aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJohn Birrell <jb@FreeBSD.org>2008-05-22 07:00:07 +0000
committerJohn Birrell <jb@FreeBSD.org>2008-05-22 07:00:07 +0000
commita4fec686f244d6d3f6a321f470150dd2dca7c500 (patch)
tree94de91223071a3c5ef853c5492afadbd85a410be
parent275928fc142e604d7d091feb5eff54c72f241964 (diff)
downloadsrc-a4fec686f244d6d3f6a321f470150dd2dca7c500.tar.gz
src-a4fec686f244d6d3f6a321f470150dd2dca7c500.zip
Vendor import (really!) of the OpenSolaris bits for DTrace.vendor/opensolaris/20080410
Notes
Notes: svn path=/vendor-cddl/opensolaris/dist/cddl/contrib/opensolaris/; revision=179191 svn path=/vendor-cddl/opensolaris/20080410/sys/cddl/contrib/opensolaris/; revision=179195; tag=vendor/opensolaris/20080410
-rw-r--r--uts/common/ctf/ctf_mod.c177
-rw-r--r--uts/common/ctf/ctf_subr.c96
-rw-r--r--uts/common/dtrace/dtrace.c15521
-rw-r--r--uts/common/dtrace/fasttrap.c2346
-rw-r--r--uts/common/dtrace/lockstat.c341
-rw-r--r--uts/common/dtrace/profile.c576
-rw-r--r--uts/common/dtrace/sdt_subr.c888
-rw-r--r--uts/common/dtrace/systrace.c373
-rw-r--r--uts/common/sys/cmn_err.h128
-rw-r--r--uts/common/sys/cpupart.h162
-rw-r--r--uts/common/sys/cpuvar.h737
-rw-r--r--uts/common/sys/ctf.h358
-rw-r--r--uts/common/sys/ctf_api.h241
-rw-r--r--uts/common/sys/dtrace.h2242
-rw-r--r--uts/common/sys/dtrace_impl.h1298
-rw-r--r--uts/common/sys/fasttrap.h93
-rw-r--r--uts/intel/sys/fasttrap_isa.h114
-rw-r--r--uts/sparc/sys/fasttrap_isa.h94
18 files changed, 25785 insertions, 0 deletions
diff --git a/uts/common/ctf/ctf_mod.c b/uts/common/ctf/ctf_mod.c
new file mode 100644
index 000000000000..b34cf400cd2c
--- /dev/null
+++ b/uts/common/ctf/ctf_mod.c
@@ -0,0 +1,177 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/sysmacros.h>
+#include <sys/modctl.h>
+#include <sys/debug.h>
+#include <sys/mman.h>
+#include <sys/modctl.h>
+#include <sys/kobj.h>
+#include <ctf_impl.h>
+
+int ctf_leave_compressed = 0;
+
+static struct modlmisc modlmisc = {
+ &mod_miscops, "Compact C Type Format routines"
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1, &modlmisc, NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_info(struct modinfo *mip)
+{
+ return (mod_info(&modlinkage, mip));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}
+
+/*ARGSUSED*/
+void *
+ctf_zopen(int *errp)
+{
+ return ((void *)1); /* zmod is always loaded because we depend on it */
+}
+
+/*ARGSUSED*/
+const void *
+ctf_sect_mmap(ctf_sect_t *sp, int fd)
+{
+ return (MAP_FAILED); /* we don't support this in the kernel */
+}
+
+/*ARGSUSED*/
+void
+ctf_sect_munmap(const ctf_sect_t *sp)
+{
+ /* we don't support this in the kernel */
+}
+
+/*ARGSUSED*/
+ctf_file_t *
+ctf_fdopen(int fd, int *errp)
+{
+ return (ctf_set_open_errno(errp, ENOTSUP));
+}
+
+/*ARGSUSED*/
+ctf_file_t *
+ctf_open(const char *filename, int *errp)
+{
+ return (ctf_set_open_errno(errp, ENOTSUP));
+}
+
+/*ARGSUSED*/
+int
+ctf_write(ctf_file_t *fp, int fd)
+{
+ return (ctf_set_errno(fp, ENOTSUP));
+}
+
+int
+ctf_version(int version)
+{
+ ASSERT(version > 0 && version <= CTF_VERSION);
+
+ if (version > 0)
+ _libctf_version = MIN(CTF_VERSION, version);
+
+ return (_libctf_version);
+}
+
+/*ARGSUSED*/
+ctf_file_t *
+ctf_modopen(struct module *mp, int *error)
+{
+ ctf_sect_t ctfsect, symsect, strsect;
+ ctf_file_t *fp = NULL;
+ int err;
+
+ if (error == NULL)
+ error = &err;
+
+ ctfsect.cts_name = ".SUNW_ctf";
+ ctfsect.cts_type = SHT_PROGBITS;
+ ctfsect.cts_flags = SHF_ALLOC;
+ ctfsect.cts_data = mp->ctfdata;
+ ctfsect.cts_size = mp->ctfsize;
+ ctfsect.cts_entsize = 1;
+ ctfsect.cts_offset = 0;
+
+ symsect.cts_name = ".symtab";
+ symsect.cts_type = SHT_SYMTAB;
+ symsect.cts_flags = 0;
+ symsect.cts_data = mp->symtbl;
+ symsect.cts_size = mp->symhdr->sh_size;
+#ifdef _LP64
+ symsect.cts_entsize = sizeof (Elf64_Sym);
+#else
+ symsect.cts_entsize = sizeof (Elf32_Sym);
+#endif
+ symsect.cts_offset = 0;
+
+ strsect.cts_name = ".strtab";
+ strsect.cts_type = SHT_STRTAB;
+ strsect.cts_flags = 0;
+ strsect.cts_data = mp->strings;
+ strsect.cts_size = mp->strhdr->sh_size;
+ strsect.cts_entsize = 1;
+ strsect.cts_offset = 0;
+
+ ASSERT(MUTEX_HELD(&mod_lock));
+
+ if ((fp = ctf_bufopen(&ctfsect, &symsect, &strsect, error)) == NULL)
+ return (NULL);
+
+ if (!ctf_leave_compressed && (caddr_t)fp->ctf_base != mp->ctfdata) {
+ /*
+ * We must have just uncompressed the CTF data. To avoid
+ * others having to pay the (substantial) cost of decompressing
+ * the data, we're going to substitute the uncompressed version
+ * for the compressed version. Note that this implies that the
+ * first CTF consumer will induce memory impact on the system
+ * (but in the name of performance of future CTF consumers).
+ */
+ kobj_set_ctf(mp, (caddr_t)fp->ctf_base, fp->ctf_size);
+ fp->ctf_data.cts_data = fp->ctf_base;
+ fp->ctf_data.cts_size = fp->ctf_size;
+ }
+
+ return (fp);
+}
diff --git a/uts/common/ctf/ctf_subr.c b/uts/common/ctf/ctf_subr.c
new file mode 100644
index 000000000000..cd0a828628d4
--- /dev/null
+++ b/uts/common/ctf/ctf_subr.c
@@ -0,0 +1,96 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <ctf_impl.h>
+#include <sys/kobj.h>
+#include <sys/kobj_impl.h>
+
+/*
+ * This module is used both during the normal operation of the kernel (i.e.
+ * after kmem has been initialized) and during boot (before unix`_start has
+ * been called). kobj_alloc is able to tell the difference between the two
+ * cases, and as such must be used instead of kmem_alloc.
+ */
+
+void *
+ctf_data_alloc(size_t size)
+{
+ void *buf = kobj_alloc(size, KM_NOWAIT|KM_SCRATCH);
+
+ if (buf == NULL)
+ return (MAP_FAILED);
+
+ return (buf);
+}
+
+void
+ctf_data_free(void *buf, size_t size)
+{
+ kobj_free(buf, size);
+}
+
+/*ARGSUSED*/
+void
+ctf_data_protect(void *buf, size_t size)
+{
+ /* we don't support this operation in the kernel */
+}
+
+void *
+ctf_alloc(size_t size)
+{
+ return (kobj_alloc(size, KM_NOWAIT|KM_TMP));
+}
+
+/*ARGSUSED*/
+void
+ctf_free(void *buf, size_t size)
+{
+ kobj_free(buf, size);
+}
+
+/*ARGSUSED*/
+const char *
+ctf_strerror(int err)
+{
+ return (NULL); /* we don't support this operation in the kernel */
+}
+
+/*PRINTFLIKE1*/
+void
+ctf_dprintf(const char *format, ...)
+{
+ if (_libctf_debug) {
+ va_list alist;
+
+ va_start(alist, format);
+ (void) printf("ctf DEBUG: ");
+ (void) vprintf(format, alist);
+ va_end(alist);
+ }
+}
diff --git a/uts/common/dtrace/dtrace.c b/uts/common/dtrace/dtrace.c
new file mode 100644
index 000000000000..35971dbfb341
--- /dev/null
+++ b/uts/common/dtrace/dtrace.c
@@ -0,0 +1,15521 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/*
+ * DTrace - Dynamic Tracing for Solaris
+ *
+ * This is the implementation of the Solaris Dynamic Tracing framework
+ * (DTrace). The user-visible interface to DTrace is described at length in
+ * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
+ * library, the in-kernel DTrace framework, and the DTrace providers are
+ * described in the block comments in the <sys/dtrace.h> header file. The
+ * internal architecture of DTrace is described in the block comments in the
+ * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
+ * implementation very much assume mastery of all of these sources; if one has
+ * an unanswered question about the implementation, one should consult them
+ * first.
+ *
+ * The functions here are ordered roughly as follows:
+ *
+ * - Probe context functions
+ * - Probe hashing functions
+ * - Non-probe context utility functions
+ * - Matching functions
+ * - Provider-to-Framework API functions
+ * - Probe management functions
+ * - DIF object functions
+ * - Format functions
+ * - Predicate functions
+ * - ECB functions
+ * - Buffer functions
+ * - Enabling functions
+ * - DOF functions
+ * - Anonymous enabling functions
+ * - Consumer state functions
+ * - Helper functions
+ * - Hook functions
+ * - Driver cookbook functions
+ *
+ * Each group of functions begins with a block comment labelled the "DTrace
+ * [Group] Functions", allowing one to find each block by searching forward
+ * on capital-f functions.
+ */
+#include <sys/errno.h>
+#include <sys/stat.h>
+#include <sys/modctl.h>
+#include <sys/conf.h>
+#include <sys/systm.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#include <sys/cpuvar.h>
+#include <sys/kmem.h>
+#include <sys/strsubr.h>
+#include <sys/sysmacros.h>
+#include <sys/dtrace_impl.h>
+#include <sys/atomic.h>
+#include <sys/cmn_err.h>
+#include <sys/mutex_impl.h>
+#include <sys/rwlock_impl.h>
+#include <sys/ctf_api.h>
+#include <sys/panic.h>
+#include <sys/priv_impl.h>
+#include <sys/policy.h>
+#include <sys/cred_impl.h>
+#include <sys/procfs_isa.h>
+#include <sys/taskq.h>
+#include <sys/mkdev.h>
+#include <sys/kdi.h>
+#include <sys/zone.h>
+#include <sys/socket.h>
+#include <netinet/in.h>
+
+/*
+ * DTrace Tunable Variables
+ *
+ * The following variables may be tuned by adding a line to /etc/system that
+ * includes both the name of the DTrace module ("dtrace") and the name of the
+ * variable. For example:
+ *
+ * set dtrace:dtrace_destructive_disallow = 1
+ *
+ * In general, the only variables that one should be tuning this way are those
+ * that affect system-wide DTrace behavior, and for which the default behavior
+ * is undesirable. Most of these variables are tunable on a per-consumer
+ * basis using DTrace options, and need not be tuned on a system-wide basis.
+ * When tuning these variables, avoid pathological values; while some attempt
+ * is made to verify the integrity of these variables, they are not considered
+ * part of the supported interface to DTrace, and they are therefore not
+ * checked comprehensively. Further, these variables should not be tuned
+ * dynamically via "mdb -kw" or other means; they should only be tuned via
+ * /etc/system.
+ */
+int dtrace_destructive_disallow = 0;
+dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
+size_t dtrace_difo_maxsize = (256 * 1024);
+dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
+size_t dtrace_global_maxsize = (16 * 1024);
+size_t dtrace_actions_max = (16 * 1024);
+size_t dtrace_retain_max = 1024;
+dtrace_optval_t dtrace_helper_actions_max = 32;
+dtrace_optval_t dtrace_helper_providers_max = 32;
+dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
+size_t dtrace_strsize_default = 256;
+dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
+dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
+dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
+dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
+dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
+dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
+dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
+dtrace_optval_t dtrace_nspec_default = 1;
+dtrace_optval_t dtrace_specsize_default = 32 * 1024;
+dtrace_optval_t dtrace_stackframes_default = 20;
+dtrace_optval_t dtrace_ustackframes_default = 20;
+dtrace_optval_t dtrace_jstackframes_default = 50;
+dtrace_optval_t dtrace_jstackstrsize_default = 512;
+int dtrace_msgdsize_max = 128;
+hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */
+hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
+int dtrace_devdepth_max = 32;
+int dtrace_err_verbose;
+hrtime_t dtrace_deadman_interval = NANOSEC;
+hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
+hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
+
+/*
+ * DTrace External Variables
+ *
+ * As dtrace(7D) is a kernel module, any DTrace variables are obviously
+ * available to DTrace consumers via the backtick (`) syntax. One of these,
+ * dtrace_zero, is made deliberately so: it is provided as a source of
+ * well-known, zero-filled memory. While this variable is not documented,
+ * it is used by some translators as an implementation detail.
+ */
+const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
+
+/*
+ * DTrace Internal Variables
+ */
+static dev_info_t *dtrace_devi; /* device info */
+static vmem_t *dtrace_arena; /* probe ID arena */
+static vmem_t *dtrace_minor; /* minor number arena */
+static taskq_t *dtrace_taskq; /* task queue */
+static dtrace_probe_t **dtrace_probes; /* array of all probes */
+static int dtrace_nprobes; /* number of probes */
+static dtrace_provider_t *dtrace_provider; /* provider list */
+static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
+static int dtrace_opens; /* number of opens */
+static int dtrace_helpers; /* number of helpers */
+static void *dtrace_softstate; /* softstate pointer */
+static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
+static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
+static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
+static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
+static int dtrace_toxranges; /* number of toxic ranges */
+static int dtrace_toxranges_max; /* size of toxic range array */
+static dtrace_anon_t dtrace_anon; /* anonymous enabling */
+static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
+static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
+static kthread_t *dtrace_panicked; /* panicking thread */
+static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
+static dtrace_genid_t dtrace_probegen; /* current probe generation */
+static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
+static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
+static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
+
+/*
+ * DTrace Locking
+ * DTrace is protected by three (relatively coarse-grained) locks:
+ *
+ * (1) dtrace_lock is required to manipulate essentially any DTrace state,
+ * including enabling state, probes, ECBs, consumer state, helper state,
+ * etc. Importantly, dtrace_lock is _not_ required when in probe context;
+ * probe context is lock-free -- synchronization is handled via the
+ * dtrace_sync() cross call mechanism.
+ *
+ * (2) dtrace_provider_lock is required when manipulating provider state, or
+ * when provider state must be held constant.
+ *
+ * (3) dtrace_meta_lock is required when manipulating meta provider state, or
+ * when meta provider state must be held constant.
+ *
+ * The lock ordering between these three locks is dtrace_meta_lock before
+ * dtrace_provider_lock before dtrace_lock. (In particular, there are
+ * several places where dtrace_provider_lock is held by the framework as it
+ * calls into the providers -- which then call back into the framework,
+ * grabbing dtrace_lock.)
+ *
+ * There are two other locks in the mix: mod_lock and cpu_lock. With respect
+ * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
+ * role as a coarse-grained lock; it is acquired before both of these locks.
+ * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
+ * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
+ * mod_lock is similar with respect to dtrace_provider_lock in that it must be
+ * acquired _between_ dtrace_provider_lock and dtrace_lock.
+ */
+static kmutex_t dtrace_lock; /* probe state lock */
+static kmutex_t dtrace_provider_lock; /* provider state lock */
+static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
+
+/*
+ * DTrace Provider Variables
+ *
+ * These are the variables relating to DTrace as a provider (that is, the
+ * provider of the BEGIN, END, and ERROR probes).
+ */
+static dtrace_pattr_t dtrace_provider_attr = {
+{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
+};
+
+static void
+dtrace_nullop(void)
+{}
+
+static dtrace_pops_t dtrace_provider_ops = {
+ (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
+ (void (*)(void *, struct modctl *))dtrace_nullop,
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
+ NULL,
+ NULL,
+ NULL,
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
+};
+
+static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
+static dtrace_id_t dtrace_probeid_end; /* special END probe */
+dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
+
+/*
+ * DTrace Helper Tracing Variables
+ */
+uint32_t dtrace_helptrace_next = 0;
+uint32_t dtrace_helptrace_nlocals;
+char *dtrace_helptrace_buffer;
+int dtrace_helptrace_bufsize = 512 * 1024;
+
+#ifdef DEBUG
+int dtrace_helptrace_enabled = 1;
+#else
+int dtrace_helptrace_enabled = 0;
+#endif
+
+/*
+ * DTrace Error Hashing
+ *
+ * On DEBUG kernels, DTrace will track the errors that has seen in a hash
+ * table. This is very useful for checking coverage of tests that are
+ * expected to induce DIF or DOF processing errors, and may be useful for
+ * debugging problems in the DIF code generator or in DOF generation . The
+ * error hash may be examined with the ::dtrace_errhash MDB dcmd.
+ */
+#ifdef DEBUG
+static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
+static const char *dtrace_errlast;
+static kthread_t *dtrace_errthread;
+static kmutex_t dtrace_errlock;
+#endif
+
+/*
+ * DTrace Macros and Constants
+ *
+ * These are various macros that are useful in various spots in the
+ * implementation, along with a few random constants that have no meaning
+ * outside of the implementation. There is no real structure to this cpp
+ * mishmash -- but is there ever?
+ */
+#define DTRACE_HASHSTR(hash, probe) \
+ dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
+
+#define DTRACE_HASHNEXT(hash, probe) \
+ (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
+
+#define DTRACE_HASHPREV(hash, probe) \
+ (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
+
+#define DTRACE_HASHEQ(hash, lhs, rhs) \
+ (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
+ *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
+
+#define DTRACE_AGGHASHSIZE_SLEW 17
+
+#define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
+
+/*
+ * The key for a thread-local variable consists of the lower 61 bits of the
+ * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
+ * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
+ * equal to a variable identifier. This is necessary (but not sufficient) to
+ * assure that global associative arrays never collide with thread-local
+ * variables. To guarantee that they cannot collide, we must also define the
+ * order for keying dynamic variables. That order is:
+ *
+ * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
+ *
+ * Because the variable-key and the tls-key are in orthogonal spaces, there is
+ * no way for a global variable key signature to match a thread-local key
+ * signature.
+ */
+#define DTRACE_TLS_THRKEY(where) { \
+ uint_t intr = 0; \
+ uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
+ for (; actv; actv >>= 1) \
+ intr++; \
+ ASSERT(intr < (1 << 3)); \
+ (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
+ (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
+}
+
+#define DT_BSWAP_8(x) ((x) & 0xff)
+#define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
+#define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
+#define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
+
+#define DT_MASK_LO 0x00000000FFFFFFFFULL
+
+#define DTRACE_STORE(type, tomax, offset, what) \
+ *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
+
+#ifndef __i386
+#define DTRACE_ALIGNCHECK(addr, size, flags) \
+ if (addr & (size - 1)) { \
+ *flags |= CPU_DTRACE_BADALIGN; \
+ cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
+ return (0); \
+ }
+#else
+#define DTRACE_ALIGNCHECK(addr, size, flags)
+#endif
+
+/*
+ * Test whether a range of memory starting at testaddr of size testsz falls
+ * within the range of memory described by addr, sz. We take care to avoid
+ * problems with overflow and underflow of the unsigned quantities, and
+ * disallow all negative sizes. Ranges of size 0 are allowed.
+ */
+#define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
+ ((testaddr) - (baseaddr) < (basesz) && \
+ (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
+ (testaddr) + (testsz) >= (testaddr))
+
+/*
+ * Test whether alloc_sz bytes will fit in the scratch region. We isolate
+ * alloc_sz on the righthand side of the comparison in order to avoid overflow
+ * or underflow in the comparison with it. This is simpler than the INRANGE
+ * check above, because we know that the dtms_scratch_ptr is valid in the
+ * range. Allocations of size zero are allowed.
