {
+ *errnum = EINVAL;
+ for (j = 0; (i1 + j) < n1; )
+ u8s1[j++] = *s1++;
+ u8s1[j] = '\0';
+ } else {
+ (void) do_case_conv(uv, u8s1, s1, sz1, is_it_toupper);
+ s1 += sz1;
+ }
+
+ /* Do the same for the string s2. */
+ sz2 = u8_number_of_bytes[*s2];
+ if (sz2 < 0) {
+ *errnum = EILSEQ;
+ sz2 = 1;
+ }
+
+ if (sz2 == 1) {
+ if (is_it_toupper)
+ u8s2[0] = U8_ASCII_TOUPPER(*s2);
+ else
+ u8s2[0] = U8_ASCII_TOLOWER(*s2);
+ s2++;
+ u8s2[1] = '\0';
+ } else if ((i2 + sz2) > n2) {
+ *errnum = EINVAL;
+ for (j = 0; (i2 + j) < n2; )
+ u8s2[j++] = *s2++;
+ u8s2[j] = '\0';
+ } else {
+ (void) do_case_conv(uv, u8s2, s2, sz2, is_it_toupper);
+ s2 += sz2;
+ }
+
+ /* Now compare the two characters. */
+ if (sz1 == 1 && sz2 == 1) {
+ if (*u8s1 > *u8s2)
+ return (1);
+ if (*u8s1 < *u8s2)
+ return (-1);
+ } else {
+ f = strcmp((const char *)u8s1, (const char *)u8s2);
+ if (f != 0)
+ return (f);
+ }
+
+ /*
+ * They were the same. Let's move on to the next
+ * characters then.
+ */
+ i1 += sz1;
+ i2 += sz2;
+ }
+
+ /*
+ * We compared until the end of either or both strings.
+ *
+ * If we reached to or went over the ends for the both, that means
+ * they are the same.
+ *
+ * If we reached only one of the two ends, that means the other string
+ * has something which then the fact can be used to determine
+ * the return value.
+ */
+ if (i1 >= n1) {
+ if (i2 >= n2)
+ return (0);
+ return (-1);
+ }
+ return (1);
+}
+
+/*
+ * The combining_class() function checks on the given bytes and find out
+ * the corresponding Unicode combining class value. The return value 0 means
+ * it is a Starter. Any illegal UTF-8 character will also be treated as
+ * a Starter.
+ */
+static uchar_t
+combining_class(size_t uv, uchar_t *s, size_t sz)
+{
+ uint16_t b1 = 0;
+ uint16_t b2 = 0;
+ uint16_t b3 = 0;
+ uint16_t b4 = 0;
+
+ if (sz == 1 || sz > 4)
+ return (0);
+
+ if (sz == 2) {
+ b3 = s[0];
+ b4 = s[1];
+ } else if (sz == 3) {
+ b2 = s[0];
+ b3 = s[1];
+ b4 = s[2];
+ } else if (sz == 4) {
+ b1 = s[0];
+ b2 = s[1];
+ b3 = s[2];
+ b4 = s[3];
+ }
+
+ b1 = u8_common_b1_tbl[uv][b1];
+ if (b1 == U8_TBL_ELEMENT_NOT_DEF)
+ return (0);
+
+ b2 = u8_combining_class_b2_tbl[uv][b1][b2];
+ if (b2 == U8_TBL_ELEMENT_NOT_DEF)
+ return (0);
+
+ b3 = u8_combining_class_b3_tbl[uv][b2][b3];
+ if (b3 == U8_TBL_ELEMENT_NOT_DEF)
+ return (0);
+
+ return (u8_combining_class_b4_tbl[uv][b3][b4]);
+}
+
+/*
+ * The do_decomp() function finds out a matching decomposition if any
+ * and return. If there is no match, the input bytes are copied and returned.
+ * The function also checks if there is a Hangul, decomposes it if necessary
+ * and returns.
+ *
+ * To save time, a single byte 7-bit ASCII character should be handled by
+ * the caller.
+ *
+ * The function returns the number of bytes returned sans always terminating
+ * the null byte. It will also return a state that will tell if there was
+ * a Hangul character decomposed which then will be used by the caller.
+ */
+static size_t
+do_decomp(size_t uv, uchar_t *u8s, uchar_t *s, int sz,
+ boolean_t canonical_decomposition, u8_normalization_states_t *state)
+{
+ uint16_t b1 = 0;
+ uint16_t b2 = 0;
+ uint16_t b3 = 0;
+ uint16_t b3_tbl;
+ uint16_t b3_base;
+ uint16_t b4 = 0;
+ size_t start_id;
+ size_t end_id;
+ size_t i;
+ uint32_t u1;
+
+ if (sz == 2) {
+ b3 = u8s[0] = s[0];
+ b4 = u8s[1] = s[1];
+ u8s[2] = '\0';
+ } else if (sz == 3) {
+ /* Convert it to a Unicode scalar value. */
+ U8_PUT_3BYTES_INTO_UTF32(u1, s[0], s[1], s[2]);
+
+ /*
+ * If this is a Hangul syllable, we decompose it into
+ * a leading consonant, a vowel, and an optional trailing
+ * consonant and then return.
+ */
+ if (U8_HANGUL_SYLLABLE(u1)) {
+ u1 -= U8_HANGUL_SYL_FIRST;
+
+ b1 = U8_HANGUL_JAMO_L_FIRST + u1 / U8_HANGUL_VT_COUNT;
+ b2 = U8_HANGUL_JAMO_V_FIRST + (u1 % U8_HANGUL_VT_COUNT)
+ / U8_HANGUL_T_COUNT;
+ b3 = u1 % U8_HANGUL_T_COUNT;
+
+ U8_SAVE_HANGUL_AS_UTF8(u8s, 0, 1, 2, b1);
+ U8_SAVE_HANGUL_AS_UTF8(u8s, 3, 4, 5, b2);
+ if (b3) {
+ b3 += U8_HANGUL_JAMO_T_FIRST;
+ U8_SAVE_HANGUL_AS_UTF8(u8s, 6, 7, 8, b3);
+
+ u8s[9] = '\0';
+ *state = U8_STATE_HANGUL_LVT;
+ return (9);
+ }
+
+ u8s[6] = '\0';
+ *state = U8_STATE_HANGUL_LV;
+ return (6);
+ }
+
+ b2 = u8s[0] = s[0];
+ b3 = u8s[1] = s[1];
+ b4 = u8s[2] = s[2];
+ u8s[3] = '\0';
+
+ /*
+ * If this is a Hangul Jamo, we know there is nothing
+ * further that we can decompose.