+ */
+#define DTRACE_INSCRATCH(mstate, alloc_sz) \
+ ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
+ (mstate)->dtms_scratch_ptr >= (alloc_sz))
+
+#define DTRACE_LOADFUNC(bits) \
+/*CSTYLED*/ \
+uint##bits##_t \
+dtrace_load##bits(uintptr_t addr) \
+{ \
+ size_t size = bits / NBBY; \
+ /*CSTYLED*/ \
+ uint##bits##_t rval; \
+ int i; \
+ volatile uint16_t *flags = (volatile uint16_t *) \
+ &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
+ \
+ DTRACE_ALIGNCHECK(addr, size, flags); \
+ \
+ for (i = 0; i < dtrace_toxranges; i++) { \
+ if (addr >= dtrace_toxrange[i].dtt_limit) \
+ continue; \
+ \
+ if (addr + size <= dtrace_toxrange[i].dtt_base) \
+ continue; \
+ \
+ /* \
+ * This address falls within a toxic region; return 0. \
+ */ \
+ *flags |= CPU_DTRACE_BADADDR; \
+ cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
+ return (0); \
+ } \
+ \
+ *flags |= CPU_DTRACE_NOFAULT; \
+ /*CSTYLED*/ \
+ rval = *((volatile uint##bits##_t *)addr); \
+ *flags &= ~CPU_DTRACE_NOFAULT; \
+ \
+ return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
+}
+
+#ifdef _LP64
+#define dtrace_loadptr dtrace_load64
+#else
+#define dtrace_loadptr dtrace_load32
+#endif
+
+#define DTRACE_DYNHASH_FREE 0
+#define DTRACE_DYNHASH_SINK 1
+#define DTRACE_DYNHASH_VALID 2
+
+#define DTRACE_MATCH_NEXT 0
+#define DTRACE_MATCH_DONE 1
+#define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
+#define DTRACE_STATE_ALIGN 64
+
+#define DTRACE_FLAGS2FLT(flags) \
+ (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
+ ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
+ ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
+ ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
+ ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
+ ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
+ ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
+ ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
+ ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
+ DTRACEFLT_UNKNOWN)
+
+#define DTRACEACT_ISSTRING(act) \
+ ((act)->dta_kind == DTRACEACT_DIFEXPR && \
+ (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
+
+static size_t dtrace_strlen(const char *, size_t);
+static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
+static void dtrace_enabling_provide(dtrace_provider_t *);
+static int dtrace_enabling_match(dtrace_enabling_t *, int *);
+static void dtrace_enabling_matchall(void);
+static dtrace_state_t *dtrace_anon_grab(void);
+static uint64_t dtrace_helper(int, dtrace_mstate_t *,
+ dtrace_state_t *, uint64_t, uint64_t);
+static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
+static void dtrace_buffer_drop(dtrace_buffer_t *);
+static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
+ dtrace_state_t *, dtrace_mstate_t *);
+static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
+ dtrace_optval_t);
+static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
+static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
+
+/*
+ * DTrace Probe Context Functions
+ *
+ * These functions are called from probe context. Because probe context is
+ * any context in which C may be called, arbitrarily locks may be held,
+ * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
+ * As a result, functions called from probe context may only call other DTrace
+ * support functions -- they may not interact at all with the system at large.
+ * (Note that the ASSERT macro is made probe-context safe by redefining it in
+ * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
+ * loads are to be performed from probe context, they _must_ be in terms of
+ * the safe dtrace_load*() variants.
+ *
+ * Some functions in this block are not actually called from probe context;
+ * for these functions, there will be a comment above the function reading
+ * "Note: not called from probe context."
+ */
+void
+dtrace_panic(const char *format, ...)
+{
+ va_list alist;
+
+ va_start(alist, format);
+ dtrace_vpanic(format, alist);
+ va_end(alist);
+}
+
+int
+dtrace_assfail(const char *a, const char *f, int l)
+{
+ dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
+
+ /*
+ * We just need something here that even the most clever compiler
+ * cannot optimize away.
+ */
+ return (a[(uintptr_t)f]);
+}
+
+/*
+ * Atomically increment a specified error counter from probe context.
+ */
+static void
+dtrace_error(uint32_t *counter)
+{
+ /*
+ * Most counters stored to in probe context are per-CPU counters.
+ * However, there are some error conditions that are sufficiently
+ * arcane that they don't merit per-CPU storage. If these counters
+ * are incremented concurrently on different CPUs, scalability will be
+ * adversely affected -- but we don't expect them to be white-hot in a
+ * correctly constructed enabling...
+ */
+ uint32_t oval, nval;
+
+ do {
+ oval = *counter;
+
+ if ((nval = oval + 1) == 0) {
+ /*
+ * If the counter would wrap, set it to 1 -- assuring
+ * that the counter is never zero when we have seen
+ * errors. (The counter must be 32-bits because we
+ * aren't guaranteed a 64-bit compare&swap operation.)
+ * To save this code both the infamy of being fingered
+ * by a priggish news story and the indignity of being
+ * the target of a neo-puritan witch trial, we're
+ * carefully avoiding any colorful description of the
+ * likelihood of this condition -- but suffice it to
+ * say that it is only slightly more likely than the
+ * overflow of predicate cache IDs, as discussed in
+ * dtrace_predicate_create().
+ */
+ nval = 1;
+ }
+ } while (dtrace_cas32(counter, oval, nval) != oval);
+}
+
+/*
+ * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
+ * uint8_t, a uint16_t, a uint32_t and a uint64_t.
+ */
+DTRACE_LOADFUNC(8)
+DTRACE_LOADFUNC(16)
+DTRACE_LOADFUNC(32)
+DTRACE_LOADFUNC(64)
+
+static int
+dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
+{
+ if (dest < mstate->dtms_scratch_base)
+ return (0);
+
+ if (dest + size < dest)
+ return (0);
+
+ if (dest + size > mstate->dtms_scratch_ptr)
+ return (0);
+
+ return (1);
+}
+
+static int
+dtrace_canstore_statvar(uint64_t addr, size_t sz,
+ dtrace_statvar_t **svars, int nsvars)
+{
+ int i;
+
+ for (i = 0; i < nsvars; i++) {
+ dtrace_statvar_t *svar = svars[i];
+
+ if (svar == NULL || svar->dtsv_size == 0)
+ continue;
+
+ if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
+ return (1);
+ }
+
+ return (0);
+}
+
+/*
+ * Check to see if the address is within a memory region to which a store may
+ * be issued. This includes the DTrace scratch areas, and any DTrace variable
+ * region. The caller of dtrace_canstore() is responsible for performing any
+ * alignment checks that are needed before stores are actually executed.
+ */
+static int
+dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
+ dtrace_vstate_t *vstate)
+{
+ /*
+ * First, check to see if the address is in scratch space...
+ */
+ if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
+ mstate->dtms_scratch_size))
+ return (1);
+
+ /*
+ * Now check to see if it's a dynamic variable. This check will pick
+ * up both thread-local variables and any global dynamically-allocated
+ * variables.
+ */
+ if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
+ vstate->dtvs_dynvars.dtds_size)) {
+ dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
+ uintptr_t base = (uintptr_t)dstate->dtds_base +
+ (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
+ uintptr_t chunkoffs;
+
+ /*
+ * Before we assume that we can store here, we need to make
+ * sure that it isn't in our metadata -- storing to our
+ * dynamic variable metadata would corrupt our state. For
+ * the range to not include any dynamic variable metadata,
+ * it must:
+ *
+ * (1) Start above the hash table that is at the base of
+ * the dynamic variable space
+ *
+ * (2) Have a starting chunk offset that is beyond the
+ * dtrace_dynvar_t that is at the base of every chunk
+ *
+ * (3) Not span a chunk boundary
+ *
+ */
+ if (addr < base)
+ return (0);
+
+ chunkoffs = (addr - base) % dstate->dtds_chunksize;
+
+ if (chunkoffs < sizeof (dtrace_dynvar_t))
+ return (0);
+
+ if (chunkoffs + sz > dstate->dtds_chunksize)
+ return (0);
+
+ return (1);
+ }
+
+ /*
+ * Finally, check the static local and global variables. These checks
+ * take the longest, so we perform them last.
+ */
+ if (dtrace_canstore_statvar(addr, sz,
+ vstate->dtvs_locals, vstate->dtvs_nlocals))
+ return (1);
+
+ if (dtrace_canstore_statvar(addr, sz,
+ vstate->dtvs_globals, vstate->dtvs_nglobals))
+ return (1);
+
+ return (0);
+}
+
+
+/*
+ * Convenience routine to check to see if the address is within a memory
+ * region in which a load may be issued given the user's privilege level;
+ * if not, it sets the appropriate error flags and loads 'addr' into the
+ * illegal value slot.
+ *
+ * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
+ * appropriate memory access protection.
+ */
+static int
+dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
+ dtrace_vstate_t *vstate)
+{
+ volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
+
+ /*
+ * If we hold the privilege to read from kernel memory, then
+ * everything is readable.
+ */
+ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
+ return (1);
+
+ /*
+ * You can obviously read that which you can store.
+ */
+ if (dtrace_canstore(addr, sz, mstate, vstate))
+ return (1);
+
+ /*
+ * We're allowed to read from our own string table.
+ */
+ if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
+ mstate->dtms_difo->dtdo_strlen))
+ return (1);
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
+ *illval = addr;
+ return (0);
+}
+
+/*
+ * Convenience routine to check to see if a given string is within a memory
+ * region in which a load may be issued given the user's privilege level;
+ * this exists so that we don't need to issue unnecessary dtrace_strlen()
+ * calls in the event that the user has all privileges.
+ */
+static int
+dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
+ dtrace_vstate_t *vstate)
+{
+ size_t strsz;
+
+ /*
+ * If we hold the privilege to read from kernel memory, then
+ * everything is readable.
+ */
+ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
+ return (1);
+
+ strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
+ if (dtrace_canload(addr, strsz, mstate, vstate))
+ return (1);
+
+ return (0);
+}
+
+/*
+ * Convenience routine to check to see if a given variable is within a memory
+ * region in which a load may be issued given the user's privilege level.
+ */
+static int
+dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
+ dtrace_vstate_t *vstate)
+{
+ size_t sz;
+ ASSERT(type->dtdt_flags & DIF_TF_BYREF);
+
+ /*
+ * If we hold the privilege to read from kernel memory, then
+ * everything is readable.
+ */
+ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
+ return (1);
+
+ if (type->dtdt_kind == DIF_TYPE_STRING)
+ sz = dtrace_strlen(src,
+ vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
+ else
+ sz = type->dtdt_size;
+
+ return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
+}
+
+/*
+ * Compare two strings using safe loads.
+ */
+static int
+dtrace_strncmp(char *s1, char *s2, size_t limit)
+{
+ uint8_t c1, c2;
+ volatile uint16_t *flags;
+
+ if (s1 == s2 || limit == 0)
+ return (0);
+
+ flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+
+ do {
+ if (s1 == NULL) {
+ c1 = '\0';
+ } else {
+ c1 = dtrace_load8((uintptr_t)s1++);
+ }
+
+ if (s2 == NULL) {
+ c2 = '\0';
+ } else {
+ c2 = dtrace_load8((uintptr_t)s2++);
+ }
+
+ if (c1 != c2)
+ return (c1 - c2);
+ } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
+
+ return (0);
+}
+
+/*
+ * Compute strlen(s) for a string using safe memory accesses. The additional
+ * len parameter is used to specify a maximum length to ensure completion.
+ */
+static size_t
+dtrace_strlen(const char *s, size_t lim)
+{
+ uint_t len;
+
+ for (len = 0; len != lim; len++) {
+ if (dtrace_load8((uintptr_t)s++) == '\0')
+ break;
+ }
+
+ return (len);
+}
+
+/*
+ * Check if an address falls within a toxic region.
+ */
+static int
+dtrace_istoxic(uintptr_t kaddr, size_t size)
+{
+ uintptr_t taddr, tsize;
+ int i;
+
+ for (i = 0; i < dtrace_toxranges; i++) {
+ taddr = dtrace_toxrange[i].dtt_base;
+ tsize = dtrace_toxrange[i].dtt_limit - taddr;
+
+ if (kaddr - taddr < tsize) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
+ cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
+ return (1);
+ }
+
+ if (taddr - kaddr < size) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
+ cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
+ return (1);
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
+ * memory specified by the DIF program. The dst is assumed to be safe memory
+ * that we can store to directly because it is managed by DTrace. As with
+ * standard bcopy, overlapping copies are handled properly.
+ */
+static void
+dtrace_bcopy(const void *src, void *dst, size_t len)
+{
+ if (len != 0) {
+ uint8_t *s1 = dst;
+ const uint8_t *s2 = src;
+
+ if (s1 <= s2) {
+ do {
+ *s1++ = dtrace_load8((uintptr_t)s2++);
+ } while (--len != 0);
+ } else {
+ s2 += len;
+ s1 += len;
+
+ do {
+ *--s1 = dtrace_load8((uintptr_t)--s2);
+ } while (--len != 0);
+ }
+ }
+}
+
+/*
+ * Copy src to dst using safe memory accesses, up to either the specified
+ * length, or the point that a nul byte is encountered. The src is assumed to
+ * be unsafe memory specified by the DIF program. The dst is assumed to be
+ * safe memory that we can store to directly because it is managed by DTrace.
+ * Unlike dtrace_bcopy(), overlapping regions are not handled.
+ */
+static void
+dtrace_strcpy(const void *src, void *dst, size_t len)
+{
+ if (len != 0) {
+ uint8_t *s1 = dst, c;
+ const uint8_t *s2 = src;
+
+ do {
+ *s1++ = c = dtrace_load8((uintptr_t)s2++);
+ } while (--len != 0 && c != '\0');
+ }
+}
+
+/*
+ * Copy src to dst, deriving the size and type from the specified (BYREF)
+ * variable type. The src is assumed to be unsafe memory specified by the DIF
+ * program. The dst is assumed to be DTrace variable memory that is of the
+ * specified type; we assume that we can store to directly.
+ */
+static void
+dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
+{
+ ASSERT(type->dtdt_flags & DIF_TF_BYREF);
+
+ if (type->dtdt_kind == DIF_TYPE_STRING) {
+ dtrace_strcpy(src, dst, type->dtdt_size);
+ } else {
+ dtrace_bcopy(src, dst, type->dtdt_size);
+ }
+}
+
+/*
+ * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
+ * unsafe memory specified by the DIF program. The s2 data is assumed to be
+ * safe memory that we can access directly because it is managed by DTrace.
+ */
+static int
+dtrace_bcmp(const void *s1, const void *s2, size_t len)
+{
+ volatile uint16_t *flags;
+
+ flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+
+ if (s1 == s2)
+ return (0);
+
+ if (s1 == NULL || s2 == NULL)
+ return (1);
+
+ if (s1 != s2 && len != 0) {
+ const uint8_t *ps1 = s1;
+ const uint8_t *ps2 = s2;
+
+ do {
+ if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
+ return (1);
+ } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
+ }
+ return (0);
+}
+
+/*
+ * Zero the specified region using a simple byte-by-byte loop. Note that this
+ * is for safe DTrace-managed memory only.
+ */
+static void
+dtrace_bzero(void *dst, size_t len)
+{
+ uchar_t *cp;
+
+ for (cp = dst; len != 0; len--)
+ *cp++ = 0;
+}
+
+static void
+dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
+{
+ uint64_t result[2];
+
+ result[0] = addend1[0] + addend2[0];
+ result[1] = addend1[1] + addend2[1] +
+ (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
+
+ sum[0] = result[0];
+ sum[1] = result[1];
+}
+
+/*
+ * Shift the 128-bit value in a by b. If b is positive, shift left.
+ * If b is negative, shift right.
+ */
+static void
+dtrace_shift_128(uint64_t *a, int b)
+{
+ uint64_t mask;
+
+ if (b == 0)
+ return;
+
+ if (b < 0) {
+ b = -b;
+ if (b >= 64) {
+ a[0] = a[1] >> (b - 64);
+ a[1] = 0;
+ } else {
+ a[0] >>= b;
+ mask = 1LL << (64 - b);
+ mask -= 1;
+ a[0] |= ((a[1] & mask) << (64 - b));
+ a[1] >>= b;
+ }
+ } else {
+ if (b >= 64) {
+ a[1] = a[0] << (b - 64);
+ a[0] = 0;
+ } else {
+ a[1] <<= b;
+ mask = a[0] >> (64 - b);
+ a[1] |= mask;
+ a[0] <<= b;
+ }
+ }
+}
+
+/*
+ * The basic idea is to break the 2 64-bit values into 4 32-bit values,
+ * use native multiplication on those, and then re-combine into the
+ * resulting 128-bit value.
+ *
+ * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
+ * hi1 * hi2 << 64 +
+ * hi1 * lo2 << 32 +
+ * hi2 * lo1 << 32 +
+ * lo1 * lo2
+ */
+static void
+dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
+{
+ uint64_t hi1, hi2, lo1, lo2;
+ uint64_t tmp[2];
+
+ hi1 = factor1 >> 32;
+ hi2 = factor2 >> 32;
+
+ lo1 = factor1 & DT_MASK_LO;
+ lo2 = factor2 & DT_MASK_LO;
+
+ product[0] = lo1 * lo2;
+ product[1] = hi1 * hi2;
+
+ tmp[0] = hi1 * lo2;
+ tmp[1] = 0;
+ dtrace_shift_128(tmp, 32);
+ dtrace_add_128(product, tmp, product);
+
+ tmp[0] = hi2 * lo1;
+ tmp[1] = 0;
+ dtrace_shift_128(tmp, 32);
+ dtrace_add_128(product, tmp, product);
+}
+
+/*
+ * This privilege check should be used by actions and subroutines to
+ * verify that the user credentials of the process that enabled the
+ * invoking ECB match the target credentials
+ */
+static int
+dtrace_priv_proc_common_user(dtrace_state_t *state)
+{
+ cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
+
+ /*
+ * We should always have a non-NULL state cred here, since if cred
+ * is null (anonymous tracing), we fast-path bypass this routine.
+ */
+ ASSERT(s_cr != NULL);
+
+ if ((cr = CRED()) != NULL &&
+ s_cr->cr_uid == cr->cr_uid &&
+ s_cr->cr_uid == cr->cr_ruid &&
+ s_cr->cr_uid == cr->cr_suid &&
+ s_cr->cr_gid == cr->cr_gid &&
+ s_cr->cr_gid == cr->cr_rgid &&
+ s_cr->cr_gid == cr->cr_sgid)
+ return (1);
+
+ return (0);
+}
+
+/*
+ * This privilege check should be used by actions and subroutines to
+ * verify that the zone of the process that enabled the invoking ECB
+ * matches the target credentials
+ */
+static int
+dtrace_priv_proc_common_zone(dtrace_state_t *state)
+{
+ cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
+
+ /*
+ * We should always have a non-NULL state cred here, since if cred
+ * is null (anonymous tracing), we fast-path bypass this routine.
+ */
+ ASSERT(s_cr != NULL);
+
+ if ((cr = CRED()) != NULL &&
+ s_cr->cr_zone == cr->cr_zone)
+ return (1);
+
+ return (0);
+}
+
+/*
+ * This privilege check should be used by actions and subroutines to
+ * verify that the process has not setuid or changed credentials.
+ */
+static int
+dtrace_priv_proc_common_nocd()
+{
+ proc_t *proc;
+
+ if ((proc = ttoproc(curthread)) != NULL &&
+ !(proc->p_flag & SNOCD))
+ return (1);
+
+ return (0);
+}
+
+static int
+dtrace_priv_proc_destructive(dtrace_state_t *state)
+{
+ int action = state->dts_cred.dcr_action;
+
+ if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
+ dtrace_priv_proc_common_zone(state) == 0)
+ goto bad;
+
+ if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
+ dtrace_priv_proc_common_user(state) == 0)
+ goto bad;
+
+ if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
+ dtrace_priv_proc_common_nocd() == 0)
+ goto bad;
+
+ return (1);
+
+bad:
+ cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
+
+ return (0);
+}
+
+static int
+dtrace_priv_proc_control(dtrace_state_t *state)
+{
+ if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
+ return (1);
+
+ if (dtrace_priv_proc_common_zone(state) &&
+ dtrace_priv_proc_common_user(state) &&
+ dtrace_priv_proc_common_nocd())
+ return (1);
+
+ cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
+
+ return (0);
+}
+
+static int
+dtrace_priv_proc(dtrace_state_t *state)
+{
+ if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
+ return (1);
+
+ cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
+
+ return (0);
+}
+
+static int
+dtrace_priv_kernel(dtrace_state_t *state)
+{
+ if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
+ return (1);
+
+ cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
+
+ return (0);
+}
+
+static int
+dtrace_priv_kernel_destructive(dtrace_state_t *state)
+{
+ if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
+ return (1);
+
+ cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
+
+ return (0);
+}
+
+/*
+ * Note: not called from probe context. This function is called
+ * asynchronously (and at a regular interval) from outside of probe context to
+ * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
+ * cleaning is explained in detail in <sys/dtrace_impl.h>.