+ */
+ if (U8_HANGUL_JAMO_L(u1)) {
+ *state = U8_STATE_HANGUL_L;
+ return (3);
+ }
+
+ if (U8_HANGUL_JAMO_V(u1)) {
+ if (*state == U8_STATE_HANGUL_L)
+ *state = U8_STATE_HANGUL_LV;
+ else
+ *state = U8_STATE_HANGUL_V;
+ return (3);
+ }
+
+ if (U8_HANGUL_JAMO_T(u1)) {
+ if (*state == U8_STATE_HANGUL_LV)
+ *state = U8_STATE_HANGUL_LVT;
+ else
+ *state = U8_STATE_HANGUL_T;
+ return (3);
+ }
+ } else if (sz == 4) {
+ b1 = u8s[0] = s[0];
+ b2 = u8s[1] = s[1];
+ b3 = u8s[2] = s[2];
+ b4 = u8s[3] = s[3];
+ u8s[4] = '\0';
+ } else {
+ /*
+ * This is a fallback and should not happen if the function
+ * was called properly.
+ */
+ u8s[0] = s[0];
+ u8s[1] = '\0';
+ *state = U8_STATE_START;
+ return (1);
+ }
+
+ /*
+ * At this point, this rountine does not know what it would get.
+ * The caller should sort it out if the state isn't a Hangul one.
+ */
+ *state = U8_STATE_START;
+
+ /* Try to find matching decomposition mapping byte sequence. */
+ b1 = u8_common_b1_tbl[uv][b1];
+ if (b1 == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ b2 = u8_decomp_b2_tbl[uv][b1][b2];
+ if (b2 == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ b3_tbl = u8_decomp_b3_tbl[uv][b2][b3].tbl_id;
+ if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF)
+ return ((size_t)sz);
+
+ /*
+ * If b3_tbl is bigger than or equal to U8_16BIT_TABLE_INDICATOR
+ * which is 0x8000, this means we couldn't fit the mappings into
+ * the cardinality of a unsigned byte.
+ */
+ if (b3_tbl >= U8_16BIT_TABLE_INDICATOR) {
+ b3_tbl -= U8_16BIT_TABLE_INDICATOR;
+ start_id = u8_decomp_b4_16bit_tbl[uv][b3_tbl][b4];
+ end_id = u8_decomp_b4_16bit_tbl[uv][b3_tbl][b4 + 1];
+ } else {
+ start_id = u8_decomp_b4_tbl[uv][b3_tbl][b4];
+ end_id = u8_decomp_b4_tbl[uv][b3_tbl][b4 + 1];
+ }
+
+ /* This also means there wasn't any matching decomposition. */
+ if (start_id >= end_id)
+ return ((size_t)sz);
+
+ /*
+ * The final table for decomposition mappings has three types of
+ * byte sequences depending on whether a mapping is for compatibility
+ * decomposition, canonical decomposition, or both like the following:
+ *
+ * (1) Compatibility decomposition mappings:
+ *
+ * +---+---+-...-+---+
+ * | B0| B1| ... | Bm|
+ * +---+---+-...-+---+
+ *
+ * The first byte, B0, is always less then 0xF5 (U8_DECOMP_BOTH).
+ *
+ * (2) Canonical decomposition mappings:
+ *
+ * +---+---+---+-...-+---+
+ * | T | b0| b1| ... | bn|
+ * +---+---+---+-...-+---+
+ *
+ * where the first byte, T, is 0xF6 (U8_DECOMP_CANONICAL).
+ *
+ * (3) Both mappings:
+ *
+ * +---+---+---+---+-...-+---+---+---+-...-+---+
+ * | T | D | b0| b1| ... | bn| B0| B1| ... | Bm|
+ * +---+---+---+---+-...-+---+---+---+-...-+---+
+ *
+ * where T is 0xF5 (U8_DECOMP_BOTH) and D is a displacement
+ * byte, b0 to bn are canonical mapping bytes and B0 to Bm are
+ * compatibility mapping bytes.
+ *
+ * Note that compatibility decomposition means doing recursive
+ * decompositions using both compatibility decomposition mappings and
+ * canonical decomposition mappings. On the other hand, canonical
+ * decomposition means doing recursive decompositions using only
+ * canonical decomposition mappings. Since the table we have has gone
+ * through the recursions already, we do not need to do so during
+ * runtime, i.e., the table has been completely flattened out
+ * already.
+ */
+
+ b3_base = u8_decomp_b3_tbl[uv][b2][b3].base;
+
+ /* Get the type, T, of the byte sequence. */
+ b1 = u8_decomp_final_tbl[uv][b3_base + start_id];
+
+ /*
+ * If necessary, adjust start_id, end_id, or both. Note that if
+ * this is compatibility decomposition mapping, there is no
+ * adjustment.
+ */
+ if (canonical_decomposition) {
+ /* Is the mapping only for compatibility decomposition? */
+ if (b1 < U8_DECOMP_BOTH)
+ return ((size_t)sz);
+
+ start_id++;
+
+ if (b1 == U8_DECOMP_BOTH) {
+ end_id = start_id +
+ u8_decomp_final_tbl[uv][b3_base + start_id];
+ start_id++;
+ }
+ } else {
+ /*
+ * Unless this is a compatibility decomposition mapping,
+ * we adjust the start_id.
+ */
+ if (b1 == U8_DECOMP_BOTH) {
+ start_id++;
+ start_id += u8_decomp_final_tbl[uv][b3_base + start_id];
+ } else if (b1 == U8_DECOMP_CANONICAL) {
+ start_id++;
+ }
+ }
+
+ for (i = 0; start_id < end_id; start_id++)
+ u8s[i++] = u8_decomp_final_tbl[uv][b3_base + start_id];
+ u8s[i] = '\0';
+
+ return (i);
+}
+
+/*
+ * The find_composition_start() function uses the character bytes given and
+ * find out the matching composition mappings if any and return the address
+ * to the composition mappings as explained in the do_composition().
+ */
+static uchar_t *
+find_composition_start(size_t uv, uchar_t *s, size_t sz)
+{
+ uint16_t b1 = 0;
+ uint16_t b2 = 0;
+ uint16_t b3 = 0;
+ uint16_t b3_tbl;
+ uint16_t b3_base;
+ uint16_t b4 = 0;
+ size_t start_id;
+ size_t end_id;
+
+ if (sz == 1) {
+ b4 = s[0];
+ } else if (sz == 2) {
+ b3 = s[0];
+ b4 = s[1];
+ } else if (sz == 3) {
+ b2 = s[0];
+ b3 = s[1];
+ b4 = s[2];
+ } else if (sz == 4) {
+ b1 = s[0];
+ b2 = s[1];
+ b3 = s[2];
+ b4 = s[3];
+ } else {
+ /*
+ * This is a fallback and should not happen if the function
+ * was called properly.
+ */
+ return (NULL);
+ }
+
+ b1 = u8_composition_b1_tbl[uv][b1];
+ if (b1 == U8_TBL_ELEMENT_NOT_DEF)
+ return (NULL);
+
+ b2 = u8_composition_b2_tbl[uv][b1][b2];
+ if (b2 == U8_TBL_ELEMENT_NOT_DEF)
+ return (NULL);
+
+ b3_tbl = u8_composition_b3_tbl[uv][b2][b3].tbl_id;
+ if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF)
+ return (NULL);
+
+ if (b3_tbl >= U8_16BIT_TABLE_INDICATOR) {
+ b3_tbl -= U8_16BIT_TABLE_INDICATOR;
+ start_id = u8_composition_b4_16bit_tbl[uv][b3_tbl][b4];
+ end_id = u8_composition_b4_16bit_tbl[uv][b3_tbl][b4 + 1];
+ } else {
+ start_id = u8_composition_b4_tbl[uv][b3_tbl][b4];
+ end_id = u8_composition_b4_tbl[uv][b3_tbl][b4 + 1];
+ }
+
+ if (start_id >= end_id)
+ return (NULL);
+
+ b3_base = u8_composition_b3_tbl[uv][b2][b3].base;
+
+ return ((uchar_t *)&(u8_composition_final_tbl[uv][b3_base + start_id]));
+}
+
+/*
+ * The blocked() function checks on the combining class values of previous
+ * characters in this sequence and return whether it is blocked or not.
+ */
+static boolean_t
+blocked(uchar_t *comb_class, size_t last)
+{
+ uchar_t my_comb_class;
+ size_t i;
+
+ my_comb_class = comb_class[last];
+ for (i = 1; i < last; i++)
+ if (comb_class[i] >= my_comb_class ||
+ comb_class[i] == U8_COMBINING_CLASS_STARTER)
+ return (B_TRUE);
+
+ return (B_FALSE);
+}
+
+/*
+ * The do_composition() reads the character string pointed by 's' and
+ * do necessary canonical composition and then copy over the result back to
+ * the 's'.
+ *
+ * The input argument 's' cannot contain more than 32 characters.
+ */
+static size_t
+do_composition(size_t uv, uchar_t *s, uchar_t *comb_class, uchar_t *start,
+ uchar_t *disp, size_t last, uchar_t **os, uchar_t *oslast)
+{
+ uchar_t t[U8_STREAM_SAFE_TEXT_MAX + 1];
+ uchar_t tc[U8_MB_CUR_MAX];
+ uint8_t saved_marks[U8_MAX_CHARS_A_SEQ];
+ size_t saved_marks_count;
+ uchar_t *p;
+ uchar_t *saved_p;
+ uchar_t *q;
+ size_t i;
+ size_t saved_i;
+ size_t j;
+ size_t k;
+ size_t l;
+ size_t C;
+ size_t saved_l;
+ size_t size;
+ uint32_t u1;
+ uint32_t u2;
+ boolean_t match_not_found = B_TRUE;
+
+ /*
+ * This should never happen unless the callers are doing some strange
+ * and unexpected things.
+ *
+ * The "last" is the index pointing to the last character not last + 1.
+ */
+ if (last >= U8_MAX_CHARS_A_SEQ)
+ last = U8_UPPER_LIMIT_IN_A_SEQ;
+
+ for (i = l = 0; i <= last; i++) {
+ /*
+ * The last or any non-Starters at the beginning, we don't
+ * have any chance to do composition and so we just copy them
+ * to the temporary buffer.
+ */
+ if (i >= last || comb_class[i] != U8_COMBINING_CLASS_STARTER) {
+SAVE_THE_CHAR:
+ p = s + start[i];
+ size = disp[i];
+ for (k = 0; k < size; k++)
+ t[l++] = *p++;
+ continue;
+ }
+
+ /*
+ * If this could be a start of Hangul Jamos, then, we try to
+ * conjoin them.
+ */
+ if (s[start[i]] == U8_HANGUL_JAMO_1ST_BYTE) {
+ U8_PUT_3BYTES_INTO_UTF32(u1, s[start[i]],
+ s[start[i] + 1], s[start[i] + 2]);
+ U8_PUT_3BYTES_INTO_UTF32(u2, s[start[i] + 3],
+ s[start[i] + 4], s[start[i] + 5]);
+
+ if (U8_HANGUL_JAMO_L(u1) && U8_HANGUL_JAMO_V(u2)) {
+ u1 -= U8_HANGUL_JAMO_L_FIRST;
+ u2 -= U8_HANGUL_JAMO_V_FIRST;
+ u1 = U8_HANGUL_SYL_FIRST +
+ (u1 * U8_HANGUL_V_COUNT + u2) *
+ U8_HANGUL_T_COUNT;
+
+ i += 2;
+ if (i <= last) {
+ U8_PUT_3BYTES_INTO_UTF32(u2,
+ s[start[i]], s[start[i] + 1],
+ s[start[i] + 2]);
+
+ if (U8_HANGUL_JAMO_T(u2)) {
+ u1 += u2 -
+ U8_HANGUL_JAMO_T_FIRST;
+ i++;
+ }
+ }
+
+ U8_SAVE_HANGUL_AS_UTF8(t + l, 0, 1, 2, u1);
+ i--;
+ l += 3;
+ continue;
+ }
+ }
+
+ /*
+ * Let's then find out if this Starter has composition
+ * mapping.