+ */
+void
+dtrace_dynvar_clean(dtrace_dstate_t *dstate)
+{
+ dtrace_dynvar_t *dirty;
+ dtrace_dstate_percpu_t *dcpu;
+ int i, work = 0;
+
+ for (i = 0; i < NCPU; i++) {
+ dcpu = &dstate->dtds_percpu[i];
+
+ ASSERT(dcpu->dtdsc_rinsing == NULL);
+
+ /*
+ * If the dirty list is NULL, there is no dirty work to do.
+ */
+ if (dcpu->dtdsc_dirty == NULL)
+ continue;
+
+ /*
+ * If the clean list is non-NULL, then we're not going to do
+ * any work for this CPU -- it means that there has not been
+ * a dtrace_dynvar() allocation on this CPU (or from this CPU)
+ * since the last time we cleaned house.
+ */
+ if (dcpu->dtdsc_clean != NULL)
+ continue;
+
+ work = 1;
+
+ /*
+ * Atomically move the dirty list aside.
+ */
+ do {
+ dirty = dcpu->dtdsc_dirty;
+
+ /*
+ * Before we zap the dirty list, set the rinsing list.
+ * (This allows for a potential assertion in
+ * dtrace_dynvar(): if a free dynamic variable appears
+ * on a hash chain, either the dirty list or the
+ * rinsing list for some CPU must be non-NULL.)
+ */
+ dcpu->dtdsc_rinsing = dirty;
+ dtrace_membar_producer();
+ } while (dtrace_casptr(&dcpu->dtdsc_dirty,
+ dirty, NULL) != dirty);
+ }
+
+ if (!work) {
+ /*
+ * We have no work to do; we can simply return.
+ */
+ return;
+ }
+
+ dtrace_sync();
+
+ for (i = 0; i < NCPU; i++) {
+ dcpu = &dstate->dtds_percpu[i];
+
+ if (dcpu->dtdsc_rinsing == NULL)
+ continue;
+
+ /*
+ * We are now guaranteed that no hash chain contains a pointer
+ * into this dirty list; we can make it clean.
+ */
+ ASSERT(dcpu->dtdsc_clean == NULL);
+ dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
+ dcpu->dtdsc_rinsing = NULL;
+ }
+
+ /*
+ * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
+ * sure that all CPUs have seen all of the dtdsc_clean pointers.
+ * This prevents a race whereby a CPU incorrectly decides that
+ * the state should be something other than DTRACE_DSTATE_CLEAN
+ * after dtrace_dynvar_clean() has completed.
+ */
+ dtrace_sync();
+
+ dstate->dtds_state = DTRACE_DSTATE_CLEAN;
+}
+
+/*
+ * Depending on the value of the op parameter, this function looks-up,
+ * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
+ * allocation is requested, this function will return a pointer to a
+ * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
+ * variable can be allocated. If NULL is returned, the appropriate counter
+ * will be incremented.
+ */
+dtrace_dynvar_t *
+dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
+ dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
+ dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
+{
+ uint64_t hashval = DTRACE_DYNHASH_VALID;
+ dtrace_dynhash_t *hash = dstate->dtds_hash;
+ dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
+ processorid_t me = CPU->cpu_id, cpu = me;
+ dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
+ size_t bucket, ksize;
+ size_t chunksize = dstate->dtds_chunksize;
+ uintptr_t kdata, lock, nstate;
+ uint_t i;
+
+ ASSERT(nkeys != 0);
+
+ /*
+ * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
+ * algorithm. For the by-value portions, we perform the algorithm in
+ * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
+ * bit, and seems to have only a minute effect on distribution. For
+ * the by-reference data, we perform "One-at-a-time" iterating (safely)
+ * over each referenced byte. It's painful to do this, but it's much
+ * better than pathological hash distribution. The efficacy of the
+ * hashing algorithm (and a comparison with other algorithms) may be
+ * found by running the ::dtrace_dynstat MDB dcmd.
+ */
+ for (i = 0; i < nkeys; i++) {
+ if (key[i].dttk_size == 0) {
+ uint64_t val = key[i].dttk_value;
+
+ hashval += (val >> 48) & 0xffff;
+ hashval += (hashval << 10);
+ hashval ^= (hashval >> 6);
+
+ hashval += (val >> 32) & 0xffff;
+ hashval += (hashval << 10);
+ hashval ^= (hashval >> 6);
+
+ hashval += (val >> 16) & 0xffff;
+ hashval += (hashval << 10);
+ hashval ^= (hashval >> 6);
+
+ hashval += val & 0xffff;
+ hashval += (hashval << 10);
+ hashval ^= (hashval >> 6);
+ } else {
+ /*
+ * This is incredibly painful, but it beats the hell
+ * out of the alternative.
+ */
+ uint64_t j, size = key[i].dttk_size;
+ uintptr_t base = (uintptr_t)key[i].dttk_value;
+
+ if (!dtrace_canload(base, size, mstate, vstate))
+ break;
+
+ for (j = 0; j < size; j++) {
+ hashval += dtrace_load8(base + j);
+ hashval += (hashval << 10);
+ hashval ^= (hashval >> 6);
+ }
+ }
+ }
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
+ return (NULL);
+
+ hashval += (hashval << 3);
+ hashval ^= (hashval >> 11);
+ hashval += (hashval << 15);
+
+ /*
+ * There is a remote chance (ideally, 1 in 2^31) that our hashval
+ * comes out to be one of our two sentinel hash values. If this
+ * actually happens, we set the hashval to be a value known to be a
+ * non-sentinel value.
+ */
+ if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
+ hashval = DTRACE_DYNHASH_VALID;
+
+ /*
+ * Yes, it's painful to do a divide here. If the cycle count becomes
+ * important here, tricks can be pulled to reduce it. (However, it's
+ * critical that hash collisions be kept to an absolute minimum;
+ * they're much more painful than a divide.) It's better to have a
+ * solution that generates few collisions and still keeps things
+ * relatively simple.
+ */
+ bucket = hashval % dstate->dtds_hashsize;
+
+ if (op == DTRACE_DYNVAR_DEALLOC) {
+ volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
+
+ for (;;) {
+ while ((lock = *lockp) & 1)
+ continue;
+
+ if (dtrace_casptr((void *)lockp,
+ (void *)lock, (void *)(lock + 1)) == (void *)lock)
+ break;
+ }
+
+ dtrace_membar_producer();
+ }
+
+top:
+ prev = NULL;
+ lock = hash[bucket].dtdh_lock;
+
+ dtrace_membar_consumer();
+
+ start = hash[bucket].dtdh_chain;
+ ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
+ start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
+ op != DTRACE_DYNVAR_DEALLOC));
+
+ for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
+ dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
+ dtrace_key_t *dkey = &dtuple->dtt_key[0];
+
+ if (dvar->dtdv_hashval != hashval) {
+ if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
+ /*
+ * We've reached the sink, and therefore the
+ * end of the hash chain; we can kick out of
+ * the loop knowing that we have seen a valid
+ * snapshot of state.
+ */
+ ASSERT(dvar->dtdv_next == NULL);
+ ASSERT(dvar == &dtrace_dynhash_sink);
+ break;
+ }
+
+ if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
+ /*
+ * We've gone off the rails: somewhere along
+ * the line, one of the members of this hash
+ * chain was deleted. Note that we could also
+ * detect this by simply letting this loop run
+ * to completion, as we would eventually hit
+ * the end of the dirty list. However, we
+ * want to avoid running the length of the
+ * dirty list unnecessarily (it might be quite
+ * long), so we catch this as early as
+ * possible by detecting the hash marker. In
+ * this case, we simply set dvar to NULL and
+ * break; the conditional after the loop will
+ * send us back to top.
+ */
+ dvar = NULL;
+ break;
+ }
+
+ goto next;
+ }
+
+ if (dtuple->dtt_nkeys != nkeys)
+ goto next;
+
+ for (i = 0; i < nkeys; i++, dkey++) {
+ if (dkey->dttk_size != key[i].dttk_size)
+ goto next; /* size or type mismatch */
+
+ if (dkey->dttk_size != 0) {
+ if (dtrace_bcmp(
+ (void *)(uintptr_t)key[i].dttk_value,
+ (void *)(uintptr_t)dkey->dttk_value,
+ dkey->dttk_size))
+ goto next;
+ } else {
+ if (dkey->dttk_value != key[i].dttk_value)
+ goto next;
+ }
+ }
+
+ if (op != DTRACE_DYNVAR_DEALLOC)
+ return (dvar);
+
+ ASSERT(dvar->dtdv_next == NULL ||
+ dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
+
+ if (prev != NULL) {
+ ASSERT(hash[bucket].dtdh_chain != dvar);
+ ASSERT(start != dvar);
+ ASSERT(prev->dtdv_next == dvar);
+ prev->dtdv_next = dvar->dtdv_next;
+ } else {
+ if (dtrace_casptr(&hash[bucket].dtdh_chain,
+ start, dvar->dtdv_next) != start) {
+ /*
+ * We have failed to atomically swing the
+ * hash table head pointer, presumably because
+ * of a conflicting allocation on another CPU.
+ * We need to reread the hash chain and try
+ * again.
+ */
+ goto top;
+ }
+ }
+
+ dtrace_membar_producer();
+
+ /*
+ * Now set the hash value to indicate that it's free.
+ */
+ ASSERT(hash[bucket].dtdh_chain != dvar);
+ dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
+
+ dtrace_membar_producer();
+
+ /*
+ * Set the next pointer to point at the dirty list, and
+ * atomically swing the dirty pointer to the newly freed dvar.
+ */
+ do {
+ next = dcpu->dtdsc_dirty;
+ dvar->dtdv_next = next;
+ } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
+
+ /*
+ * Finally, unlock this hash bucket.
+ */
+ ASSERT(hash[bucket].dtdh_lock == lock);
+ ASSERT(lock & 1);
+ hash[bucket].dtdh_lock++;
+
+ return (NULL);
+next:
+ prev = dvar;
+ continue;
+ }
+
+ if (dvar == NULL) {
+ /*
+ * If dvar is NULL, it is because we went off the rails:
+ * one of the elements that we traversed in the hash chain
+ * was deleted while we were traversing it. In this case,
+ * we assert that we aren't doing a dealloc (deallocs lock
+ * the hash bucket to prevent themselves from racing with
+ * one another), and retry the hash chain traversal.
+ */
+ ASSERT(op != DTRACE_DYNVAR_DEALLOC);
+ goto top;
+ }
+
+ if (op != DTRACE_DYNVAR_ALLOC) {
+ /*
+ * If we are not to allocate a new variable, we want to
+ * return NULL now. Before we return, check that the value
+ * of the lock word hasn't changed. If it has, we may have
+ * seen an inconsistent snapshot.
+ */
+ if (op == DTRACE_DYNVAR_NOALLOC) {
+ if (hash[bucket].dtdh_lock != lock)
+ goto top;
+ } else {
+ ASSERT(op == DTRACE_DYNVAR_DEALLOC);
+ ASSERT(hash[bucket].dtdh_lock == lock);
+ ASSERT(lock & 1);
+ hash[bucket].dtdh_lock++;
+ }
+
+ return (NULL);
+ }
+
+ /*
+ * We need to allocate a new dynamic variable. The size we need is the
+ * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
+ * size of any auxiliary key data (rounded up to 8-byte alignment) plus
+ * the size of any referred-to data (dsize). We then round the final
+ * size up to the chunksize for allocation.
+ */
+ for (ksize = 0, i = 0; i < nkeys; i++)
+ ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
+
+ /*
+ * This should be pretty much impossible, but could happen if, say,
+ * strange DIF specified the tuple. Ideally, this should be an
+ * assertion and not an error condition -- but that requires that the
+ * chunksize calculation in dtrace_difo_chunksize() be absolutely
+ * bullet-proof. (That is, it must not be able to be fooled by
+ * malicious DIF.) Given the lack of backwards branches in DIF,
+ * solving this would presumably not amount to solving the Halting
+ * Problem -- but it still seems awfully hard.
+ */
+ if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
+ ksize + dsize > chunksize) {
+ dcpu->dtdsc_drops++;
+ return (NULL);
+ }
+
+ nstate = DTRACE_DSTATE_EMPTY;
+
+ do {
+retry:
+ free = dcpu->dtdsc_free;
+
+ if (free == NULL) {
+ dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
+ void *rval;
+
+ if (clean == NULL) {
+ /*
+ * We're out of dynamic variable space on
+ * this CPU. Unless we have tried all CPUs,
+ * we'll try to allocate from a different
+ * CPU.
+ */
+ switch (dstate->dtds_state) {
+ case DTRACE_DSTATE_CLEAN: {
+ void *sp = &dstate->dtds_state;
+
+ if (++cpu >= NCPU)
+ cpu = 0;
+
+ if (dcpu->dtdsc_dirty != NULL &&
+ nstate == DTRACE_DSTATE_EMPTY)
+ nstate = DTRACE_DSTATE_DIRTY;
+
+ if (dcpu->dtdsc_rinsing != NULL)
+ nstate = DTRACE_DSTATE_RINSING;
+
+ dcpu = &dstate->dtds_percpu[cpu];
+
+ if (cpu != me)
+ goto retry;
+
+ (void) dtrace_cas32(sp,
+ DTRACE_DSTATE_CLEAN, nstate);
+
+ /*
+ * To increment the correct bean
+ * counter, take another lap.
+ */
+ goto retry;
+ }
+
+ case DTRACE_DSTATE_DIRTY:
+ dcpu->dtdsc_dirty_drops++;
+ break;
+
+ case DTRACE_DSTATE_RINSING:
+ dcpu->dtdsc_rinsing_drops++;
+ break;
+
+ case DTRACE_DSTATE_EMPTY:
+ dcpu->dtdsc_drops++;
+ break;
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
+ return (NULL);
+ }
+
+ /*
+ * The clean list appears to be non-empty. We want to
+ * move the clean list to the free list; we start by
+ * moving the clean pointer aside.
+ */
+ if (dtrace_casptr(&dcpu->dtdsc_clean,
+ clean, NULL) != clean) {
+ /*
+ * We are in one of two situations:
+ *
+ * (a) The clean list was switched to the
+ * free list by another CPU.
+ *
+ * (b) The clean list was added to by the
+ * cleansing cyclic.
+ *
+ * In either of these situations, we can
+ * just reattempt the free list allocation.
+ */
+ goto retry;
+ }
+
+ ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
+
+ /*
+ * Now we'll move the clean list to the free list.
+ * It's impossible for this to fail: the only way
+ * the free list can be updated is through this
+ * code path, and only one CPU can own the clean list.
+ * Thus, it would only be possible for this to fail if
+ * this code were racing with dtrace_dynvar_clean().
+ * (That is, if dtrace_dynvar_clean() updated the clean
+ * list, and we ended up racing to update the free
+ * list.) This race is prevented by the dtrace_sync()
+ * in dtrace_dynvar_clean() -- which flushes the
+ * owners of the clean lists out before resetting
+ * the clean lists.
+ */
+ rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
+ ASSERT(rval == NULL);
+ goto retry;
+ }
+
+ dvar = free;
+ new_free = dvar->dtdv_next;
+ } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
+
+ /*
+ * We have now allocated a new chunk. We copy the tuple keys into the
+ * tuple array and copy any referenced key data into the data space
+ * following the tuple array. As we do this, we relocate dttk_value
+ * in the final tuple to point to the key data address in the chunk.
+ */
+ kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
+ dvar->dtdv_data = (void *)(kdata + ksize);
+ dvar->dtdv_tuple.dtt_nkeys = nkeys;
+
+ for (i = 0; i < nkeys; i++) {
+ dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
+ size_t kesize = key[i].dttk_size;
+
+ if (kesize != 0) {
+ dtrace_bcopy(
+ (const void *)(uintptr_t)key[i].dttk_value,
+ (void *)kdata, kesize);
+ dkey->dttk_value = kdata;
+ kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
+ } else {
+ dkey->dttk_value = key[i].dttk_value;
+ }
+
+ dkey->dttk_size = kesize;
+ }
+
+ ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
+ dvar->dtdv_hashval = hashval;
+ dvar->dtdv_next = start;
+
+ if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
+ return (dvar);
+
+ /*
+ * The cas has failed. Either another CPU is adding an element to
+ * this hash chain, or another CPU is deleting an element from this
+ * hash chain. The simplest way to deal with both of these cases
+ * (though not necessarily the most efficient) is to free our
+ * allocated block and tail-call ourselves. Note that the free is
+ * to the dirty list and _not_ to the free list. This is to prevent
+ * races with allocators, above.
+ */
+ dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
+
+ dtrace_membar_producer();
+
+ do {
+ free = dcpu->dtdsc_dirty;
+ dvar->dtdv_next = free;
+ } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
+
+ return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
+}
+
+/*ARGSUSED*/
+static void
+dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
+{
+ if ((int64_t)nval < (int64_t)*oval)
+ *oval = nval;
+}
+
+/*ARGSUSED*/
+static void
+dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
+{
+ if ((int64_t)nval > (int64_t)*oval)
+ *oval = nval;
+}
+
+static void
+dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
+{
+ int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
+ int64_t val = (int64_t)nval;
+
+ if (val < 0) {
+ for (i = 0; i < zero; i++) {
+ if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
+ quanta[i] += incr;
+ return;
+ }
+ }
+ } else {
+ for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
+ if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
+ quanta[i - 1] += incr;
+ return;
+ }
+ }
+
+ quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
+ return;
+ }
+
+ ASSERT(0);
+}
+
+static void
+dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
+{
+ uint64_t arg = *lquanta++;
+ int32_t base = DTRACE_LQUANTIZE_BASE(arg);
+ uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
+ uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
+ int32_t val = (int32_t)nval, level;
+
+ ASSERT(step != 0);
+ ASSERT(levels != 0);
+
+ if (val < base) {
+ /*
+ * This is an underflow.
+ */
+ lquanta[0] += incr;
+ return;
+ }
+
+ level = (val - base) / step;
+
+ if (level < levels) {
+ lquanta[level + 1] += incr;
+ return;
+ }
+
+ /*
+ * This is an overflow.
+ */
+ lquanta[levels + 1] += incr;
+}
+
+/*ARGSUSED*/
+static void
+dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
+{
+ data[0]++;
+ data[1] += nval;
+}
+
+/*ARGSUSED*/
+static void
+dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
+{
+ int64_t snval = (int64_t)nval;
+ uint64_t tmp[2];
+
+ data[0]++;
+ data[1] += nval;
+
+ /*
+ * What we want to say here is:
+ *
+ * data[2] += nval * nval;
+ *
+ * But given that nval is 64-bit, we could easily overflow, so
+ * we do this as 128-bit arithmetic.
+ */
+ if (snval < 0)
+ snval = -snval;
+
+ dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
+ dtrace_add_128(data + 2, tmp, data + 2);
+}
+
+/*ARGSUSED*/
+static void
+dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
+{
+ *oval = *oval + 1;
+}
+
+/*ARGSUSED*/
+static void
+dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
+{
+ *oval += nval;
+}
+
+/*
+ * Aggregate given the tuple in the principal data buffer, and the aggregating
+ * action denoted by the specified dtrace_aggregation_t. The aggregation
+ * buffer is specified as the buf parameter. This routine does not return
+ * failure; if there is no space in the aggregation buffer, the data will be
+ * dropped, and a corresponding counter incremented.