+ */
+ p = find_composition_start(uv, s + start[i], disp[i]);
+ if (p == NULL)
+ goto SAVE_THE_CHAR;
+
+ /*
+ * We have a Starter with composition mapping and the next
+ * character is a non-Starter. Let's try to find out if
+ * we can do composition.
+ */
+
+ saved_p = p;
+ saved_i = i;
+ saved_l = l;
+ saved_marks_count = 0;
+
+TRY_THE_NEXT_MARK:
+ q = s + start[++i];
+ size = disp[i];
+
+ /*
+ * The next for() loop compares the non-Starter pointed by
+ * 'q' with the possible (joinable) characters pointed by 'p'.
+ *
+ * The composition final table entry pointed by the 'p'
+ * looks like the following:
+ *
+ * +---+---+---+-...-+---+---+---+---+-...-+---+---+
+ * | C | b0| b2| ... | bn| F | B0| B1| ... | Bm| F |
+ * +---+---+---+-...-+---+---+---+---+-...-+---+---+
+ *
+ * where C is the count byte indicating the number of
+ * mapping pairs where each pair would be look like
+ * (b0-bn F, B0-Bm F). The b0-bn are the bytes of the second
+ * character of a canonical decomposition and the B0-Bm are
+ * the bytes of a matching composite character. The F is
+ * a filler byte after each character as the separator.
+ */
+
+ match_not_found = B_TRUE;
+
+ for (C = *p++; C > 0; C--) {
+ for (k = 0; k < size; p++, k++)
+ if (*p != q[k])
+ break;
+
+ /* Have we found it? */
+ if (k >= size && *p == U8_TBL_ELEMENT_FILLER) {
+ match_not_found = B_FALSE;
+
+ l = saved_l;
+
+ while (*++p != U8_TBL_ELEMENT_FILLER)
+ t[l++] = *p;
+
+ break;
+ }
+
+ /* We didn't find; skip to the next pair. */
+ if (*p != U8_TBL_ELEMENT_FILLER)
+ while (*++p != U8_TBL_ELEMENT_FILLER)
+ ;
+ while (*++p != U8_TBL_ELEMENT_FILLER)
+ ;
+ p++;
+ }
+
+ /*
+ * If there was no match, we will need to save the combining
+ * mark for later appending. After that, if the next one
+ * is a non-Starter and not blocked, then, we try once
+ * again to do composition with the next non-Starter.
+ *
+ * If there was no match and this was a Starter, then,
+ * this is a new start.
+ *
+ * If there was a match and a composition done and we have
+ * more to check on, then, we retrieve a new composition final
+ * table entry for the composite and then try to do the
+ * composition again.
+ */
+
+ if (match_not_found) {
+ if (comb_class[i] == U8_COMBINING_CLASS_STARTER) {
+ i--;
+ goto SAVE_THE_CHAR;
+ }
+
+ saved_marks[saved_marks_count++] = i;
+ }
+
+ if (saved_l == l) {
+ while (i < last) {
+ if (blocked(comb_class, i + 1))
+ saved_marks[saved_marks_count++] = ++i;
+ else
+ break;
+ }
+ if (i < last) {
+ p = saved_p;
+ goto TRY_THE_NEXT_MARK;
+ }
+ } else if (i < last) {
+ p = find_composition_start(uv, t + saved_l,
+ l - saved_l);
+ if (p != NULL) {
+ saved_p = p;
+ goto TRY_THE_NEXT_MARK;
+ }
+ }
+
+ /*
+ * There is no more composition possible.
+ *
+ * If there was no composition what so ever then we copy
+ * over the original Starter and then append any non-Starters
+ * remaining at the target string sequentially after that.
+ */
+
+ if (saved_l == l) {
+ p = s + start[saved_i];
+ size = disp[saved_i];
+ for (j = 0; j < size; j++)
+ t[l++] = *p++;
+ }
+
+ for (k = 0; k < saved_marks_count; k++) {
+ p = s + start[saved_marks[k]];
+ size = disp[saved_marks[k]];
+ for (j = 0; j < size; j++)
+ t[l++] = *p++;
+ }
+ }
+
+ /*
+ * If the last character is a Starter and if we have a character
+ * (possibly another Starter) that can be turned into a composite,
+ * we do so and we do so until there is no more of composition
+ * possible.
+ */
+ if (comb_class[last] == U8_COMBINING_CLASS_STARTER) {
+ p = *os;
+ saved_l = l - disp[last];
+
+ while (p < oslast) {
+ size = u8_number_of_bytes[*p];
+ if (size <= 1 || (p + size) > oslast)
+ break;
+
+ saved_p = p;
+
+ for (i = 0; i < size; i++)
+ tc[i] = *p++;
+
+ q = find_composition_start(uv, t + saved_l,
+ l - saved_l);
+ if (q == NULL) {
+ p = saved_p;
+ break;
+ }
+
+ match_not_found = B_TRUE;
+
+ for (C = *q++; C > 0; C--) {
+ for (k = 0; k < size; q++, k++)
+ if (*q != tc[k])
+ break;
+
+ if (k >= size && *q == U8_TBL_ELEMENT_FILLER) {
+ match_not_found = B_FALSE;
+
+ l = saved_l;
+
+ while (*++q != U8_TBL_ELEMENT_FILLER) {
+ /*
+ * This is practically
+ * impossible but we don't
+ * want to take any chances.
+ */
+ if (l >=
+ U8_STREAM_SAFE_TEXT_MAX) {
+ p = saved_p;
+ goto SAFE_RETURN;
+ }
+ t[l++] = *q;
+ }
+
+ break;
+ }
+
+ if (*q != U8_TBL_ELEMENT_FILLER)
+ while (*++q != U8_TBL_ELEMENT_FILLER)
+ ;
+ while (*++q != U8_TBL_ELEMENT_FILLER)
+ ;
+ q++;
+ }
+
+ if (match_not_found) {
+ p = saved_p;
+ break;
+ }
+ }
+SAFE_RETURN:
+ *os = p;
+ }
+
+ /*
+ * Now we copy over the temporary string to the target string.