+ */
+static void
+dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
+ intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
+{
+ dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
+ uint32_t i, ndx, size, fsize;
+ uint32_t align = sizeof (uint64_t) - 1;
+ dtrace_aggbuffer_t *agb;
+ dtrace_aggkey_t *key;
+ uint32_t hashval = 0, limit, isstr;
+ caddr_t tomax, data, kdata;
+ dtrace_actkind_t action;
+ dtrace_action_t *act;
+ uintptr_t offs;
+
+ if (buf == NULL)
+ return;
+
+ if (!agg->dtag_hasarg) {
+ /*
+ * Currently, only quantize() and lquantize() take additional
+ * arguments, and they have the same semantics: an increment
+ * value that defaults to 1 when not present. If additional
+ * aggregating actions take arguments, the setting of the
+ * default argument value will presumably have to become more
+ * sophisticated...
+ */
+ arg = 1;
+ }
+
+ action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
+ size = rec->dtrd_offset - agg->dtag_base;
+ fsize = size + rec->dtrd_size;
+
+ ASSERT(dbuf->dtb_tomax != NULL);
+ data = dbuf->dtb_tomax + offset + agg->dtag_base;
+
+ if ((tomax = buf->dtb_tomax) == NULL) {
+ dtrace_buffer_drop(buf);
+ return;
+ }
+
+ /*
+ * The metastructure is always at the bottom of the buffer.
+ */
+ agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
+ sizeof (dtrace_aggbuffer_t));
+
+ if (buf->dtb_offset == 0) {
+ /*
+ * We just kludge up approximately 1/8th of the size to be
+ * buckets. If this guess ends up being routinely
+ * off-the-mark, we may need to dynamically readjust this
+ * based on past performance.
+ */
+ uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
+
+ if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
+ (uintptr_t)tomax || hashsize == 0) {
+ /*
+ * We've been given a ludicrously small buffer;
+ * increment our drop count and leave.
+ */
+ dtrace_buffer_drop(buf);
+ return;
+ }
+
+ /*
+ * And now, a pathetic attempt to try to get a an odd (or
+ * perchance, a prime) hash size for better hash distribution.
+ */
+ if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
+ hashsize -= DTRACE_AGGHASHSIZE_SLEW;
+
+ agb->dtagb_hashsize = hashsize;
+ agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
+ agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
+ agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
+
+ for (i = 0; i < agb->dtagb_hashsize; i++)
+ agb->dtagb_hash[i] = NULL;
+ }
+
+ ASSERT(agg->dtag_first != NULL);
+ ASSERT(agg->dtag_first->dta_intuple);
+
+ /*
+ * Calculate the hash value based on the key. Note that we _don't_
+ * include the aggid in the hashing (but we will store it as part of
+ * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
+ * algorithm: a simple, quick algorithm that has no known funnels, and
+ * gets good distribution in practice. The efficacy of the hashing
+ * algorithm (and a comparison with other algorithms) may be found by
+ * running the ::dtrace_aggstat MDB dcmd.
+ */
+ for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
+ i = act->dta_rec.dtrd_offset - agg->dtag_base;
+ limit = i + act->dta_rec.dtrd_size;
+ ASSERT(limit <= size);
+ isstr = DTRACEACT_ISSTRING(act);
+
+ for (; i < limit; i++) {
+ hashval += data[i];
+ hashval += (hashval << 10);
+ hashval ^= (hashval >> 6);
+
+ if (isstr && data[i] == '\0')
+ break;
+ }
+ }
+
+ hashval += (hashval << 3);
+ hashval ^= (hashval >> 11);
+ hashval += (hashval << 15);
+
+ /*
+ * Yes, the divide here is expensive -- but it's generally the least
+ * of the performance issues given the amount of data that we iterate
+ * over to compute hash values, compare data, etc.
+ */
+ ndx = hashval % agb->dtagb_hashsize;
+
+ for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
+ ASSERT((caddr_t)key >= tomax);
+ ASSERT((caddr_t)key < tomax + buf->dtb_size);
+
+ if (hashval != key->dtak_hashval || key->dtak_size != size)
+ continue;
+
+ kdata = key->dtak_data;
+ ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
+
+ for (act = agg->dtag_first; act->dta_intuple;
+ act = act->dta_next) {
+ i = act->dta_rec.dtrd_offset - agg->dtag_base;
+ limit = i + act->dta_rec.dtrd_size;
+ ASSERT(limit <= size);
+ isstr = DTRACEACT_ISSTRING(act);
+
+ for (; i < limit; i++) {
+ if (kdata[i] != data[i])
+ goto next;
+
+ if (isstr && data[i] == '\0')
+ break;
+ }
+ }
+
+ if (action != key->dtak_action) {
+ /*
+ * We are aggregating on the same value in the same
+ * aggregation with two different aggregating actions.
+ * (This should have been picked up in the compiler,
+ * so we may be dealing with errant or devious DIF.)
+ * This is an error condition; we indicate as much,
+ * and return.
+ */
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ return;
+ }
+
+ /*
+ * This is a hit: we need to apply the aggregator to
+ * the value at this key.
+ */
+ agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
+ return;
+next:
+ continue;
+ }
+
+ /*
+ * We didn't find it. We need to allocate some zero-filled space,
+ * link it into the hash table appropriately, and apply the aggregator
+ * to the (zero-filled) value.
+ */
+ offs = buf->dtb_offset;
+ while (offs & (align - 1))
+ offs += sizeof (uint32_t);
+
+ /*
+ * If we don't have enough room to both allocate a new key _and_
+ * its associated data, increment the drop count and return.
+ */
+ if ((uintptr_t)tomax + offs + fsize >
+ agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
+ dtrace_buffer_drop(buf);
+ return;
+ }
+
+ /*CONSTCOND*/
+ ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
+ key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
+ agb->dtagb_free -= sizeof (dtrace_aggkey_t);
+
+ key->dtak_data = kdata = tomax + offs;
+ buf->dtb_offset = offs + fsize;
+
+ /*
+ * Now copy the data across.
+ */
+ *((dtrace_aggid_t *)kdata) = agg->dtag_id;
+
+ for (i = sizeof (dtrace_aggid_t); i < size; i++)
+ kdata[i] = data[i];
+
+ /*
+ * Because strings are not zeroed out by default, we need to iterate
+ * looking for actions that store strings, and we need to explicitly
+ * pad these strings out with zeroes.
+ */
+ for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
+ int nul;
+
+ if (!DTRACEACT_ISSTRING(act))
+ continue;
+
+ i = act->dta_rec.dtrd_offset - agg->dtag_base;
+ limit = i + act->dta_rec.dtrd_size;
+ ASSERT(limit <= size);
+
+ for (nul = 0; i < limit; i++) {
+ if (nul) {
+ kdata[i] = '\0';
+ continue;
+ }
+
+ if (data[i] != '\0')
+ continue;
+
+ nul = 1;
+ }
+ }
+
+ for (i = size; i < fsize; i++)
+ kdata[i] = 0;
+
+ key->dtak_hashval = hashval;
+ key->dtak_size = size;
+ key->dtak_action = action;
+ key->dtak_next = agb->dtagb_hash[ndx];
+ agb->dtagb_hash[ndx] = key;
+
+ /*
+ * Finally, apply the aggregator.
+ */
+ *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
+ agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
+}
+
+/*
+ * Given consumer state, this routine finds a speculation in the INACTIVE
+ * state and transitions it into the ACTIVE state. If there is no speculation
+ * in the INACTIVE state, 0 is returned. In this case, no error counter is
+ * incremented -- it is up to the caller to take appropriate action.
+ */
+static int
+dtrace_speculation(dtrace_state_t *state)
+{
+ int i = 0;
+ dtrace_speculation_state_t current;
+ uint32_t *stat = &state->dts_speculations_unavail, count;
+
+ while (i < state->dts_nspeculations) {
+ dtrace_speculation_t *spec = &state->dts_speculations[i];
+
+ current = spec->dtsp_state;
+
+ if (current != DTRACESPEC_INACTIVE) {
+ if (current == DTRACESPEC_COMMITTINGMANY ||
+ current == DTRACESPEC_COMMITTING ||
+ current == DTRACESPEC_DISCARDING)
+ stat = &state->dts_speculations_busy;
+ i++;
+ continue;
+ }
+
+ if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
+ current, DTRACESPEC_ACTIVE) == current)
+ return (i + 1);
+ }
+
+ /*
+ * We couldn't find a speculation. If we found as much as a single
+ * busy speculation buffer, we'll attribute this failure as "busy"
+ * instead of "unavail".
+ */
+ do {
+ count = *stat;
+ } while (dtrace_cas32(stat, count, count + 1) != count);
+
+ return (0);
+}
+
+/*
+ * This routine commits an active speculation. If the specified speculation
+ * is not in a valid state to perform a commit(), this routine will silently do
+ * nothing. The state of the specified speculation is transitioned according
+ * to the state transition diagram outlined in <sys/dtrace_impl.h>
+ */
+static void
+dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
+ dtrace_specid_t which)
+{
+ dtrace_speculation_t *spec;
+ dtrace_buffer_t *src, *dest;
+ uintptr_t daddr, saddr, dlimit;
+ dtrace_speculation_state_t current, new;
+ intptr_t offs;
+
+ if (which == 0)
+ return;
+
+ if (which > state->dts_nspeculations) {
+ cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
+ return;
+ }
+
+ spec = &state->dts_speculations[which - 1];
+ src = &spec->dtsp_buffer[cpu];
+ dest = &state->dts_buffer[cpu];
+
+ do {
+ current = spec->dtsp_state;
+
+ if (current == DTRACESPEC_COMMITTINGMANY)
+ break;
+
+ switch (current) {
+ case DTRACESPEC_INACTIVE:
+ case DTRACESPEC_DISCARDING:
+ return;
+
+ case DTRACESPEC_COMMITTING:
+ /*
+ * This is only possible if we are (a) commit()'ing
+ * without having done a prior speculate() on this CPU
+ * and (b) racing with another commit() on a different
+ * CPU. There's nothing to do -- we just assert that
+ * our offset is 0.
+ */
+ ASSERT(src->dtb_offset == 0);
+ return;
+
+ case DTRACESPEC_ACTIVE:
+ new = DTRACESPEC_COMMITTING;
+ break;
+
+ case DTRACESPEC_ACTIVEONE:
+ /*
+ * This speculation is active on one CPU. If our
+ * buffer offset is non-zero, we know that the one CPU
+ * must be us. Otherwise, we are committing on a
+ * different CPU from the speculate(), and we must
+ * rely on being asynchronously cleaned.
+ */
+ if (src->dtb_offset != 0) {
+ new = DTRACESPEC_COMMITTING;
+ break;
+ }
+ /*FALLTHROUGH*/
+
+ case DTRACESPEC_ACTIVEMANY:
+ new = DTRACESPEC_COMMITTINGMANY;
+ break;
+
+ default:
+ ASSERT(0);
+ }
+ } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
+ current, new) != current);
+
+ /*
+ * We have set the state to indicate that we are committing this
+ * speculation. Now reserve the necessary space in the destination
+ * buffer.
+ */
+ if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
+ sizeof (uint64_t), state, NULL)) < 0) {
+ dtrace_buffer_drop(dest);
+ goto out;
+ }
+
+ /*
+ * We have the space; copy the buffer across. (Note that this is a
+ * highly subobtimal bcopy(); in the unlikely event that this becomes
+ * a serious performance issue, a high-performance DTrace-specific
+ * bcopy() should obviously be invented.)
+ */
+ daddr = (uintptr_t)dest->dtb_tomax + offs;
+ dlimit = daddr + src->dtb_offset;
+ saddr = (uintptr_t)src->dtb_tomax;
+
+ /*
+ * First, the aligned portion.
+ */
+ while (dlimit - daddr >= sizeof (uint64_t)) {
+ *((uint64_t *)daddr) = *((uint64_t *)saddr);
+
+ daddr += sizeof (uint64_t);
+ saddr += sizeof (uint64_t);
+ }
+
+ /*
+ * Now any left-over bit...
+ */
+ while (dlimit - daddr)
+ *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
+
+ /*
+ * Finally, commit the reserved space in the destination buffer.
+ */
+ dest->dtb_offset = offs + src->dtb_offset;
+
+out:
+ /*
+ * If we're lucky enough to be the only active CPU on this speculation
+ * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
+ */
+ if (current == DTRACESPEC_ACTIVE ||
+ (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
+ uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
+ DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
+
+ ASSERT(rval == DTRACESPEC_COMMITTING);
+ }
+
+ src->dtb_offset = 0;
+ src->dtb_xamot_drops += src->dtb_drops;
+ src->dtb_drops = 0;
+}
+
+/*
+ * This routine discards an active speculation. If the specified speculation
+ * is not in a valid state to perform a discard(), this routine will silently
+ * do nothing. The state of the specified speculation is transitioned
+ * according to the state transition diagram outlined in <sys/dtrace_impl.h>
+ */
+static void
+dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
+ dtrace_specid_t which)
+{
+ dtrace_speculation_t *spec;
+ dtrace_speculation_state_t current, new;
+ dtrace_buffer_t *buf;
+
+ if (which == 0)
+ return;
+
+ if (which > state->dts_nspeculations) {
+ cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
+ return;
+ }
+
+ spec = &state->dts_speculations[which - 1];
+ buf = &spec->dtsp_buffer[cpu];
+
+ do {
+ current = spec->dtsp_state;
+
+ switch (current) {
+ case DTRACESPEC_INACTIVE:
+ case DTRACESPEC_COMMITTINGMANY:
+ case DTRACESPEC_COMMITTING:
+ case DTRACESPEC_DISCARDING:
+ return;
+
+ case DTRACESPEC_ACTIVE:
+ case DTRACESPEC_ACTIVEMANY:
+ new = DTRACESPEC_DISCARDING;
+ break;
+
+ case DTRACESPEC_ACTIVEONE:
+ if (buf->dtb_offset != 0) {
+ new = DTRACESPEC_INACTIVE;
+ } else {
+ new = DTRACESPEC_DISCARDING;
+ }
+ break;
+
+ default:
+ ASSERT(0);
+ }
+ } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
+ current, new) != current);
+
+ buf->dtb_offset = 0;
+ buf->dtb_drops = 0;
+}
+
+/*
+ * Note: not called from probe context. This function is called
+ * asynchronously from cross call context to clean any speculations that are
+ * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
+ * transitioned back to the INACTIVE state until all CPUs have cleaned the
+ * speculation.
+ */
+static void
+dtrace_speculation_clean_here(dtrace_state_t *state)
+{
+ dtrace_icookie_t cookie;
+ processorid_t cpu = CPU->cpu_id;
+ dtrace_buffer_t *dest = &state->dts_buffer[cpu];
+ dtrace_specid_t i;
+
+ cookie = dtrace_interrupt_disable();
+
+ if (dest->dtb_tomax == NULL) {
+ dtrace_interrupt_enable(cookie);
+ return;
+ }
+
+ for (i = 0; i < state->dts_nspeculations; i++) {
+ dtrace_speculation_t *spec = &state->dts_speculations[i];
+ dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
+
+ if (src->dtb_tomax == NULL)
+ continue;
+
+ if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
+ src->dtb_offset = 0;
+ continue;
+ }
+
+ if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
+ continue;
+
+ if (src->dtb_offset == 0)
+ continue;
+
+ dtrace_speculation_commit(state, cpu, i + 1);
+ }
+
+ dtrace_interrupt_enable(cookie);
+}
+
+/*
+ * Note: not called from probe context. This function is called
+ * asynchronously (and at a regular interval) to clean any speculations that
+ * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
+ * is work to be done, it cross calls all CPUs to perform that work;
+ * COMMITMANY and DISCARDING speculations may not be transitioned back to the
+ * INACTIVE state until they have been cleaned by all CPUs.
+ */
+static void
+dtrace_speculation_clean(dtrace_state_t *state)
+{
+ int work = 0, rv;
+ dtrace_specid_t i;
+
+ for (i = 0; i < state->dts_nspeculations; i++) {
+ dtrace_speculation_t *spec = &state->dts_speculations[i];
+
+ ASSERT(!spec->dtsp_cleaning);
+
+ if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
+ spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
+ continue;
+
+ work++;
+ spec->dtsp_cleaning = 1;
+ }
+
+ if (!work)
+ return;
+
+ dtrace_xcall(DTRACE_CPUALL,
+ (dtrace_xcall_t)dtrace_speculation_clean_here, state);
+
+ /*
+ * We now know that all CPUs have committed or discarded their
+ * speculation buffers, as appropriate. We can now set the state
+ * to inactive.
+ */
+ for (i = 0; i < state->dts_nspeculations; i++) {
+ dtrace_speculation_t *spec = &state->dts_speculations[i];
+ dtrace_speculation_state_t current, new;
+
+ if (!spec->dtsp_cleaning)
+ continue;
+
+ current = spec->dtsp_state;
+ ASSERT(current == DTRACESPEC_DISCARDING ||
+ current == DTRACESPEC_COMMITTINGMANY);
+
+ new = DTRACESPEC_INACTIVE;
+
+ rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
+ ASSERT(rv == current);
+ spec->dtsp_cleaning = 0;
+ }
+}
+
+/*
+ * Called as part of a speculate() to get the speculative buffer associated
+ * with a given speculation. Returns NULL if the specified speculation is not
+ * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
+ * the active CPU is not the specified CPU -- the speculation will be
+ * atomically transitioned into the ACTIVEMANY state.
+ */
+static dtrace_buffer_t *
+dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
+ dtrace_specid_t which)
+{
+ dtrace_speculation_t *spec;
+ dtrace_speculation_state_t current, new;
+ dtrace_buffer_t *buf;
+
+ if (which == 0)
+ return (NULL);
+
+ if (which > state->dts_nspeculations) {
+ cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
+ return (NULL);
+ }
+
+ spec = &state->dts_speculations[which - 1];
+ buf = &spec->dtsp_buffer[cpuid];
+
+ do {
+ current = spec->dtsp_state;
+
+ switch (current) {
+ case DTRACESPEC_INACTIVE:
+ case DTRACESPEC_COMMITTINGMANY:
+ case DTRACESPEC_DISCARDING:
+ return (NULL);
+
+ case DTRACESPEC_COMMITTING:
+ ASSERT(buf->dtb_offset == 0);
+ return (NULL);
+
+ case DTRACESPEC_ACTIVEONE:
+ /*
+ * This speculation is currently active on one CPU.
+ * Check the offset in the buffer; if it's non-zero,
+ * that CPU must be us (and we leave the state alone).
+ * If it's zero, assume that we're starting on a new
+ * CPU -- and change the state to indicate that the
+ * speculation is active on more than one CPU.
+ */
+ if (buf->dtb_offset != 0)
+ return (buf);
+
+ new = DTRACESPEC_ACTIVEMANY;
+ break;
+
+ case DTRACESPEC_ACTIVEMANY:
+ return (buf);
+
+ case DTRACESPEC_ACTIVE:
+ new = DTRACESPEC_ACTIVEONE;
+ break;
+
+ default:
+ ASSERT(0);
+ }
+ } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
+ current, new) != current);
+
+ ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
+ return (buf);
+}
+
+/*
+ * Return a string. In the event that the user lacks the privilege to access
+ * arbitrary kernel memory, we copy the string out to scratch memory so that we
+ * don't fail access checking.
+ *
+ * dtrace_dif_variable() uses this routine as a helper for various
+ * builtin values such as 'execname' and 'probefunc.'
+ */
+uintptr_t
+dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
+ dtrace_mstate_t *mstate)
+{
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ uintptr_t ret;
+ size_t strsz;
+
+ /*
+ * The easy case: this probe is allowed to read all of memory, so
+ * we can just return this as a vanilla pointer.
+ */
+ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
+ return (addr);
+
+ /*
+ * This is the tougher case: we copy the string in question from
+ * kernel memory into scratch memory and return it that way: this
+ * ensures that we won't trip up when access checking tests the
+ * BYREF return value.
+ */
+ strsz = dtrace_strlen((char *)addr, size) + 1;
+
+ if (mstate->dtms_scratch_ptr + strsz >
+ mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ return (NULL);
+ }
+
+ dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
+ strsz);
+ ret = mstate->dtms_scratch_ptr;
+ mstate->dtms_scratch_ptr += strsz;
+ return (ret);
+}
+
+/*
+ * This function implements the DIF emulator's variable lookups. The emulator
+ * passes a reserved variable identifier and optional built-in array index.
+ */
+static uint64_t
+dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
+ uint64_t ndx)
+{
+ /*
+ * If we're accessing one of the uncached arguments, we'll turn this
+ * into a reference in the args array.