+ * Since composition always reduces the number of characters or
+ * the number of characters stay, we don't need to worry about
+ * the buffer overflow here.
+ */
+ for (i = 0; i < l; i++)
+ s[i] = t[i];
+ s[l] = '\0';
+
+ return (l);
+}
+
+/*
+ * The collect_a_seq() function checks on the given string s, collect
+ * a sequence of characters at u8s, and return the sequence. While it collects
+ * a sequence, it also applies case conversion, canonical or compatibility
+ * decomposition, canonical decomposition, or some or all of them and
+ * in that order.
+ *
+ * The collected sequence cannot be bigger than 32 characters since if
+ * it is having more than 31 characters, the sequence will be terminated
+ * with a U+034F COMBINING GRAPHEME JOINER (CGJ) character and turned into
+ * a Stream-Safe Text. The collected sequence is always terminated with
+ * a null byte and the return value is the byte length of the sequence
+ * including 0. The return value does not include the terminating
+ * null byte.
+ */
+static size_t
+collect_a_seq(size_t uv, uchar_t *u8s, uchar_t **source, uchar_t *slast,
+ boolean_t is_it_toupper,
+ boolean_t is_it_tolower,
+ boolean_t canonical_decomposition,
+ boolean_t compatibility_decomposition,
+ boolean_t canonical_composition,
+ int *errnum, u8_normalization_states_t *state)
+{
+ uchar_t *s;
+ int sz;
+ int saved_sz;
+ size_t i;
+ size_t j;
+ size_t k;
+ size_t l;
+ uchar_t comb_class[U8_MAX_CHARS_A_SEQ];
+ uchar_t disp[U8_MAX_CHARS_A_SEQ];
+ uchar_t start[U8_MAX_CHARS_A_SEQ];
+ uchar_t u8t[U8_MB_CUR_MAX];
+ uchar_t uts[U8_STREAM_SAFE_TEXT_MAX + 1];
+ uchar_t tc;
+ size_t last;
+ size_t saved_last;
+ uint32_t u1;
+
+ /*
+ * Save the source string pointer which we will return a changed
+ * pointer if we do processing.
+ */
+ s = *source;
+
+ /*
+ * The following is a fallback for just in case callers are not
+ * checking the string boundaries before the calling.
+ */
+ if (s >= slast) {
+ u8s[0] = '\0';
+
+ return (0);
+ }
+
+ /*
+ * As the first thing, let's collect a character and do case
+ * conversion if necessary.
+ */
+
+ sz = u8_number_of_bytes[*s];
+
+ if (sz < 0) {
+ *errnum = EILSEQ;
+
+ u8s[0] = *s++;
+ u8s[1] = '\0';
+
+ *source = s;
+
+ return (1);
+ }
+
+ if (sz == 1) {
+ if (is_it_toupper)
+ u8s[0] = U8_ASCII_TOUPPER(*s);
+ else if (is_it_tolower)
+ u8s[0] = U8_ASCII_TOLOWER(*s);
+ else
+ u8s[0] = *s;
+ s++;
+ u8s[1] = '\0';
+ } else if ((s + sz) > slast) {
+ *errnum = EINVAL;
+
+ for (i = 0; s < slast; )
+ u8s[i++] = *s++;
+ u8s[i] = '\0';
+
+ *source = s;
+
+ return (i);
+ } else {
+ if (is_it_toupper || is_it_tolower) {
+ i = do_case_conv(uv, u8s, s, sz, is_it_toupper);
+ s += sz;
+ sz = i;
+ } else {
+ for (i = 0; i < sz; )
+ u8s[i++] = *s++;
+ u8s[i] = '\0';
+ }
+ }
+
+ /*
+ * And then canonical/compatibility decomposition followed by
+ * an optional canonical composition. Please be noted that
+ * canonical composition is done only when a decomposition is
+ * done.
+ */
+ if (canonical_decomposition || compatibility_decomposition) {
+ if (sz == 1) {
+ *state = U8_STATE_START;
+
+ saved_sz = 1;
+
+ comb_class[0] = 0;
+ start[0] = 0;
+ disp[0] = 1;
+
+ last = 1;
+ } else {
+ saved_sz = do_decomp(uv, u8s, u8s, sz,
+ canonical_decomposition, state);
+
+ last = 0;
+
+ for (i = 0; i < saved_sz; ) {
+ sz = u8_number_of_bytes[u8s[i]];
+
+ comb_class[last] = combining_class(uv,
+ u8s + i, sz);
+ start[last] = i;
+ disp[last] = sz;
+
+ last++;
+ i += sz;
+ }
+
+ /*
+ * Decomposition yields various Hangul related
+ * states but not on combining marks. We need to
+ * find out at here by checking on the last
+ * character.
+ */
+ if (*state == U8_STATE_START) {
+ if (comb_class[last - 1])
+ *state = U8_STATE_COMBINING_MARK;
+ }
+ }
+
+ saved_last = last;
+
+ while (s < slast) {
+ sz = u8_number_of_bytes[*s];
+
+ /*
+ * If this is an illegal character, an incomplete
+ * character, or an 7-bit ASCII Starter character,
+ * then we have collected a sequence; break and let
+ * the next call deal with the two cases.
+ *
+ * Note that this is okay only if you are using this
+ * function with a fixed length string, not on
+ * a buffer with multiple calls of one chunk at a time.
+ */
+ if (sz <= 1) {
+ break;
+ } else if ((s + sz) > slast) {
+ break;
+ } else {
+ /*
+ * If the previous character was a Hangul Jamo
+ * and this character is a Hangul Jamo that
+ * can be conjoined, we collect the Jamo.
+ */
+ if (*s == U8_HANGUL_JAMO_1ST_BYTE) {
+ U8_PUT_3BYTES_INTO_UTF32(u1,
+ *s, *(s + 1), *(s + 2));
+
+ if (U8_HANGUL_COMPOSABLE_L_V(*state,
+ u1)) {
+ i = 0;
+ *state = U8_STATE_HANGUL_LV;
+ goto COLLECT_A_HANGUL;
+ }
+
+ if (U8_HANGUL_COMPOSABLE_LV_T(*state,
+ u1)) {
+ i = 0;
+ *state = U8_STATE_HANGUL_LVT;
+ goto COLLECT_A_HANGUL;
+ }
+ }
+
+ /*
+ * Regardless of whatever it was, if this is
+ * a Starter, we don't collect the character
+ * since that's a new start and we will deal
+ * with it at the next time.
+ */
+ i = combining_class(uv, s, sz);
+ if (i == U8_COMBINING_CLASS_STARTER)
+ break;
+
+ /*
+ * We know the current character is a combining
+ * mark. If the previous character wasn't
+ * a Starter (not Hangul) or a combining mark,
+ * then, we don't collect this combining mark.
+ */
+ if (*state != U8_STATE_START &&
+ *state != U8_STATE_COMBINING_MARK)
+ break;
+
+ *state = U8_STATE_COMBINING_MARK;
+COLLECT_A_HANGUL:
+ /*
+ * If we collected a Starter and combining
+ * marks up to 30, i.e., total 31 characters,
+ * then, we terminate this degenerately long
+ * combining sequence with a U+034F COMBINING
+ * GRAPHEME JOINER (CGJ) which is 0xCD 0x8F in
+ * UTF-8 and turn this into a Stream-Safe
+ * Text. This will be extremely rare but
+ * possible.
+ *
+ * The following will also guarantee that
+ * we are not writing more than 32 characters
+ * plus a NULL at u8s[].
+ */
+ if (last >= U8_UPPER_LIMIT_IN_A_SEQ) {
+TURN_STREAM_SAFE:
+ *state = U8_STATE_START;
+ comb_class[last] = 0;
+ start[last] = saved_sz;
+ disp[last] = 2;
+ last++;
+
+ u8s[saved_sz++] = 0xCD;
+ u8s[saved_sz++] = 0x8F;
+
+ break;
+ }
+
+ /*
+ * Some combining marks also do decompose into
+ * another combining mark or marks.
+ */
+ if (*state == U8_STATE_COMBINING_MARK) {
+ k = last;
+ l = sz;
+ i = do_decomp(uv, uts, s, sz,
+ canonical_decomposition, state);
+ for (j = 0; j < i; ) {
+ sz = u8_number_of_bytes[uts[j]];
+
+ comb_class[last] =
+ combining_class(uv,
+ uts + j, sz);
+ start[last] = saved_sz + j;
+ disp[last] = sz;
+
+ last++;
+ if (last >=
+ U8_UPPER_LIMIT_IN_A_SEQ) {
+ last = k;
+ goto TURN_STREAM_SAFE;
+ }
+ j += sz;
+ }
+
+ *state = U8_STATE_COMBINING_MARK;
+ sz = i;
+ s += l;
+
+ for (i = 0; i < sz; i++)
+ u8s[saved_sz++] = uts[i];
+ } else {
+ comb_class[last] = i;
+ start[last] = saved_sz;
+ disp[last] = sz;
+ last++;
+
+ for (i = 0; i < sz; i++)
+ u8s[saved_sz++] = *s++;
+ }
+
+ /*
+ * If this is U+0345 COMBINING GREEK
+ * YPOGEGRAMMENI (0xCD 0x85 in UTF-8), a.k.a.,
+ * iota subscript, and need to be converted to
+ * uppercase letter, convert it to U+0399 GREEK
+ * CAPITAL LETTER IOTA (0xCE 0x99 in UTF-8),
+ * i.e., convert to capital adscript form as
+ * specified in the Unicode standard.
+ *
+ * This is the only special case of (ambiguous)
+ * case conversion at combining marks and
+ * probably the standard will never have
+ * anything similar like this in future.
+ */
+ if (is_it_toupper && sz >= 2 &&
+ u8s[saved_sz - 2] == 0xCD &&
+ u8s[saved_sz - 1] == 0x85) {
+ u8s[saved_sz - 2] = 0xCE;
+ u8s[saved_sz - 1] = 0x99;
+ }
+ }
+ }
+
+ /*
+ * Let's try to ensure a canonical ordering for the collected
+ * combining marks. We do this only if we have collected
+ * at least one more non-Starter. (The decomposition mapping
+ * data tables have fully (and recursively) expanded and
+ * canonically ordered decompositions.)
+ *
+ * The U8_SWAP_COMB_MARKS() convenience macro has some
+ * assumptions and we are meeting the assumptions.
+ */
+ last--;
+ if (last >= saved_last) {
+ for (i = 0; i < last; i++)
+ for (j = last; j > i; j--)
+ if (comb_class[j] &&
+ comb_class[j - 1] > comb_class[j]) {
+ U8_SWAP_COMB_MARKS(j - 1, j);
+ }
+ }
+
+ *source = s;
+
+ if (! canonical_composition) {
+ u8s[saved_sz] = '\0';
+ return (saved_sz);
+ }
+
+ /*
+ * Now do the canonical composition. Note that we do this
+ * only after a canonical or compatibility decomposition to
+ * finish up NFC or NFKC.
+ */
+ sz = do_composition(uv, u8s, comb_class, start, disp, last,
+ &s, slast);
+ }
+
+ *source = s;
+
+ return ((size_t)sz);
+}
+
+/*
+ * The do_norm_compare() function does string comparion based on Unicode
+ * simple case mappings and Unicode Normalization definitions.
+ *
+ * It does so by collecting a sequence of character at a time and comparing
+ * the collected sequences from the strings.
+ *
+ * The meanings on the return values are the same as the usual strcmp().
+ */
+static int
+do_norm_compare(size_t uv, uchar_t *s1, uchar_t *s2, size_t n1, size_t n2,
+ int flag, int *errnum)
+{
+ int result;
+ size_t sz1;
+ size_t sz2;
+ uchar_t u8s1[U8_STREAM_SAFE_TEXT_MAX + 1];
+ uchar_t u8s2[U8_STREAM_SAFE_TEXT_MAX + 1];
+ uchar_t *s1last;
+ uchar_t *s2last;
+ boolean_t is_it_toupper;
+ boolean_t is_it_tolower;
+ boolean_t canonical_decomposition;
+ boolean_t compatibility_decomposition;
+ boolean_t canonical_composition;
+ u8_normalization_states_t state;
+
+ s1last = s1 + n1;
+ s2last = s2 + n2;
+
+ is_it_toupper = flag & U8_TEXTPREP_TOUPPER;
+ is_it_tolower = flag & U8_TEXTPREP_TOLOWER;
+ canonical_decomposition = flag & U8_CANON_DECOMP;
+ compatibility_decomposition = flag & U8_COMPAT_DECOMP;
+ canonical_composition = flag & U8_CANON_COMP;
+
+ while (s1 < s1last && s2 < s2last) {
+ /*
+ * If the current character is a 7-bit ASCII and the last
+ * character, or, if the current character and the next
+ * character are both some 7-bit ASCII characters then
+ * we treat the current character as a sequence.