+ */
+ if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
+ ndx = v - DIF_VAR_ARG0;
+ v = DIF_VAR_ARGS;
+ }
+
+ switch (v) {
+ case DIF_VAR_ARGS:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
+ if (ndx >= sizeof (mstate->dtms_arg) /
+ sizeof (mstate->dtms_arg[0])) {
+ int aframes = mstate->dtms_probe->dtpr_aframes + 2;
+ dtrace_provider_t *pv;
+ uint64_t val;
+
+ pv = mstate->dtms_probe->dtpr_provider;
+ if (pv->dtpv_pops.dtps_getargval != NULL)
+ val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
+ mstate->dtms_probe->dtpr_id,
+ mstate->dtms_probe->dtpr_arg, ndx, aframes);
+ else
+ val = dtrace_getarg(ndx, aframes);
+
+ /*
+ * This is regrettably required to keep the compiler
+ * from tail-optimizing the call to dtrace_getarg().
+ * The condition always evaluates to true, but the
+ * compiler has no way of figuring that out a priori.
+ * (None of this would be necessary if the compiler
+ * could be relied upon to _always_ tail-optimize
+ * the call to dtrace_getarg() -- but it can't.)
+ */
+ if (mstate->dtms_probe != NULL)
+ return (val);
+
+ ASSERT(0);
+ }
+
+ return (mstate->dtms_arg[ndx]);
+
+ case DIF_VAR_UREGS: {
+ klwp_t *lwp;
+
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ if ((lwp = curthread->t_lwp) == NULL) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
+ cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
+ return (0);
+ }
+
+ return (dtrace_getreg(lwp->lwp_regs, ndx));
+ }
+
+ case DIF_VAR_CURTHREAD:
+ if (!dtrace_priv_kernel(state))
+ return (0);
+ return ((uint64_t)(uintptr_t)curthread);
+
+ case DIF_VAR_TIMESTAMP:
+ if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
+ mstate->dtms_timestamp = dtrace_gethrtime();
+ mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
+ }
+ return (mstate->dtms_timestamp);
+
+ case DIF_VAR_VTIMESTAMP:
+ ASSERT(dtrace_vtime_references != 0);
+ return (curthread->t_dtrace_vtime);
+
+ case DIF_VAR_WALLTIMESTAMP:
+ if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
+ mstate->dtms_walltimestamp = dtrace_gethrestime();
+ mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
+ }
+ return (mstate->dtms_walltimestamp);
+
+ case DIF_VAR_IPL:
+ if (!dtrace_priv_kernel(state))
+ return (0);
+ if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
+ mstate->dtms_ipl = dtrace_getipl();
+ mstate->dtms_present |= DTRACE_MSTATE_IPL;
+ }
+ return (mstate->dtms_ipl);
+
+ case DIF_VAR_EPID:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
+ return (mstate->dtms_epid);
+
+ case DIF_VAR_ID:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
+ return (mstate->dtms_probe->dtpr_id);
+
+ case DIF_VAR_STACKDEPTH:
+ if (!dtrace_priv_kernel(state))
+ return (0);
+ if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
+ int aframes = mstate->dtms_probe->dtpr_aframes + 2;
+
+ mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
+ mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
+ }
+ return (mstate->dtms_stackdepth);
+
+ case DIF_VAR_USTACKDEPTH:
+ if (!dtrace_priv_proc(state))
+ return (0);
+ if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) &&
+ CPU_ON_INTR(CPU)) {
+ mstate->dtms_ustackdepth = 0;
+ } else {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ mstate->dtms_ustackdepth =
+ dtrace_getustackdepth();
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ }
+ mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
+ }
+ return (mstate->dtms_ustackdepth);
+
+ case DIF_VAR_CALLER:
+ if (!dtrace_priv_kernel(state))
+ return (0);
+ if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
+ int aframes = mstate->dtms_probe->dtpr_aframes + 2;
+
+ if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
+ /*
+ * If this is an unanchored probe, we are
+ * required to go through the slow path:
+ * dtrace_caller() only guarantees correct
+ * results for anchored probes.
+ */
+ pc_t caller[2];
+
+ dtrace_getpcstack(caller, 2, aframes,
+ (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
+ mstate->dtms_caller = caller[1];
+ } else if ((mstate->dtms_caller =
+ dtrace_caller(aframes)) == -1) {
+ /*
+ * We have failed to do this the quick way;
+ * we must resort to the slower approach of
+ * calling dtrace_getpcstack().
+ */
+ pc_t caller;
+
+ dtrace_getpcstack(&caller, 1, aframes, NULL);
+ mstate->dtms_caller = caller;
+ }
+
+ mstate->dtms_present |= DTRACE_MSTATE_CALLER;
+ }
+ return (mstate->dtms_caller);
+
+ case DIF_VAR_UCALLER:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
+ uint64_t ustack[3];
+
+ /*
+ * dtrace_getupcstack() fills in the first uint64_t
+ * with the current PID. The second uint64_t will
+ * be the program counter at user-level. The third
+ * uint64_t will contain the caller, which is what
+ * we're after.
+ */
+ ustack[2] = NULL;
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_getupcstack(ustack, 3);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ mstate->dtms_ucaller = ustack[2];
+ mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
+ }
+
+ return (mstate->dtms_ucaller);
+
+ case DIF_VAR_PROBEPROV:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
+ return (dtrace_dif_varstr(
+ (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
+ state, mstate));
+
+ case DIF_VAR_PROBEMOD:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
+ return (dtrace_dif_varstr(
+ (uintptr_t)mstate->dtms_probe->dtpr_mod,
+ state, mstate));
+
+ case DIF_VAR_PROBEFUNC:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
+ return (dtrace_dif_varstr(
+ (uintptr_t)mstate->dtms_probe->dtpr_func,
+ state, mstate));
+
+ case DIF_VAR_PROBENAME:
+ ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
+ return (dtrace_dif_varstr(
+ (uintptr_t)mstate->dtms_probe->dtpr_name,
+ state, mstate));
+
+ case DIF_VAR_PID:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * Note that we are assuming that an unanchored probe is
+ * always due to a high-level interrupt. (And we're assuming
+ * that there is only a single high level interrupt.)
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return (pid0.pid_id);
+
+ /*
+ * It is always safe to dereference one's own t_procp pointer:
+ * it always points to a valid, allocated proc structure.
+ * Further, it is always safe to dereference the p_pidp member
+ * of one's own proc structure. (These are truisms becuase
+ * threads and processes don't clean up their own state --
+ * they leave that task to whomever reaps them.)
+ */
+ return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
+
+ case DIF_VAR_PPID:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return (pid0.pid_id);
+
+ /*
+ * It is always safe to dereference one's own t_procp pointer:
+ * it always points to a valid, allocated proc structure.
+ * (This is true because threads don't clean up their own
+ * state -- they leave that task to whomever reaps them.)
+ */
+ return ((uint64_t)curthread->t_procp->p_ppid);
+
+ case DIF_VAR_TID:
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return (0);
+
+ return ((uint64_t)curthread->t_tid);
+
+ case DIF_VAR_EXECNAME:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
+
+ /*
+ * It is always safe to dereference one's own t_procp pointer:
+ * it always points to a valid, allocated proc structure.
+ * (This is true because threads don't clean up their own
+ * state -- they leave that task to whomever reaps them.)
+ */
+ return (dtrace_dif_varstr(
+ (uintptr_t)curthread->t_procp->p_user.u_comm,
+ state, mstate));
+
+ case DIF_VAR_ZONENAME:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
+
+ /*
+ * It is always safe to dereference one's own t_procp pointer:
+ * it always points to a valid, allocated proc structure.
+ * (This is true because threads don't clean up their own
+ * state -- they leave that task to whomever reaps them.)
+ */
+ return (dtrace_dif_varstr(
+ (uintptr_t)curthread->t_procp->p_zone->zone_name,
+ state, mstate));
+
+ case DIF_VAR_UID:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return ((uint64_t)p0.p_cred->cr_uid);
+
+ /*
+ * It is always safe to dereference one's own t_procp pointer:
+ * it always points to a valid, allocated proc structure.
+ * (This is true because threads don't clean up their own
+ * state -- they leave that task to whomever reaps them.)
+ *
+ * Additionally, it is safe to dereference one's own process
+ * credential, since this is never NULL after process birth.
+ */
+ return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
+
+ case DIF_VAR_GID:
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return ((uint64_t)p0.p_cred->cr_gid);
+
+ /*
+ * It is always safe to dereference one's own t_procp pointer:
+ * it always points to a valid, allocated proc structure.
+ * (This is true because threads don't clean up their own
+ * state -- they leave that task to whomever reaps them.)
+ *
+ * Additionally, it is safe to dereference one's own process
+ * credential, since this is never NULL after process birth.
+ */
+ return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
+
+ case DIF_VAR_ERRNO: {
+ klwp_t *lwp;
+ if (!dtrace_priv_proc(state))
+ return (0);
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
+ return (0);
+
+ /*
+ * It is always safe to dereference one's own t_lwp pointer in
+ * the event that this pointer is non-NULL. (This is true
+ * because threads and lwps don't clean up their own state --
+ * they leave that task to whomever reaps them.)
+ */
+ if ((lwp = curthread->t_lwp) == NULL)
+ return (0);
+
+ return ((uint64_t)lwp->lwp_errno);
+ }
+ default:
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ return (0);
+ }
+}
+
+/*
+ * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
+ * Notice that we don't bother validating the proper number of arguments or
+ * their types in the tuple stack. This isn't needed because all argument
+ * interpretation is safe because of our load safety -- the worst that can
+ * happen is that a bogus program can obtain bogus results.
+ */
+static void
+dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
+ dtrace_key_t *tupregs, int nargs,
+ dtrace_mstate_t *mstate, dtrace_state_t *state)
+{
+ volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+ volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
+ dtrace_vstate_t *vstate = &state->dts_vstate;
+
+ union {
+ mutex_impl_t mi;
+ uint64_t mx;
+ } m;
+
+ union {
+ krwlock_t ri;
+ uintptr_t rw;
+ } r;
+
+ switch (subr) {
+ case DIF_SUBR_RAND:
+ regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
+ break;
+
+ case DIF_SUBR_MUTEX_OWNED:
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ m.mx = dtrace_load64(tupregs[0].dttk_value);
+ if (MUTEX_TYPE_ADAPTIVE(&m.mi))
+ regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
+ else
+ regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
+ break;
+
+ case DIF_SUBR_MUTEX_OWNER:
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ m.mx = dtrace_load64(tupregs[0].dttk_value);
+ if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
+ MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
+ regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
+ else
+ regs[rd] = 0;
+ break;
+
+ case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ m.mx = dtrace_load64(tupregs[0].dttk_value);
+ regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
+ break;
+
+ case DIF_SUBR_MUTEX_TYPE_SPIN:
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ m.mx = dtrace_load64(tupregs[0].dttk_value);
+ regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
+ break;
+
+ case DIF_SUBR_RW_READ_HELD: {
+ uintptr_t tmp;
+
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ r.rw = dtrace_loadptr(tupregs[0].dttk_value);
+ regs[rd] = _RW_READ_HELD(&r.ri, tmp);
+ break;
+ }
+
+ case DIF_SUBR_RW_WRITE_HELD:
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ r.rw = dtrace_loadptr(tupregs[0].dttk_value);
+ regs[rd] = _RW_WRITE_HELD(&r.ri);
+ break;
+
+ case DIF_SUBR_RW_ISWRITER:
+ if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
+ mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ r.rw = dtrace_loadptr(tupregs[0].dttk_value);
+ regs[rd] = _RW_ISWRITER(&r.ri);
+ break;
+
+ case DIF_SUBR_BCOPY: {
+ /*
+ * We need to be sure that the destination is in the scratch
+ * region -- no other region is allowed.
+ */
+ uintptr_t src = tupregs[0].dttk_value;
+ uintptr_t dest = tupregs[1].dttk_value;
+ size_t size = tupregs[2].dttk_value;
+
+ if (!dtrace_inscratch(dest, size, mstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+
+ if (!dtrace_canload(src, size, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ dtrace_bcopy((void *)src, (void *)dest, size);
+ break;
+ }
+
+ case DIF_SUBR_ALLOCA:
+ case DIF_SUBR_COPYIN: {
+ uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
+ uint64_t size =
+ tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
+ size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
+
+ /*
+ * This action doesn't require any credential checks since
+ * probes will not activate in user contexts to which the
+ * enabling user does not have permissions.
+ */
+
+ /*
+ * Rounding up the user allocation size could have overflowed
+ * a large, bogus allocation (like -1ULL) to 0.
+ */
+ if (scratch_size < size ||
+ !DTRACE_INSCRATCH(mstate, scratch_size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (subr == DIF_SUBR_COPYIN) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ }
+
+ mstate->dtms_scratch_ptr += scratch_size;
+ regs[rd] = dest;
+ break;
+ }
+
+ case DIF_SUBR_COPYINTO: {
+ uint64_t size = tupregs[1].dttk_value;
+ uintptr_t dest = tupregs[2].dttk_value;
+
+ /*
+ * This action doesn't require any credential checks since
+ * probes will not activate in user contexts to which the
+ * enabling user does not have permissions.
+ */
+ if (!dtrace_inscratch(dest, size, mstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ break;
+ }
+
+ case DIF_SUBR_COPYINSTR: {
+ uintptr_t dest = mstate->dtms_scratch_ptr;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+
+ if (nargs > 1 && tupregs[1].dttk_value < size)
+ size = tupregs[1].dttk_value + 1;
+
+ /*
+ * This action doesn't require any credential checks since
+ * probes will not activate in user contexts to which the
+ * enabling user does not have permissions.
+ */
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+
+ ((char *)dest)[size - 1] = '\0';
+ mstate->dtms_scratch_ptr += size;
+ regs[rd] = dest;
+ break;
+ }
+
+ case DIF_SUBR_MSGSIZE:
+ case DIF_SUBR_MSGDSIZE: {
+ uintptr_t baddr = tupregs[0].dttk_value, daddr;
+ uintptr_t wptr, rptr;
+ size_t count = 0;
+ int cont = 0;
+
+ while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
+
+ if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
+ vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ wptr = dtrace_loadptr(baddr +
+ offsetof(mblk_t, b_wptr));
+
+ rptr = dtrace_loadptr(baddr +
+ offsetof(mblk_t, b_rptr));
+
+ if (wptr < rptr) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = tupregs[0].dttk_value;
+ break;
+ }
+
+ daddr = dtrace_loadptr(baddr +
+ offsetof(mblk_t, b_datap));
+
+ baddr = dtrace_loadptr(baddr +
+ offsetof(mblk_t, b_cont));
+
+ /*
+ * We want to prevent against denial-of-service here,
+ * so we're only going to search the list for
+ * dtrace_msgdsize_max mblks.
+ */
+ if (cont++ > dtrace_msgdsize_max) {
+ *flags |= CPU_DTRACE_ILLOP;
+ break;
+ }
+
+ if (subr == DIF_SUBR_MSGDSIZE) {
+ if (dtrace_load8(daddr +
+ offsetof(dblk_t, db_type)) != M_DATA)
+ continue;
+ }
+
+ count += wptr - rptr;
+ }
+
+ if (!(*flags & CPU_DTRACE_FAULT))
+ regs[rd] = count;
+
+ break;
+ }
+
+ case DIF_SUBR_PROGENYOF: {
+ pid_t pid = tupregs[0].dttk_value;
+ proc_t *p;
+ int rval = 0;
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+
+ for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
+ if (p->p_pidp->pid_id == pid) {
+ rval = 1;
+ break;
+ }
+ }
+
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+
+ regs[rd] = rval;
+ break;
+ }
+
+ case DIF_SUBR_SPECULATION:
+ regs[rd] = dtrace_speculation(state);
+ break;
+
+ case DIF_SUBR_COPYOUT: {
+ uintptr_t kaddr = tupregs[0].dttk_value;
+ uintptr_t uaddr = tupregs[1].dttk_value;
+ uint64_t size = tupregs[2].dttk_value;
+
+ if (!dtrace_destructive_disallow &&
+ dtrace_priv_proc_control(state) &&
+ !dtrace_istoxic(kaddr, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_copyout(kaddr, uaddr, size, flags);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ }
+ break;
+ }
+
+ case DIF_SUBR_COPYOUTSTR: {
+ uintptr_t kaddr = tupregs[0].dttk_value;
+ uintptr_t uaddr = tupregs[1].dttk_value;
+ uint64_t size = tupregs[2].dttk_value;
+
+ if (!dtrace_destructive_disallow &&
+ dtrace_priv_proc_control(state) &&
+ !dtrace_istoxic(kaddr, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_copyoutstr(kaddr, uaddr, size, flags);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ }
+ break;
+ }
+
+ case DIF_SUBR_STRLEN: {
+ size_t sz;
+ uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
+ sz = dtrace_strlen((char *)addr,
+ state->dts_options[DTRACEOPT_STRSIZE]);
+
+ if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ regs[rd] = sz;
+
+ break;
+ }
+
+ case DIF_SUBR_STRCHR:
+ case DIF_SUBR_STRRCHR: {
+ /*
+ * We're going to iterate over the string looking for the
+ * specified character. We will iterate until we have reached
+ * the string length or we have found the character. If this
+ * is DIF_SUBR_STRRCHR, we will look for the last occurrence
+ * of the specified character instead of the first.
+ */
+ uintptr_t saddr = tupregs[0].dttk_value;
+ uintptr_t addr = tupregs[0].dttk_value;
+ uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
+ char c, target = (char)tupregs[1].dttk_value;
+
+ for (regs[rd] = NULL; addr < limit; addr++) {
+ if ((c = dtrace_load8(addr)) == target) {
+ regs[rd] = addr;
+
+ if (subr == DIF_SUBR_STRCHR)
+ break;
+ }
+
+ if (c == '\0')
+ break;
+ }
+
+ if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ break;
+ }
+
+ case DIF_SUBR_STRSTR:
+ case DIF_SUBR_INDEX:
+ case DIF_SUBR_RINDEX: {
+ /*
+ * We're going to iterate over the string looking for the
+ * specified string. We will iterate until we have reached
+ * the string length or we have found the string. (Yes, this
+ * is done in the most naive way possible -- but considering
+ * that the string we're searching for is likely to be
+ * relatively short, the complexity of Rabin-Karp or similar
+ * hardly seems merited.)
+ */
+ char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
+ char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ size_t len = dtrace_strlen(addr, size);
+ size_t sublen = dtrace_strlen(substr, size);
+ char *limit = addr + len, *orig = addr;
+ int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
+ int inc = 1;
+
+ regs[rd] = notfound;
+
+ if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
+ vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ /*
+ * strstr() and index()/rindex() have similar semantics if
+ * both strings are the empty string: strstr() returns a
+ * pointer to the (empty) string, and index() and rindex()
+ * both return index 0 (regardless of any position argument).
+ */
+ if (sublen == 0 && len == 0) {
+ if (subr == DIF_SUBR_STRSTR)
+ regs[rd] = (uintptr_t)addr;
+ else
+ regs[rd] = 0;
+ break;
+ }
+
+ if (subr != DIF_SUBR_STRSTR) {
+ if (subr == DIF_SUBR_RINDEX) {
+ limit = orig - 1;
+ addr += len;
+ inc = -1;
+ }
+
+ /*
+ * Both index() and rindex() take an optional position
+ * argument that denotes the starting position.
+ */
+ if (nargs == 3) {
+ int64_t pos = (int64_t)tupregs[2].dttk_value;
+
+ /*
+ * If the position argument to index() is
+ * negative, Perl implicitly clamps it at
+ * zero. This semantic is a little surprising
+ * given the special meaning of negative
+ * positions to similar Perl functions like
+ * substr(), but it appears to reflect a
+ * notion that index() can start from a
+ * negative index and increment its way up to
+ * the string. Given this notion, Perl's
+ * rindex() is at least self-consistent in
+ * that it implicitly clamps positions greater
+ * than the string length to be the string
+ * length. Where Perl completely loses
+ * coherence, however, is when the specified
+ * substring is the empty string (""). In
+ * this case, even if the position is
+ * negative, rindex() returns 0 -- and even if
+ * the position is greater than the length,
+ * index() returns the string length. These
+ * semantics violate the notion that index()
+ * should never return a value less than the
+ * specified position and that rindex() should
+ * never return a value greater than the
+ * specified position. (One assumes that
+ * these semantics are artifacts of Perl's
+ * implementation and not the results of
+ * deliberate design -- it beggars belief that
+ * even Larry Wall could desire such oddness.)
+ * While in the abstract one would wish for
+ * consistent position semantics across
+ * substr(), index() and rindex() -- or at the
+ * very least self-consistent position
+ * semantics for index() and rindex() -- we
+ * instead opt to keep with the extant Perl
+ * semantics, in all their broken glory. (Do
+ * we have more desire to maintain Perl's
+ * semantics than Perl does? Probably.)
+ */
+ if (subr == DIF_SUBR_RINDEX) {
+ if (pos < 0) {
+ if (sublen == 0)
+ regs[rd] = 0;
+ break;
+ }
+
+ if (pos > len)
+ pos = len;
+ } else {
+ if (pos < 0)
+ pos = 0;
+
+ if (pos >= len) {
+ if (sublen == 0)
+ regs[rd] = len;
+ break;
+ }
+ }
+
+ addr = orig + pos;
+ }
+ }
+
+ for (regs[rd] = notfound; addr != limit; addr += inc) {
+ if (dtrace_strncmp(addr, substr, sublen) == 0) {
+ if (subr != DIF_SUBR_STRSTR) {
+ /*
+ * As D index() and rindex() are
+ * modeled on Perl (and not on awk),
+ * we return a zero-based (and not a
+ * one-based) index. (For you Perl
+ * weenies: no, we're not going to add
+ * $[ -- and shouldn't you be at a con
+ * or something?)
+ */
+ regs[rd] = (uintptr_t)(addr - orig);
+ break;
+ }
+
+ ASSERT(subr == DIF_SUBR_STRSTR);
+ regs[rd] = (uintptr_t)addr;
+ break;
+ }
+ }
+
+ break;
+ }
+
+ case DIF_SUBR_STRTOK: {
+ uintptr_t addr = tupregs[0].dttk_value;
+ uintptr_t tokaddr = tupregs[1].dttk_value;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ uintptr_t limit, toklimit = tokaddr + size;
+ uint8_t c, tokmap[32]; /* 256 / 8 */
+ char *dest = (char *)mstate->dtms_scratch_ptr;
+ int i;
+
+ /*
+ * Check both the token buffer and (later) the input buffer,
+ * since both could be non-scratch addresses.
+ */
+ if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (addr == NULL) {
+ /*
+ * If the address specified is NULL, we use our saved
+ * strtok pointer from the mstate. Note that this
+ * means that the saved strtok pointer is _only_
+ * valid within multiple enablings of the same probe --
+ * it behaves like an implicit clause-local variable.
+ */
+ addr = mstate->dtms_strtok;
+ } else {
+ /*
+ * If the user-specified address is non-NULL we must
+ * access check it. This is the only time we have
+ * a chance to do so, since this address may reside
+ * in the string table of this clause-- future calls
+ * (when we fetch addr from mstate->dtms_strtok)
+ * would fail this access check.
+ */
+ if (!dtrace_strcanload(addr, size, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+ }
+
+ /*
+ * First, zero the token map, and then process the token
+ * string -- setting a bit in the map for every character
+ * found in the token string.
+ */
+ for (i = 0; i < sizeof (tokmap); i++)
+ tokmap[i] = 0;
+
+ for (; tokaddr < toklimit; tokaddr++) {
+ if ((c = dtrace_load8(tokaddr)) == '\0')
+ break;
+
+ ASSERT((c >> 3) < sizeof (tokmap));
+ tokmap[c >> 3] |= (1 << (c & 0x7));
+ }
+
+ for (limit = addr + size; addr < limit; addr++) {
+ /*
+ * We're looking for a character that is _not_ contained
+ * in the token string.
+ */
+ if ((c = dtrace_load8(addr)) == '\0')
+ break;
+
+ if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
+ break;
+ }
+
+ if (c == '\0') {
+ /*
+ * We reached the end of the string without finding
+ * any character that was not in the token string.
+ * We return NULL in this case, and we set the saved
+ * address to NULL as well.
+ */
+ regs[rd] = NULL;
+ mstate->dtms_strtok = NULL;
+ break;
+ }
+
+ /*
+ * From here on, we're copying into the destination string.
+ */
+ for (i = 0; addr < limit && i < size - 1; addr++) {
+ if ((c = dtrace_load8(addr)) == '\0')
+ break;
+
+ if (tokmap[c >> 3] & (1 << (c & 0x7)))
+ break;
+
+ ASSERT(i < size);
+ dest[i++] = c;
+ }
+
+ ASSERT(i < size);
+ dest[i] = '\0';
+ regs[rd] = (uintptr_t)dest;
+ mstate->dtms_scratch_ptr += size;
+ mstate->dtms_strtok = addr;
+ break;
+ }
+
+ case DIF_SUBR_SUBSTR: {
+ uintptr_t s = tupregs[0].dttk_value;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ char *d = (char *)mstate->dtms_scratch_ptr;
+ int64_t index = (int64_t)tupregs[1].dttk_value;
+ int64_t remaining = (int64_t)tupregs[2].dttk_value;
+ size_t len = dtrace_strlen((char *)s, size);
+ int64_t i = 0;
+
+ if (!dtrace_canload(s, len + 1, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (nargs <= 2)
+ remaining = (int64_t)size;
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (index < 0) {
+ index += len;
+
+ if (index < 0 && index + remaining > 0) {
+ remaining += index;
+ index = 0;
+ }
+ }
+
+ if (index >= len || index < 0)
+ index = len;
+
+ for (d[0] = '\0'; remaining > 0; remaining--) {
+ if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
+ break;
+
+ if (i == size) {
+ d[i - 1] = '\0';
+ break;
+ }
+ }
+
+ mstate->dtms_scratch_ptr += size;
+ regs[rd] = (uintptr_t)d;
+ break;
+ }
+
+ case DIF_SUBR_GETMAJOR:
+#ifdef _LP64
+ regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
+#else
+ regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
+#endif
+ break;
+
+ case DIF_SUBR_GETMINOR:
+#ifdef _LP64
+ regs[rd] = tupregs[0].dttk_value & MAXMIN64;
+#else
+ regs[rd] = tupregs[0].dttk_value & MAXMIN;
+#endif
+ break;
+
+ case DIF_SUBR_DDI_PATHNAME: {
+ /*
+ * This one is a galactic mess. We are going to roughly
+ * emulate ddi_pathname(), but it's made more complicated
+ * by the fact that we (a) want to include the minor name and
+ * (b) must proceed iteratively instead of recursively.
+ */
+ uintptr_t dest = mstate->dtms_scratch_ptr;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ char *start = (char *)dest, *end = start + size - 1;
+ uintptr_t daddr = tupregs[0].dttk_value;
+ int64_t minor = (int64_t)tupregs[1].dttk_value;
+ char *s;
+ int i, len, depth = 0;
+
+ /*
+ * Due to all the pointer jumping we do and context we must
+ * rely upon, we just mandate that the user must have kernel
+ * read privileges to use this routine.
+ */
+ if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = daddr;
+ regs[rd] = NULL;
+ }
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ *end = '\0';
+
+ /*
+ * We want to have a name for the minor. In order to do this,
+ * we need to walk the minor list from the devinfo. We want
+ * to be sure that we don't infinitely walk a circular list,
+ * so we check for circularity by sending a scout pointer
+ * ahead two elements for every element that we iterate over;
+ * if the list is circular, these will ultimately point to the
+ * same element. You may recognize this little trick as the
+ * answer to a stupid interview question -- one that always
+ * seems to be asked by those who had to have it laboriously
+ * explained to them, and who can't even concisely describe
+ * the conditions under which one would be forced to resort to
+ * this technique. Needless to say, those conditions are
+ * found here -- and probably only here. Is this is the only
+ * use of this infamous trick in shipping, production code?
+ * If it isn't, it probably should be...
+ */
+ if (minor != -1) {
+ uintptr_t maddr = dtrace_loadptr(daddr +
+ offsetof(struct dev_info, devi_minor));
+
+ uintptr_t next = offsetof(struct ddi_minor_data, next);
+ uintptr_t name = offsetof(struct ddi_minor_data,
+ d_minor) + offsetof(struct ddi_minor, name);
+ uintptr_t dev = offsetof(struct ddi_minor_data,
+ d_minor) + offsetof(struct ddi_minor, dev);
+ uintptr_t scout;
+
+ if (maddr != NULL)
+ scout = dtrace_loadptr(maddr + next);
+
+ while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
+ uint64_t m;
+#ifdef _LP64
+ m = dtrace_load64(maddr + dev) & MAXMIN64;
+#else
+ m = dtrace_load32(maddr + dev) & MAXMIN;
+#endif
+ if (m != minor) {
+ maddr = dtrace_loadptr(maddr + next);
+
+ if (scout == NULL)
+ continue;
+
+ scout = dtrace_loadptr(scout + next);
+
+ if (scout == NULL)
+ continue;
+
+ scout = dtrace_loadptr(scout + next);
+
+ if (scout == NULL)
+ continue;
+
+ if (scout == maddr) {
+ *flags |= CPU_DTRACE_ILLOP;
+ break;
+ }
+
+ continue;
+ }
+
+ /*
+ * We have the minor data. Now we need to
+ * copy the minor's name into the end of the
+ * pathname.
+ */
+ s = (char *)dtrace_loadptr(maddr + name);
+ len = dtrace_strlen(s, size);
+
+ if (*flags & CPU_DTRACE_FAULT)
+ break;
+
+ if (len != 0) {
+ if ((end -= (len + 1)) < start)
+ break;
+
+ *end = ':';
+ }
+
+ for (i = 1; i <= len; i++)
+ end[i] = dtrace_load8((uintptr_t)s++);
+ break;
+ }
+ }
+
+ while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
+ ddi_node_state_t devi_state;
+
+ devi_state = dtrace_load32(daddr +
+ offsetof(struct dev_info, devi_node_state));
+
+ if (*flags & CPU_DTRACE_FAULT)
+ break;
+
+ if (devi_state >= DS_INITIALIZED) {
+ s = (char *)dtrace_loadptr(daddr +
+ offsetof(struct dev_info, devi_addr));
+ len = dtrace_strlen(s, size);
+
+ if (*flags & CPU_DTRACE_FAULT)
+ break;
+
+ if (len != 0) {
+ if ((end -= (len + 1)) < start)
+ break;
+
+ *end = '@';
+ }
+
+ for (i = 1; i <= len; i++)
+ end[i] = dtrace_load8((uintptr_t)s++);
+ }
+
+ /*
+ * Now for the node name...
+ */
+ s = (char *)dtrace_loadptr(daddr +
+ offsetof(struct dev_info, devi_node_name));
+
+ daddr = dtrace_loadptr(daddr +
+ offsetof(struct dev_info, devi_parent));
+
+ /*
+ * If our parent is NULL (that is, if we're the root
+ * node), we're going to use the special path
+ * "devices".
+ */
+ if (daddr == NULL)
+ s = "devices";
+
+ len = dtrace_strlen(s, size);
+ if (*flags & CPU_DTRACE_FAULT)
+ break;
+
+ if ((end -= (len + 1)) < start)
+ break;
+
+ for (i = 1; i <= len; i++)
+ end[i] = dtrace_load8((uintptr_t)s++);
+ *end = '/';
+
+ if (depth++ > dtrace_devdepth_max) {
+ *flags |= CPU_DTRACE_ILLOP;
+ break;
+ }
+ }
+
+ if (end < start)
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+
+ if (daddr == NULL) {
+ regs[rd] = (uintptr_t)end;
+ mstate->dtms_scratch_ptr += size;
+ }
+
+ break;
+ }
+
+ case DIF_SUBR_STRJOIN: {
+ char *d = (char *)mstate->dtms_scratch_ptr;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ uintptr_t s1 = tupregs[0].dttk_value;
+ uintptr_t s2 = tupregs[1].dttk_value;
+ int i = 0;
+
+ if (!dtrace_strcanload(s1, size, mstate, vstate) ||
+ !dtrace_strcanload(s2, size, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ for (;;) {
+ if (i >= size) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ if ((d[i++] = dtrace_load8(s1++)) == '\0') {
+ i--;
+ break;
+ }
+ }
+
+ for (;;) {
+ if (i >= size) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ if ((d[i++] = dtrace_load8(s2++)) == '\0')
+ break;
+ }
+
+ if (i < size) {
+ mstate->dtms_scratch_ptr += i;
+ regs[rd] = (uintptr_t)d;
+ }
+
+ break;
+ }
+
+ case DIF_SUBR_LLTOSTR: {
+ int64_t i = (int64_t)tupregs[0].dttk_value;
+ int64_t val = i < 0 ? i * -1 : i;
+ uint64_t size = 22; /* enough room for 2^64 in decimal */
+ char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ for (*end-- = '\0'; val; val /= 10)
+ *end-- = '0' + (val % 10);
+
+ if (i == 0)
+ *end-- = '0';
+
+ if (i < 0)
+ *end-- = '-';
+
+ regs[rd] = (uintptr_t)end + 1;
+ mstate->dtms_scratch_ptr += size;
+ break;
+ }
+
+ case DIF_SUBR_HTONS:
+ case DIF_SUBR_NTOHS:
+#ifdef _BIG_ENDIAN
+ regs[rd] = (uint16_t)tupregs[0].dttk_value;
+#else
+ regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
+#endif
+ break;
+
+
+ case DIF_SUBR_HTONL:
+ case DIF_SUBR_NTOHL:
+#ifdef _BIG_ENDIAN
+ regs[rd] = (uint32_t)tupregs[0].dttk_value;
+#else
+ regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
+#endif
+ break;
+
+
+ case DIF_SUBR_HTONLL:
+ case DIF_SUBR_NTOHLL:
+#ifdef _BIG_ENDIAN
+ regs[rd] = (uint64_t)tupregs[0].dttk_value;
+#else
+ regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
+#endif
+ break;
+
+
+ case DIF_SUBR_DIRNAME:
+ case DIF_SUBR_BASENAME: {
+ char *dest = (char *)mstate->dtms_scratch_ptr;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ uintptr_t src = tupregs[0].dttk_value;
+ int i, j, len = dtrace_strlen((char *)src, size);
+ int lastbase = -1, firstbase = -1, lastdir = -1;
+ int start, end;
+
+ if (!dtrace_canload(src, len + 1, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ /*
+ * The basename and dirname for a zero-length string is
+ * defined to be "."
+ */
+ if (len == 0) {
+ len = 1;
+ src = (uintptr_t)".";
+ }
+
+ /*
+ * Start from the back of the string, moving back toward the
+ * front until we see a character that isn't a slash. That
+ * character is the last character in the basename.
+ */
+ for (i = len - 1; i >= 0; i--) {
+ if (dtrace_load8(src + i) != '/')
+ break;
+ }
+
+ if (i >= 0)
+ lastbase = i;
+
+ /*
+ * Starting from the last character in the basename, move
+ * towards the front until we find a slash. The character
+ * that we processed immediately before that is the first
+ * character in the basename.
+ */
+ for (; i >= 0; i--) {
+ if (dtrace_load8(src + i) == '/')
+ break;
+ }
+
+ if (i >= 0)
+ firstbase = i + 1;
+
+ /*
+ * Now keep going until we find a non-slash character. That
+ * character is the last character in the dirname.
+ */
+ for (; i >= 0; i--) {
+ if (dtrace_load8(src + i) != '/')
+ break;
+ }
+
+ if (i >= 0)
+ lastdir = i;
+
+ ASSERT(!(lastbase == -1 && firstbase != -1));
+ ASSERT(!(firstbase == -1 && lastdir != -1));
+
+ if (lastbase == -1) {
+ /*
+ * We didn't find a non-slash character. We know that
+ * the length is non-zero, so the whole string must be
+ * slashes. In either the dirname or the basename
+ * case, we return '/'.
+ */
+ ASSERT(firstbase == -1);
+ firstbase = lastbase = lastdir = 0;
+ }
+
+ if (firstbase == -1) {
+ /*
+ * The entire string consists only of a basename
+ * component. If we're looking for dirname, we need
+ * to change our string to be just "."; if we're
+ * looking for a basename, we'll just set the first
+ * character of the basename to be 0.
+ */
+ if (subr == DIF_SUBR_DIRNAME) {
+ ASSERT(lastdir == -1);
+ src = (uintptr_t)".";
+ lastdir = 0;
+ } else {
+ firstbase = 0;
+ }
+ }
+
+ if (subr == DIF_SUBR_DIRNAME) {
+ if (lastdir == -1) {
+ /*
+ * We know that we have a slash in the name --
+ * or lastdir would be set to 0, above. And
+ * because lastdir is -1, we know that this
+ * slash must be the first character. (That
+ * is, the full string must be of the form
+ * "/basename".) In this case, the last
+ * character of the directory name is 0.
+ */
+ lastdir = 0;
+ }
+
+ start = 0;
+ end = lastdir;
+ } else {
+ ASSERT(subr == DIF_SUBR_BASENAME);
+ ASSERT(firstbase != -1 && lastbase != -1);
+ start = firstbase;
+ end = lastbase;
+ }
+
+ for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
+ dest[j] = dtrace_load8(src + i);
+
+ dest[j] = '\0';
+ regs[rd] = (uintptr_t)dest;
+ mstate->dtms_scratch_ptr += size;
+ break;
+ }
+
+ case DIF_SUBR_CLEANPATH: {
+ char *dest = (char *)mstate->dtms_scratch_ptr, c;
+ uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
+ uintptr_t src = tupregs[0].dttk_value;
+ int i = 0, j = 0;
+
+ if (!dtrace_strcanload(src, size, mstate, vstate)) {
+ regs[rd] = NULL;
+ break;
+ }
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ /*
+ * Move forward, loading each character.
+ */
+ do {
+ c = dtrace_load8(src + i++);
+next:
+ if (j + 5 >= size) /* 5 = strlen("/..c\0") */
+ break;
+
+ if (c != '/') {
+ dest[j++] = c;
+ continue;
+ }
+
+ c = dtrace_load8(src + i++);
+
+ if (c == '/') {
+ /*
+ * We have two slashes -- we can just advance
+ * to the next character.
+ */
+ goto next;
+ }
+
+ if (c != '.') {
+ /*
+ * This is not "." and it's not ".." -- we can
+ * just store the "/" and this character and
+ * drive on.
+ */
+ dest[j++] = '/';
+ dest[j++] = c;
+ continue;
+ }
+
+ c = dtrace_load8(src + i++);
+
+ if (c == '/') {
+ /*
+ * This is a "/./" component. We're not going
+ * to store anything in the destination buffer;
+ * we're just going to go to the next component.
+ */
+ goto next;
+ }
+
+ if (c != '.') {
+ /*
+ * This is not ".." -- we can just store the
+ * "/." and this character and continue
+ * processing.
+ */
+ dest[j++] = '/';
+ dest[j++] = '.';
+ dest[j++] = c;
+ continue;
+ }
+
+ c = dtrace_load8(src + i++);
+
+ if (c != '/' && c != '\0') {
+ /*
+ * This is not ".." -- it's "..[mumble]".
+ * We'll store the "/.." and this character
+ * and continue processing.
+ */
+ dest[j++] = '/';
+ dest[j++] = '.';
+ dest[j++] = '.';
+ dest[j++] = c;
+ continue;
+ }
+
+ /*
+ * This is "/../" or "/..\0". We need to back up
+ * our destination pointer until we find a "/".
+ */
+ i--;
+ while (j != 0 && dest[--j] != '/')
+ continue;
+
+ if (c == '\0')
+ dest[++j] = '/';
+ } while (c != '\0');
+
+ dest[j] = '\0';
+ regs[rd] = (uintptr_t)dest;
+ mstate->dtms_scratch_ptr += size;
+ break;
+ }
+
+ case DIF_SUBR_INET_NTOA:
+ case DIF_SUBR_INET_NTOA6:
+ case DIF_SUBR_INET_NTOP: {
+ size_t size;
+ int af, argi, i;
+ char *base, *end;
+
+ if (subr == DIF_SUBR_INET_NTOP) {
+ af = (int)tupregs[0].dttk_value;
+ argi = 1;
+ } else {
+ af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
+ argi = 0;
+ }
+
+ if (af == AF_INET) {
+ ipaddr_t ip4;
+ uint8_t *ptr8, val;
+
+ /*
+ * Safely load the IPv4 address.
+ */
+ ip4 = dtrace_load32(tupregs[argi].dttk_value);
+
+ /*
+ * Check an IPv4 string will fit in scratch.
+ */
+ size = INET_ADDRSTRLEN;
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+ base = (char *)mstate->dtms_scratch_ptr;
+ end = (char *)mstate->dtms_scratch_ptr + size - 1;
+
+ /*
+ * Stringify as a dotted decimal quad.