+ *
+ * In any other cases, we need to call collect_a_seq().
+ */
+
+ if (U8_ISASCII(*s1) && ((s1 + 1) >= s1last ||
+ ((s1 + 1) < s1last && U8_ISASCII(*(s1 + 1))))) {
+ if (is_it_toupper)
+ u8s1[0] = U8_ASCII_TOUPPER(*s1);
+ else if (is_it_tolower)
+ u8s1[0] = U8_ASCII_TOLOWER(*s1);
+ else
+ u8s1[0] = *s1;
+ u8s1[1] = '\0';
+ sz1 = 1;
+ s1++;
+ } else {
+ state = U8_STATE_START;
+ sz1 = collect_a_seq(uv, u8s1, &s1, s1last,
+ is_it_toupper, is_it_tolower,
+ canonical_decomposition,
+ compatibility_decomposition,
+ canonical_composition, errnum, &state);
+ }
+
+ if (U8_ISASCII(*s2) && ((s2 + 1) >= s2last ||
+ ((s2 + 1) < s2last && U8_ISASCII(*(s2 + 1))))) {
+ if (is_it_toupper)
+ u8s2[0] = U8_ASCII_TOUPPER(*s2);
+ else if (is_it_tolower)
+ u8s2[0] = U8_ASCII_TOLOWER(*s2);
+ else
+ u8s2[0] = *s2;
+ u8s2[1] = '\0';
+ sz2 = 1;
+ s2++;
+ } else {
+ state = U8_STATE_START;
+ sz2 = collect_a_seq(uv, u8s2, &s2, s2last,
+ is_it_toupper, is_it_tolower,
+ canonical_decomposition,
+ compatibility_decomposition,
+ canonical_composition, errnum, &state);
+ }
+
+ /*
+ * Now compare the two characters. If they are the same,
+ * we move on to the next character sequences.
+ */
+ if (sz1 == 1 && sz2 == 1) {
+ if (*u8s1 > *u8s2)
+ return (1);
+ if (*u8s1 < *u8s2)
+ return (-1);
+ } else {
+ result = strcmp((const char *)u8s1, (const char *)u8s2);
+ if (result != 0)
+ return (result);
+ }
+ }
+
+ /*
+ * We compared until the end of either or both strings.
+ *
+ * If we reached to or went over the ends for the both, that means
+ * they are the same.
+ *
+ * If we reached only one end, that means the other string has
+ * something which then can be used to determine the return value.
+ */
+ if (s1 >= s1last) {
+ if (s2 >= s2last)
+ return (0);
+ return (-1);
+ }
+ return (1);
+}
+
+/*
+ * The u8_strcmp() function compares two UTF-8 strings quite similar to
+ * the strcmp(). For the comparison, however, Unicode Normalization specific
+ * equivalency and Unicode simple case conversion mappings based equivalency
+ * can be requested and checked against.
+ */
+int
+u8_strcmp(const char *s1, const char *s2, size_t n, int flag, size_t uv,
+ int *errnum)
+{
+ int f;
+ size_t n1;
+ size_t n2;
+
+ *errnum = 0;
+
+ /*
+ * Check on the requested Unicode version, case conversion, and
+ * normalization flag values.
+ */
+
+ if (uv > U8_UNICODE_LATEST) {
+ *errnum = ERANGE;
+ uv = U8_UNICODE_LATEST;
+ }
+
+ if (flag == 0) {
+ flag = U8_STRCMP_CS;
+ } else {
+ f = flag & (U8_STRCMP_CS | U8_STRCMP_CI_UPPER |
+ U8_STRCMP_CI_LOWER);
+ if (f == 0) {
+ flag |= U8_STRCMP_CS;
+ } else if (f != U8_STRCMP_CS && f != U8_STRCMP_CI_UPPER &&
+ f != U8_STRCMP_CI_LOWER) {
+ *errnum = EBADF;
+ flag = U8_STRCMP_CS;
+ }
+
+ f = flag & (U8_CANON_DECOMP | U8_COMPAT_DECOMP | U8_CANON_COMP);
+ if (f && f != U8_STRCMP_NFD && f != U8_STRCMP_NFC &&
+ f != U8_STRCMP_NFKD && f != U8_STRCMP_NFKC) {
+ *errnum = EBADF;
+ flag = U8_STRCMP_CS;
+ }
+ }
+
+ if (flag == U8_STRCMP_CS) {
+ return (n == 0 ? strcmp(s1, s2) : strncmp(s1, s2, n));
+ }
+
+ n1 = strlen(s1);
+ n2 = strlen(s2);
+ if (n != 0) {
+ if (n < n1)
+ n1 = n;
+ if (n < n2)
+ n2 = n;
+ }
+
+ /*
+ * Simple case conversion can be done much faster and so we do
+ * them separately here.