+ */
+ *end-- = '\0';
+ ptr8 = (uint8_t *)&ip4;
+ for (i = 3; i >= 0; i--) {
+ val = ptr8[i];
+
+ if (val == 0) {
+ *end-- = '0';
+ } else {
+ for (; val; val /= 10) {
+ *end-- = '0' + (val % 10);
+ }
+ }
+
+ if (i > 0)
+ *end-- = '.';
+ }
+ ASSERT(end + 1 >= base);
+
+ } else if (af == AF_INET6) {
+ struct in6_addr ip6;
+ int firstzero, tryzero, numzero, v6end;
+ uint16_t val;
+ const char digits[] = "0123456789abcdef";
+
+ /*
+ * Stringify using RFC 1884 convention 2 - 16 bit
+ * hexadecimal values with a zero-run compression.
+ * Lower case hexadecimal digits are used.
+ * eg, fe80::214:4fff:fe0b:76c8.
+ * The IPv4 embedded form is returned for inet_ntop,
+ * just the IPv4 string is returned for inet_ntoa6.
+ */
+
+ /*
+ * Safely load the IPv6 address.
+ */
+ dtrace_bcopy(
+ (void *)(uintptr_t)tupregs[argi].dttk_value,
+ (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
+
+ /*
+ * Check an IPv6 string will fit in scratch.
+ */
+ size = INET6_ADDRSTRLEN;
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+ base = (char *)mstate->dtms_scratch_ptr;
+ end = (char *)mstate->dtms_scratch_ptr + size - 1;
+ *end-- = '\0';
+
+ /*
+ * Find the longest run of 16 bit zero values
+ * for the single allowed zero compression - "::".
+ */
+ firstzero = -1;
+ tryzero = -1;
+ numzero = 1;
+ for (i = 0; i < sizeof (struct in6_addr); i++) {
+ if (ip6._S6_un._S6_u8[i] == 0 &&
+ tryzero == -1 && i % 2 == 0) {
+ tryzero = i;
+ continue;
+ }
+
+ if (tryzero != -1 &&
+ (ip6._S6_un._S6_u8[i] != 0 ||
+ i == sizeof (struct in6_addr) - 1)) {
+
+ if (i - tryzero <= numzero) {
+ tryzero = -1;
+ continue;
+ }
+
+ firstzero = tryzero;
+ numzero = i - i % 2 - tryzero;
+ tryzero = -1;
+
+ if (ip6._S6_un._S6_u8[i] == 0 &&
+ i == sizeof (struct in6_addr) - 1)
+ numzero += 2;
+ }
+ }
+ ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
+
+ /*
+ * Check for an IPv4 embedded address.
+ */
+ v6end = sizeof (struct in6_addr) - 2;
+ if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
+ IN6_IS_ADDR_V4COMPAT(&ip6)) {
+ for (i = sizeof (struct in6_addr) - 1;
+ i >= DTRACE_V4MAPPED_OFFSET; i--) {
+ ASSERT(end >= base);
+
+ val = ip6._S6_un._S6_u8[i];
+
+ if (val == 0) {
+ *end-- = '0';
+ } else {
+ for (; val; val /= 10) {
+ *end-- = '0' + val % 10;
+ }
+ }
+
+ if (i > DTRACE_V4MAPPED_OFFSET)
+ *end-- = '.';
+ }
+
+ if (subr == DIF_SUBR_INET_NTOA6)
+ goto inetout;
+
+ /*
+ * Set v6end to skip the IPv4 address that
+ * we have already stringified.
+ */
+ v6end = 10;
+ }
+
+ /*
+ * Build the IPv6 string by working through the
+ * address in reverse.
+ */
+ for (i = v6end; i >= 0; i -= 2) {
+ ASSERT(end >= base);
+
+ if (i == firstzero + numzero - 2) {
+ *end-- = ':';
+ *end-- = ':';
+ i -= numzero - 2;
+ continue;
+ }
+
+ if (i < 14 && i != firstzero - 2)
+ *end-- = ':';
+
+ val = (ip6._S6_un._S6_u8[i] << 8) +
+ ip6._S6_un._S6_u8[i + 1];
+
+ if (val == 0) {
+ *end-- = '0';
+ } else {
+ for (; val; val /= 16) {
+ *end-- = digits[val % 16];
+ }
+ }
+ }
+ ASSERT(end + 1 >= base);
+
+ } else {
+ /*
+ * The user didn't use AH_INET or AH_INET6.
+ */
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ regs[rd] = NULL;
+ break;
+ }
+
+inetout: regs[rd] = (uintptr_t)end + 1;
+ mstate->dtms_scratch_ptr += size;
+ break;
+ }
+
+ }
+}
+
+/*
+ * Emulate the execution of DTrace IR instructions specified by the given
+ * DIF object. This function is deliberately void of assertions as all of
+ * the necessary checks are handled by a call to dtrace_difo_validate().
+ */
+static uint64_t
+dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
+ dtrace_vstate_t *vstate, dtrace_state_t *state)
+{
+ const dif_instr_t *text = difo->dtdo_buf;
+ const uint_t textlen = difo->dtdo_len;
+ const char *strtab = difo->dtdo_strtab;
+ const uint64_t *inttab = difo->dtdo_inttab;
+
+ uint64_t rval = 0;
+ dtrace_statvar_t *svar;
+ dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
+ dtrace_difv_t *v;
+ volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+ volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
+
+ dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
+ uint64_t regs[DIF_DIR_NREGS];
+ uint64_t *tmp;
+
+ uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
+ int64_t cc_r;
+ uint_t pc = 0, id, opc;
+ uint8_t ttop = 0;
+ dif_instr_t instr;
+ uint_t r1, r2, rd;
+
+ /*
+ * We stash the current DIF object into the machine state: we need it
+ * for subsequent access checking.
+ */
+ mstate->dtms_difo = difo;
+
+ regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
+
+ while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
+ opc = pc;
+
+ instr = text[pc++];
+ r1 = DIF_INSTR_R1(instr);
+ r2 = DIF_INSTR_R2(instr);
+ rd = DIF_INSTR_RD(instr);
+
+ switch (DIF_INSTR_OP(instr)) {
+ case DIF_OP_OR:
+ regs[rd] = regs[r1] | regs[r2];
+ break;
+ case DIF_OP_XOR:
+ regs[rd] = regs[r1] ^ regs[r2];
+ break;
+ case DIF_OP_AND:
+ regs[rd] = regs[r1] & regs[r2];
+ break;
+ case DIF_OP_SLL:
+ regs[rd] = regs[r1] << regs[r2];
+ break;
+ case DIF_OP_SRL:
+ regs[rd] = regs[r1] >> regs[r2];
+ break;
+ case DIF_OP_SUB:
+ regs[rd] = regs[r1] - regs[r2];
+ break;
+ case DIF_OP_ADD:
+ regs[rd] = regs[r1] + regs[r2];
+ break;
+ case DIF_OP_MUL:
+ regs[rd] = regs[r1] * regs[r2];
+ break;
+ case DIF_OP_SDIV:
+ if (regs[r2] == 0) {
+ regs[rd] = 0;
+ *flags |= CPU_DTRACE_DIVZERO;
+ } else {
+ regs[rd] = (int64_t)regs[r1] /
+ (int64_t)regs[r2];
+ }
+ break;
+
+ case DIF_OP_UDIV:
+ if (regs[r2] == 0) {
+ regs[rd] = 0;
+ *flags |= CPU_DTRACE_DIVZERO;
+ } else {
+ regs[rd] = regs[r1] / regs[r2];
+ }
+ break;
+
+ case DIF_OP_SREM:
+ if (regs[r2] == 0) {
+ regs[rd] = 0;
+ *flags |= CPU_DTRACE_DIVZERO;
+ } else {
+ regs[rd] = (int64_t)regs[r1] %
+ (int64_t)regs[r2];
+ }
+ break;
+
+ case DIF_OP_UREM:
+ if (regs[r2] == 0) {
+ regs[rd] = 0;
+ *flags |= CPU_DTRACE_DIVZERO;
+ } else {
+ regs[rd] = regs[r1] % regs[r2];
+ }
+ break;
+
+ case DIF_OP_NOT:
+ regs[rd] = ~regs[r1];
+ break;
+ case DIF_OP_MOV:
+ regs[rd] = regs[r1];
+ break;
+ case DIF_OP_CMP:
+ cc_r = regs[r1] - regs[r2];
+ cc_n = cc_r < 0;
+ cc_z = cc_r == 0;
+ cc_v = 0;
+ cc_c = regs[r1] < regs[r2];
+ break;
+ case DIF_OP_TST:
+ cc_n = cc_v = cc_c = 0;
+ cc_z = regs[r1] == 0;
+ break;
+ case DIF_OP_BA:
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BE:
+ if (cc_z)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BNE:
+ if (cc_z == 0)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BG:
+ if ((cc_z | (cc_n ^ cc_v)) == 0)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BGU:
+ if ((cc_c | cc_z) == 0)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BGE:
+ if ((cc_n ^ cc_v) == 0)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BGEU:
+ if (cc_c == 0)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BL:
+ if (cc_n ^ cc_v)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BLU:
+ if (cc_c)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BLE:
+ if (cc_z | (cc_n ^ cc_v))
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_BLEU:
+ if (cc_c | cc_z)
+ pc = DIF_INSTR_LABEL(instr);
+ break;
+ case DIF_OP_RLDSB:
+ if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDSB:
+ regs[rd] = (int8_t)dtrace_load8(regs[r1]);
+ break;
+ case DIF_OP_RLDSH:
+ if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDSH:
+ regs[rd] = (int16_t)dtrace_load16(regs[r1]);
+ break;
+ case DIF_OP_RLDSW:
+ if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDSW:
+ regs[rd] = (int32_t)dtrace_load32(regs[r1]);
+ break;
+ case DIF_OP_RLDUB:
+ if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDUB:
+ regs[rd] = dtrace_load8(regs[r1]);
+ break;
+ case DIF_OP_RLDUH:
+ if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDUH:
+ regs[rd] = dtrace_load16(regs[r1]);
+ break;
+ case DIF_OP_RLDUW:
+ if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDUW:
+ regs[rd] = dtrace_load32(regs[r1]);
+ break;
+ case DIF_OP_RLDX:
+ if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
+ *flags |= CPU_DTRACE_KPRIV;
+ *illval = regs[r1];
+ break;
+ }
+ /*FALLTHROUGH*/
+ case DIF_OP_LDX:
+ regs[rd] = dtrace_load64(regs[r1]);
+ break;
+ case DIF_OP_ULDSB:
+ regs[rd] = (int8_t)
+ dtrace_fuword8((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_ULDSH:
+ regs[rd] = (int16_t)
+ dtrace_fuword16((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_ULDSW:
+ regs[rd] = (int32_t)
+ dtrace_fuword32((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_ULDUB:
+ regs[rd] =
+ dtrace_fuword8((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_ULDUH:
+ regs[rd] =
+ dtrace_fuword16((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_ULDUW:
+ regs[rd] =
+ dtrace_fuword32((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_ULDX:
+ regs[rd] =
+ dtrace_fuword64((void *)(uintptr_t)regs[r1]);
+ break;
+ case DIF_OP_RET:
+ rval = regs[rd];
+ pc = textlen;
+ break;
+ case DIF_OP_NOP:
+ break;
+ case DIF_OP_SETX:
+ regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
+ break;
+ case DIF_OP_SETS:
+ regs[rd] = (uint64_t)(uintptr_t)
+ (strtab + DIF_INSTR_STRING(instr));
+ break;
+ case DIF_OP_SCMP: {
+ size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
+ uintptr_t s1 = regs[r1];
+ uintptr_t s2 = regs[r2];
+
+ if (s1 != NULL &&
+ !dtrace_strcanload(s1, sz, mstate, vstate))
+ break;
+ if (s2 != NULL &&
+ !dtrace_strcanload(s2, sz, mstate, vstate))
+ break;
+
+ cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
+
+ cc_n = cc_r < 0;
+ cc_z = cc_r == 0;
+ cc_v = cc_c = 0;
+ break;
+ }
+ case DIF_OP_LDGA:
+ regs[rd] = dtrace_dif_variable(mstate, state,
+ r1, regs[r2]);
+ break;
+ case DIF_OP_LDGS:
+ id = DIF_INSTR_VAR(instr);
+
+ if (id >= DIF_VAR_OTHER_UBASE) {
+ uintptr_t a;
+
+ id -= DIF_VAR_OTHER_UBASE;
+ svar = vstate->dtvs_globals[id];
+ ASSERT(svar != NULL);
+ v = &svar->dtsv_var;
+
+ if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
+ regs[rd] = svar->dtsv_data;
+ break;
+ }
+
+ a = (uintptr_t)svar->dtsv_data;
+
+ if (*(uint8_t *)a == UINT8_MAX) {
+ /*
+ * If the 0th byte is set to UINT8_MAX
+ * then this is to be treated as a
+ * reference to a NULL variable.
+ */
+ regs[rd] = NULL;
+ } else {
+ regs[rd] = a + sizeof (uint64_t);
+ }
+
+ break;
+ }
+
+ regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
+ break;
+
+ case DIF_OP_STGS:
+ id = DIF_INSTR_VAR(instr);
+
+ ASSERT(id >= DIF_VAR_OTHER_UBASE);
+ id -= DIF_VAR_OTHER_UBASE;
+
+ svar = vstate->dtvs_globals[id];
+ ASSERT(svar != NULL);
+ v = &svar->dtsv_var;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ uintptr_t a = (uintptr_t)svar->dtsv_data;
+
+ ASSERT(a != NULL);
+ ASSERT(svar->dtsv_size != 0);
+
+ if (regs[rd] == NULL) {
+ *(uint8_t *)a = UINT8_MAX;
+ break;
+ } else {
+ *(uint8_t *)a = 0;
+ a += sizeof (uint64_t);
+ }
+ if (!dtrace_vcanload(
+ (void *)(uintptr_t)regs[rd], &v->dtdv_type,
+ mstate, vstate))
+ break;
+
+ dtrace_vcopy((void *)(uintptr_t)regs[rd],
+ (void *)a, &v->dtdv_type);
+ break;
+ }
+
+ svar->dtsv_data = regs[rd];
+ break;
+
+ case DIF_OP_LDTA:
+ /*
+ * There are no DTrace built-in thread-local arrays at
+ * present. This opcode is saved for future work.
+ */
+ *flags |= CPU_DTRACE_ILLOP;
+ regs[rd] = 0;
+ break;
+
+ case DIF_OP_LDLS:
+ id = DIF_INSTR_VAR(instr);
+
+ if (id < DIF_VAR_OTHER_UBASE) {
+ /*
+ * For now, this has no meaning.
+ */
+ regs[rd] = 0;
+ break;
+ }
+
+ id -= DIF_VAR_OTHER_UBASE;
+
+ ASSERT(id < vstate->dtvs_nlocals);
+ ASSERT(vstate->dtvs_locals != NULL);
+
+ svar = vstate->dtvs_locals[id];
+ ASSERT(svar != NULL);
+ v = &svar->dtsv_var;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ uintptr_t a = (uintptr_t)svar->dtsv_data;
+ size_t sz = v->dtdv_type.dtdt_size;
+
+ sz += sizeof (uint64_t);
+ ASSERT(svar->dtsv_size == NCPU * sz);
+ a += CPU->cpu_id * sz;
+
+ if (*(uint8_t *)a == UINT8_MAX) {
+ /*
+ * If the 0th byte is set to UINT8_MAX
+ * then this is to be treated as a
+ * reference to a NULL variable.
+ */
+ regs[rd] = NULL;
+ } else {
+ regs[rd] = a + sizeof (uint64_t);
+ }
+
+ break;
+ }
+
+ ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
+ tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
+ regs[rd] = tmp[CPU->cpu_id];
+ break;
+
+ case DIF_OP_STLS:
+ id = DIF_INSTR_VAR(instr);
+
+ ASSERT(id >= DIF_VAR_OTHER_UBASE);
+ id -= DIF_VAR_OTHER_UBASE;
+ ASSERT(id < vstate->dtvs_nlocals);
+
+ ASSERT(vstate->dtvs_locals != NULL);
+ svar = vstate->dtvs_locals[id];
+ ASSERT(svar != NULL);
+ v = &svar->dtsv_var;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ uintptr_t a = (uintptr_t)svar->dtsv_data;
+ size_t sz = v->dtdv_type.dtdt_size;
+
+ sz += sizeof (uint64_t);
+ ASSERT(svar->dtsv_size == NCPU * sz);
+ a += CPU->cpu_id * sz;
+
+ if (regs[rd] == NULL) {
+ *(uint8_t *)a = UINT8_MAX;
+ break;
+ } else {
+ *(uint8_t *)a = 0;
+ a += sizeof (uint64_t);
+ }
+
+ if (!dtrace_vcanload(
+ (void *)(uintptr_t)regs[rd], &v->dtdv_type,
+ mstate, vstate))
+ break;
+
+ dtrace_vcopy((void *)(uintptr_t)regs[rd],
+ (void *)a, &v->dtdv_type);
+ break;
+ }
+
+ ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
+ tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
+ tmp[CPU->cpu_id] = regs[rd];
+ break;
+
+ case DIF_OP_LDTS: {
+ dtrace_dynvar_t *dvar;
+ dtrace_key_t *key;
+
+ id = DIF_INSTR_VAR(instr);
+ ASSERT(id >= DIF_VAR_OTHER_UBASE);
+ id -= DIF_VAR_OTHER_UBASE;
+ v = &vstate->dtvs_tlocals[id];
+
+ key = &tupregs[DIF_DTR_NREGS];
+ key[0].dttk_value = (uint64_t)id;
+ key[0].dttk_size = 0;
+ DTRACE_TLS_THRKEY(key[1].dttk_value);
+ key[1].dttk_size = 0;
+
+ dvar = dtrace_dynvar(dstate, 2, key,
+ sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
+ mstate, vstate);
+
+ if (dvar == NULL) {
+ regs[rd] = 0;
+ break;
+ }
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
+ } else {
+ regs[rd] = *((uint64_t *)dvar->dtdv_data);
+ }
+
+ break;
+ }
+
+ case DIF_OP_STTS: {
+ dtrace_dynvar_t *dvar;
+ dtrace_key_t *key;
+
+ id = DIF_INSTR_VAR(instr);
+ ASSERT(id >= DIF_VAR_OTHER_UBASE);
+ id -= DIF_VAR_OTHER_UBASE;
+
+ key = &tupregs[DIF_DTR_NREGS];
+ key[0].dttk_value = (uint64_t)id;
+ key[0].dttk_size = 0;
+ DTRACE_TLS_THRKEY(key[1].dttk_value);
+ key[1].dttk_size = 0;
+ v = &vstate->dtvs_tlocals[id];
+
+ dvar = dtrace_dynvar(dstate, 2, key,
+ v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
+ v->dtdv_type.dtdt_size : sizeof (uint64_t),
+ regs[rd] ? DTRACE_DYNVAR_ALLOC :
+ DTRACE_DYNVAR_DEALLOC, mstate, vstate);
+
+ /*
+ * Given that we're storing to thread-local data,
+ * we need to flush our predicate cache.
+ */
+ curthread->t_predcache = NULL;
+
+ if (dvar == NULL)
+ break;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ if (!dtrace_vcanload(
+ (void *)(uintptr_t)regs[rd],
+ &v->dtdv_type, mstate, vstate))
+ break;
+
+ dtrace_vcopy((void *)(uintptr_t)regs[rd],
+ dvar->dtdv_data, &v->dtdv_type);
+ } else {
+ *((uint64_t *)dvar->dtdv_data) = regs[rd];
+ }
+
+ break;
+ }
+
+ case DIF_OP_SRA:
+ regs[rd] = (int64_t)regs[r1] >> regs[r2];
+ break;
+
+ case DIF_OP_CALL:
+ dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
+ regs, tupregs, ttop, mstate, state);
+ break;
+
+ case DIF_OP_PUSHTR:
+ if (ttop == DIF_DTR_NREGS) {
+ *flags |= CPU_DTRACE_TUPOFLOW;
+ break;
+ }
+
+ if (r1 == DIF_TYPE_STRING) {
+ /*
+ * If this is a string type and the size is 0,
+ * we'll use the system-wide default string
+ * size. Note that we are _not_ looking at
+ * the value of the DTRACEOPT_STRSIZE option;
+ * had this been set, we would expect to have
+ * a non-zero size value in the "pushtr".