+ */
+ if (flag == U8_STRCMP_CI_UPPER) {
+ return (do_case_compare(uv, (uchar_t *)s1, (uchar_t *)s2,
+ n1, n2, B_TRUE, errnum));
+ } else if (flag == U8_STRCMP_CI_LOWER) {
+ return (do_case_compare(uv, (uchar_t *)s1, (uchar_t *)s2,
+ n1, n2, B_FALSE, errnum));
+ }
+
+ return (do_norm_compare(uv, (uchar_t *)s1, (uchar_t *)s2, n1, n2,
+ flag, errnum));
+}
+
+size_t
+u8_textprep_str(char *inarray, size_t *inlen, char *outarray, size_t *outlen,
+ int flag, size_t unicode_version, int *errnum)
+{
+ int f;
+ int sz;
+ uchar_t *ib;
+ uchar_t *ibtail;
+ uchar_t *ob;
+ uchar_t *obtail;
+ boolean_t do_not_ignore_null;
+ boolean_t do_not_ignore_invalid;
+ boolean_t is_it_toupper;
+ boolean_t is_it_tolower;
+ boolean_t canonical_decomposition;
+ boolean_t compatibility_decomposition;
+ boolean_t canonical_composition;
+ size_t ret_val;
+ size_t i;
+ size_t j;
+ uchar_t u8s[U8_STREAM_SAFE_TEXT_MAX + 1];
+ u8_normalization_states_t state;
+
+ if (unicode_version > U8_UNICODE_LATEST) {
+ *errnum = ERANGE;
+ return ((size_t)-1);
+ }
+
+ f = flag & (U8_TEXTPREP_TOUPPER | U8_TEXTPREP_TOLOWER);
+ if (f == (U8_TEXTPREP_TOUPPER | U8_TEXTPREP_TOLOWER)) {
+ *errnum = EBADF;
+ return ((size_t)-1);
+ }
+
+ f = flag & (U8_CANON_DECOMP | U8_COMPAT_DECOMP | U8_CANON_COMP);
+ if (f && f != U8_TEXTPREP_NFD && f != U8_TEXTPREP_NFC &&
+ f != U8_TEXTPREP_NFKD && f != U8_TEXTPREP_NFKC) {
+ *errnum = EBADF;
+ return ((size_t)-1);
+ }
+
+ if (inarray == NULL || *inlen == 0)
+ return (0);
+
+ if (outarray == NULL) {
+ *errnum = E2BIG;
+ return ((size_t)-1);
+ }
+
+ ib = (uchar_t *)inarray;
+ ob = (uchar_t *)outarray;
+ ibtail = ib + *inlen;
+ obtail = ob + *outlen;
+
+ do_not_ignore_null = !(flag & U8_TEXTPREP_IGNORE_NULL);
+ do_not_ignore_invalid = !(flag & U8_TEXTPREP_IGNORE_INVALID);
+ is_it_toupper = flag & U8_TEXTPREP_TOUPPER;
+ is_it_tolower = flag & U8_TEXTPREP_TOLOWER;
+
+ ret_val = 0;
+
+ /*
+ * If we don't have a normalization flag set, we do the simple case
+ * conversion based text preparation separately below. Text
+ * preparation involving Normalization will be done in the false task
+ * block, again, separately since it will take much more time and
+ * resource than doing simple case conversions.
+ */
+ if (f == 0) {
+ while (ib < ibtail) {
+ if (*ib == '\0' && do_not_ignore_null)
+ break;
+
+ sz = u8_number_of_bytes[*ib];
+
+ if (sz < 0) {
+ if (do_not_ignore_invalid) {
+ *errnum = EILSEQ;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ sz = 1;
+ ret_val++;
+ }
+
+ if (sz == 1) {
+ if (ob >= obtail) {
+ *errnum = E2BIG;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ if (is_it_toupper)
+ *ob = U8_ASCII_TOUPPER(*ib);
+ else if (is_it_tolower)
+ *ob = U8_ASCII_TOLOWER(*ib);
+ else
+ *ob = *ib;
+ ib++;
+ ob++;
+ } else if ((ib + sz) > ibtail) {
+ if (do_not_ignore_invalid) {
+ *errnum = EINVAL;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ if ((obtail - ob) < (ibtail - ib)) {
+ *errnum = E2BIG;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ /*
+ * We treat the remaining incomplete character
+ * bytes as a character.
+ */
+ ret_val++;
+
+ while (ib < ibtail)
+ *ob++ = *ib++;
+ } else {
+ if (is_it_toupper || is_it_tolower) {
+ i = do_case_conv(unicode_version, u8s,
+ ib, sz, is_it_toupper);
+
+ if ((obtail - ob) < i) {
+ *errnum = E2BIG;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ ib += sz;
+
+ for (sz = 0; sz < i; sz++)
+ *ob++ = u8s[sz];
+ } else {
+ if ((obtail - ob) < sz) {
+ *errnum = E2BIG;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ for (i = 0; i < sz; i++)
+ *ob++ = *ib++;
+ }
+ }
+ }
+ } else {
+ canonical_decomposition = flag & U8_CANON_DECOMP;
+ compatibility_decomposition = flag & U8_COMPAT_DECOMP;
+ canonical_composition = flag & U8_CANON_COMP;
+
+ while (ib < ibtail) {
+ if (*ib == '\0' && do_not_ignore_null)
+ break;
+
+ /*
+ * If the current character is a 7-bit ASCII
+ * character and it is the last character, or,
+ * if the current character is a 7-bit ASCII
+ * character and the next character is also a 7-bit
+ * ASCII character, then, we copy over this
+ * character without going through collect_a_seq().
+ *
+ * In any other cases, we need to look further with
+ * the collect_a_seq() function.
+ */
+ if (U8_ISASCII(*ib) && ((ib + 1) >= ibtail ||
+ ((ib + 1) < ibtail && U8_ISASCII(*(ib + 1))))) {
+ if (ob >= obtail) {
+ *errnum = E2BIG;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ if (is_it_toupper)
+ *ob = U8_ASCII_TOUPPER(*ib);
+ else if (is_it_tolower)
+ *ob = U8_ASCII_TOLOWER(*ib);
+ else
+ *ob = *ib;
+ ib++;
+ ob++;
+ } else {
+ *errnum = 0;
+ state = U8_STATE_START;
+
+ j = collect_a_seq(unicode_version, u8s,
+ &ib, ibtail,
+ is_it_toupper,
+ is_it_tolower,
+ canonical_decomposition,
+ compatibility_decomposition,
+ canonical_composition,
+ errnum, &state);
+
+ if (*errnum && do_not_ignore_invalid) {
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ if ((obtail - ob) < j) {
+ *errnum = E2BIG;
+ ret_val = (size_t)-1;
+ break;
+ }
+
+ for (i = 0; i < j; i++)
+ *ob++ = u8s[i];
+ }
+ }
+ }
+
+ *inlen = ibtail - ib;
+ *outlen = obtail - ob;
+
+ return (ret_val);
+}