+ */
+ tupregs[ttop].dttk_size =
+ dtrace_strlen((char *)(uintptr_t)regs[rd],
+ regs[r2] ? regs[r2] :
+ dtrace_strsize_default) + 1;
+ } else {
+ tupregs[ttop].dttk_size = regs[r2];
+ }
+
+ tupregs[ttop++].dttk_value = regs[rd];
+ break;
+
+ case DIF_OP_PUSHTV:
+ if (ttop == DIF_DTR_NREGS) {
+ *flags |= CPU_DTRACE_TUPOFLOW;
+ break;
+ }
+
+ tupregs[ttop].dttk_value = regs[rd];
+ tupregs[ttop++].dttk_size = 0;
+ break;
+
+ case DIF_OP_POPTS:
+ if (ttop != 0)
+ ttop--;
+ break;
+
+ case DIF_OP_FLUSHTS:
+ ttop = 0;
+ break;
+
+ case DIF_OP_LDGAA:
+ case DIF_OP_LDTAA: {
+ dtrace_dynvar_t *dvar;
+ dtrace_key_t *key = tupregs;
+ uint_t nkeys = ttop;
+
+ id = DIF_INSTR_VAR(instr);
+ ASSERT(id >= DIF_VAR_OTHER_UBASE);
+ id -= DIF_VAR_OTHER_UBASE;
+
+ key[nkeys].dttk_value = (uint64_t)id;
+ key[nkeys++].dttk_size = 0;
+
+ if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
+ DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
+ key[nkeys++].dttk_size = 0;
+ v = &vstate->dtvs_tlocals[id];
+ } else {
+ v = &vstate->dtvs_globals[id]->dtsv_var;
+ }
+
+ dvar = dtrace_dynvar(dstate, nkeys, key,
+ v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
+ v->dtdv_type.dtdt_size : sizeof (uint64_t),
+ DTRACE_DYNVAR_NOALLOC, mstate, vstate);
+
+ if (dvar == NULL) {
+ regs[rd] = 0;
+ break;
+ }
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
+ } else {
+ regs[rd] = *((uint64_t *)dvar->dtdv_data);
+ }
+
+ break;
+ }
+
+ case DIF_OP_STGAA:
+ case DIF_OP_STTAA: {
+ dtrace_dynvar_t *dvar;
+ dtrace_key_t *key = tupregs;
+ uint_t nkeys = ttop;
+
+ id = DIF_INSTR_VAR(instr);
+ ASSERT(id >= DIF_VAR_OTHER_UBASE);
+ id -= DIF_VAR_OTHER_UBASE;
+
+ key[nkeys].dttk_value = (uint64_t)id;
+ key[nkeys++].dttk_size = 0;
+
+ if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
+ DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
+ key[nkeys++].dttk_size = 0;
+ v = &vstate->dtvs_tlocals[id];
+ } else {
+ v = &vstate->dtvs_globals[id]->dtsv_var;
+ }
+
+ dvar = dtrace_dynvar(dstate, nkeys, key,
+ v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
+ v->dtdv_type.dtdt_size : sizeof (uint64_t),
+ regs[rd] ? DTRACE_DYNVAR_ALLOC :
+ DTRACE_DYNVAR_DEALLOC, mstate, vstate);
+
+ if (dvar == NULL)
+ break;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
+ if (!dtrace_vcanload(
+ (void *)(uintptr_t)regs[rd], &v->dtdv_type,
+ mstate, vstate))
+ break;
+
+ dtrace_vcopy((void *)(uintptr_t)regs[rd],
+ dvar->dtdv_data, &v->dtdv_type);
+ } else {
+ *((uint64_t *)dvar->dtdv_data) = regs[rd];
+ }
+
+ break;
+ }
+
+ case DIF_OP_ALLOCS: {
+ uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
+ size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
+
+ /*
+ * Rounding up the user allocation size could have
+ * overflowed large, bogus allocations (like -1ULL) to
+ * 0.
+ */
+ if (size < regs[r1] ||
+ !DTRACE_INSCRATCH(mstate, size)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ regs[rd] = NULL;
+ break;
+ }
+
+ dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
+ mstate->dtms_scratch_ptr += size;
+ regs[rd] = ptr;
+ break;
+ }
+
+ case DIF_OP_COPYS:
+ if (!dtrace_canstore(regs[rd], regs[r2],
+ mstate, vstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+
+ if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
+ break;
+
+ dtrace_bcopy((void *)(uintptr_t)regs[r1],
+ (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
+ break;
+
+ case DIF_OP_STB:
+ if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+ *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
+ break;
+
+ case DIF_OP_STH:
+ if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+ if (regs[rd] & 1) {
+ *flags |= CPU_DTRACE_BADALIGN;
+ *illval = regs[rd];
+ break;
+ }
+ *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
+ break;
+
+ case DIF_OP_STW:
+ if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+ if (regs[rd] & 3) {
+ *flags |= CPU_DTRACE_BADALIGN;
+ *illval = regs[rd];
+ break;
+ }
+ *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
+ break;
+
+ case DIF_OP_STX:
+ if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
+ *flags |= CPU_DTRACE_BADADDR;
+ *illval = regs[rd];
+ break;
+ }
+ if (regs[rd] & 7) {
+ *flags |= CPU_DTRACE_BADALIGN;
+ *illval = regs[rd];
+ break;
+ }
+ *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
+ break;
+ }
+ }
+
+ if (!(*flags & CPU_DTRACE_FAULT))
+ return (rval);
+
+ mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
+ mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
+
+ return (0);
+}
+
+static void
+dtrace_action_breakpoint(dtrace_ecb_t *ecb)
+{
+ dtrace_probe_t *probe = ecb->dte_probe;
+ dtrace_provider_t *prov = probe->dtpr_provider;
+ char c[DTRACE_FULLNAMELEN + 80], *str;
+ char *msg = "dtrace: breakpoint action at probe ";
+ char *ecbmsg = " (ecb ";
+ uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
+ uintptr_t val = (uintptr_t)ecb;
+ int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
+
+ if (dtrace_destructive_disallow)
+ return;
+
+ /*
+ * It's impossible to be taking action on the NULL probe.
+ */
+ ASSERT(probe != NULL);
+
+ /*
+ * This is a poor man's (destitute man's?) sprintf(): we want to
+ * print the provider name, module name, function name and name of
+ * the probe, along with the hex address of the ECB with the breakpoint
+ * action -- all of which we must place in the character buffer by
+ * hand.
+ */
+ while (*msg != '\0')
+ c[i++] = *msg++;
+
+ for (str = prov->dtpv_name; *str != '\0'; str++)
+ c[i++] = *str;
+ c[i++] = ':';
+
+ for (str = probe->dtpr_mod; *str != '\0'; str++)
+ c[i++] = *str;
+ c[i++] = ':';
+
+ for (str = probe->dtpr_func; *str != '\0'; str++)
+ c[i++] = *str;
+ c[i++] = ':';
+
+ for (str = probe->dtpr_name; *str != '\0'; str++)
+ c[i++] = *str;
+
+ while (*ecbmsg != '\0')
+ c[i++] = *ecbmsg++;
+
+ while (shift >= 0) {
+ mask = (uintptr_t)0xf << shift;
+
+ if (val >= ((uintptr_t)1 << shift))
+ c[i++] = "0123456789abcdef"[(val & mask) >> shift];
+ shift -= 4;
+ }
+
+ c[i++] = ')';
+ c[i] = '\0';
+
+ debug_enter(c);
+}
+
+static void
+dtrace_action_panic(dtrace_ecb_t *ecb)
+{
+ dtrace_probe_t *probe = ecb->dte_probe;
+
+ /*
+ * It's impossible to be taking action on the NULL probe.
+ */
+ ASSERT(probe != NULL);
+
+ if (dtrace_destructive_disallow)
+ return;
+
+ if (dtrace_panicked != NULL)
+ return;
+
+ if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
+ return;
+
+ /*
+ * We won the right to panic. (We want to be sure that only one
+ * thread calls panic() from dtrace_probe(), and that panic() is
+ * called exactly once.)
+ */
+ dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
+ probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
+ probe->dtpr_func, probe->dtpr_name, (void *)ecb);
+}
+
+static void
+dtrace_action_raise(uint64_t sig)
+{
+ if (dtrace_destructive_disallow)
+ return;
+
+ if (sig >= NSIG) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ return;
+ }
+
+ /*
+ * raise() has a queue depth of 1 -- we ignore all subsequent
+ * invocations of the raise() action.
+ */
+ if (curthread->t_dtrace_sig == 0)
+ curthread->t_dtrace_sig = (uint8_t)sig;
+
+ curthread->t_sig_check = 1;
+ aston(curthread);
+}
+
+static void
+dtrace_action_stop(void)
+{
+ if (dtrace_destructive_disallow)
+ return;
+
+ if (!curthread->t_dtrace_stop) {
+ curthread->t_dtrace_stop = 1;
+ curthread->t_sig_check = 1;
+ aston(curthread);
+ }
+}
+
+static void
+dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
+{
+ hrtime_t now;
+ volatile uint16_t *flags;
+ cpu_t *cpu = CPU;
+
+ if (dtrace_destructive_disallow)
+ return;
+
+ flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
+
+ now = dtrace_gethrtime();
+
+ if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
+ /*
+ * We need to advance the mark to the current time.
+ */
+ cpu->cpu_dtrace_chillmark = now;
+ cpu->cpu_dtrace_chilled = 0;
+ }
+
+ /*
+ * Now check to see if the requested chill time would take us over
+ * the maximum amount of time allowed in the chill interval. (Or
+ * worse, if the calculation itself induces overflow.)
+ */
+ if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
+ cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
+ *flags |= CPU_DTRACE_ILLOP;
+ return;
+ }
+
+ while (dtrace_gethrtime() - now < val)
+ continue;
+
+ /*
+ * Normally, we assure that the value of the variable "timestamp" does
+ * not change within an ECB. The presence of chill() represents an
+ * exception to this rule, however.
+ */
+ mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
+ cpu->cpu_dtrace_chilled += val;
+}
+
+static void
+dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
+ uint64_t *buf, uint64_t arg)
+{
+ int nframes = DTRACE_USTACK_NFRAMES(arg);
+ int strsize = DTRACE_USTACK_STRSIZE(arg);
+ uint64_t *pcs = &buf[1], *fps;
+ char *str = (char *)&pcs[nframes];
+ int size, offs = 0, i, j;
+ uintptr_t old = mstate->dtms_scratch_ptr, saved;
+ uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+ char *sym;
+
+ /*
+ * Should be taking a faster path if string space has not been
+ * allocated.
+ */
+ ASSERT(strsize != 0);
+
+ /*
+ * We will first allocate some temporary space for the frame pointers.
+ */
+ fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
+ size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
+ (nframes * sizeof (uint64_t));
+
+ if (!DTRACE_INSCRATCH(mstate, size)) {
+ /*
+ * Not enough room for our frame pointers -- need to indicate
+ * that we ran out of scratch space.
+ */
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
+ return;
+ }
+
+ mstate->dtms_scratch_ptr += size;
+ saved = mstate->dtms_scratch_ptr;
+
+ /*
+ * Now get a stack with both program counters and frame pointers.
+ */
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_getufpstack(buf, fps, nframes + 1);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+
+ /*
+ * If that faulted, we're cooked.
+ */
+ if (*flags & CPU_DTRACE_FAULT)
+ goto out;
+
+ /*
+ * Now we want to walk up the stack, calling the USTACK helper. For
+ * each iteration, we restore the scratch pointer.
+ */
+ for (i = 0; i < nframes; i++) {
+ mstate->dtms_scratch_ptr = saved;
+
+ if (offs >= strsize)
+ break;
+
+ sym = (char *)(uintptr_t)dtrace_helper(
+ DTRACE_HELPER_ACTION_USTACK,
+ mstate, state, pcs[i], fps[i]);
+
+ /*
+ * If we faulted while running the helper, we're going to
+ * clear the fault and null out the corresponding string.
+ */
+ if (*flags & CPU_DTRACE_FAULT) {
+ *flags &= ~CPU_DTRACE_FAULT;
+ str[offs++] = '\0';
+ continue;
+ }
+
+ if (sym == NULL) {
+ str[offs++] = '\0';
+ continue;
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+
+ /*
+ * Now copy in the string that the helper returned to us.
+ */
+ for (j = 0; offs + j < strsize; j++) {
+ if ((str[offs + j] = sym[j]) == '\0')
+ break;
+ }
+
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+
+ offs += j + 1;
+ }
+
+ if (offs >= strsize) {
+ /*
+ * If we didn't have room for all of the strings, we don't
+ * abort processing -- this needn't be a fatal error -- but we
+ * still want to increment a counter (dts_stkstroverflows) to
+ * allow this condition to be warned about. (If this is from
+ * a jstack() action, it is easily tuned via jstackstrsize.)
+ */
+ dtrace_error(&state->dts_stkstroverflows);
+ }
+
+ while (offs < strsize)
+ str[offs++] = '\0';
+
+out:
+ mstate->dtms_scratch_ptr = old;
+}
+
+/*
+ * If you're looking for the epicenter of DTrace, you just found it. This
+ * is the function called by the provider to fire a probe -- from which all
+ * subsequent probe-context DTrace activity emanates.
+ */
+void
+dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
+ uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
+{
+ processorid_t cpuid;
+ dtrace_icookie_t cookie;
+ dtrace_probe_t *probe;
+ dtrace_mstate_t mstate;
+ dtrace_ecb_t *ecb;
+ dtrace_action_t *act;
+ intptr_t offs;
+ size_t size;
+ int vtime, onintr;
+ volatile uint16_t *flags;
+ hrtime_t now;
+
+ /*
+ * Kick out immediately if this CPU is still being born (in which case
+ * curthread will be set to -1) or the current thread can't allow
+ * probes in its current context.
+ */
+ if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
+ return;
+
+ cookie = dtrace_interrupt_disable();
+ probe = dtrace_probes[id - 1];
+ cpuid = CPU->cpu_id;
+ onintr = CPU_ON_INTR(CPU);
+
+ if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
+ probe->dtpr_predcache == curthread->t_predcache) {
+ /*
+ * We have hit in the predicate cache; we know that
+ * this predicate would evaluate to be false.
+ */
+ dtrace_interrupt_enable(cookie);
+ return;
+ }
+
+ if (panic_quiesce) {
+ /*
+ * We don't trace anything if we're panicking.
+ */
+ dtrace_interrupt_enable(cookie);
+ return;
+ }
+
+ now = dtrace_gethrtime();
+ vtime = dtrace_vtime_references != 0;
+
+ if (vtime && curthread->t_dtrace_start)
+ curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
+
+ mstate.dtms_difo = NULL;
+ mstate.dtms_probe = probe;
+ mstate.dtms_strtok = NULL;
+ mstate.dtms_arg[0] = arg0;
+ mstate.dtms_arg[1] = arg1;
+ mstate.dtms_arg[2] = arg2;
+ mstate.dtms_arg[3] = arg3;
+ mstate.dtms_arg[4] = arg4;
+
+ flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
+
+ for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
+ dtrace_predicate_t *pred = ecb->dte_predicate;
+ dtrace_state_t *state = ecb->dte_state;
+ dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
+ dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
+ dtrace_vstate_t *vstate = &state->dts_vstate;
+ dtrace_provider_t *prov = probe->dtpr_provider;
+ int committed = 0;
+ caddr_t tomax;
+
+ /*
+ * A little subtlety with the following (seemingly innocuous)
+ * declaration of the automatic 'val': by looking at the
+ * code, you might think that it could be declared in the
+ * action processing loop, below. (That is, it's only used in
+ * the action processing loop.) However, it must be declared
+ * out of that scope because in the case of DIF expression
+ * arguments to aggregating actions, one iteration of the
+ * action loop will use the last iteration's value.
+ */
+#ifdef lint
+ uint64_t val = 0;
+#else
+ uint64_t val;
+#endif
+
+ mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
+ *flags &= ~CPU_DTRACE_ERROR;
+
+ if (prov == dtrace_provider) {
+ /*
+ * If dtrace itself is the provider of this probe,
+ * we're only going to continue processing the ECB if
+ * arg0 (the dtrace_state_t) is equal to the ECB's
+ * creating state. (This prevents disjoint consumers
+ * from seeing one another's metaprobes.)
+ */
+ if (arg0 != (uint64_t)(uintptr_t)state)
+ continue;
+ }
+
+ if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
+ /*
+ * We're not currently active. If our provider isn't
+ * the dtrace pseudo provider, we're not interested.
+ */
+ if (prov != dtrace_provider)
+ continue;
+
+ /*
+ * Now we must further check if we are in the BEGIN
+ * probe. If we are, we will only continue processing
+ * if we're still in WARMUP -- if one BEGIN enabling
+ * has invoked the exit() action, we don't want to
+ * evaluate subsequent BEGIN enablings.
+ */
+ if (probe->dtpr_id == dtrace_probeid_begin &&
+ state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
+ ASSERT(state->dts_activity ==
+ DTRACE_ACTIVITY_DRAINING);
+ continue;
+ }
+ }
+
+ if (ecb->dte_cond) {
+ /*
+ * If the dte_cond bits indicate that this
+ * consumer is only allowed to see user-mode firings
+ * of this probe, call the provider's dtps_usermode()
+ * entry point to check that the probe was fired
+ * while in a user context. Skip this ECB if that's
+ * not the case.
+ */
+ if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
+ prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
+ probe->dtpr_id, probe->dtpr_arg) == 0)
+ continue;
+
+ /*
+ * This is more subtle than it looks. We have to be
+ * absolutely certain that CRED() isn't going to
+ * change out from under us so it's only legit to
+ * examine that structure if we're in constrained
+ * situations. Currently, the only times we'll this
+ * check is if a non-super-user has enabled the
+ * profile or syscall providers -- providers that
+ * allow visibility of all processes. For the
+ * profile case, the check above will ensure that
+ * we're examining a user context.
+ */
+ if (ecb->dte_cond & DTRACE_COND_OWNER) {
+ cred_t *cr;
+ cred_t *s_cr =
+ ecb->dte_state->dts_cred.dcr_cred;
+ proc_t *proc;
+
+ ASSERT(s_cr != NULL);
+
+ if ((cr = CRED()) == NULL ||
+ s_cr->cr_uid != cr->cr_uid ||
+ s_cr->cr_uid != cr->cr_ruid ||
+ s_cr->cr_uid != cr->cr_suid ||
+ s_cr->cr_gid != cr->cr_gid ||
+ s_cr->cr_gid != cr->cr_rgid ||
+ s_cr->cr_gid != cr->cr_sgid ||
+ (proc = ttoproc(curthread)) == NULL ||
+ (proc->p_flag & SNOCD))
+ continue;
+ }
+
+ if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
+ cred_t *cr;
+ cred_t *s_cr =
+ ecb->dte_state->dts_cred.dcr_cred;
+
+ ASSERT(s_cr != NULL);
+
+ if ((cr = CRED()) == NULL ||
+ s_cr->cr_zone->zone_id !=
+ cr->cr_zone->zone_id)
+ continue;
+ }
+ }
+
+ if (now - state->dts_alive > dtrace_deadman_timeout) {
+ /*
+ * We seem to be dead. Unless we (a) have kernel
+ * destructive permissions (b) have expicitly enabled
+ * destructive actions and (c) destructive actions have
+ * not been disabled, we're going to transition into
+ * the KILLED state, from which no further processing
+ * on this state will be performed.
+ */
+ if (!dtrace_priv_kernel_destructive(state) ||
+ !state->dts_cred.dcr_destructive ||
+ dtrace_destructive_disallow) {
+ void *activity = &state->dts_activity;
+ dtrace_activity_t current;
+
+ do {
+ current = state->dts_activity;
+ } while (dtrace_cas32(activity, current,
+ DTRACE_ACTIVITY_KILLED) != current);
+
+ continue;
+ }
+ }
+
+ if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
+ ecb->dte_alignment, state, &mstate)) < 0)
+ continue;
+
+ tomax = buf->dtb_tomax;
+ ASSERT(tomax != NULL);
+
+ if (ecb->dte_size != 0)
+ DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
+
+ mstate.dtms_epid = ecb->dte_epid;
+ mstate.dtms_present |= DTRACE_MSTATE_EPID;
+
+ if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
+ mstate.dtms_access = DTRACE_ACCESS_KERNEL;
+ else
+ mstate.dtms_access = 0;
+
+ if (pred != NULL) {
+ dtrace_difo_t *dp = pred->dtp_difo;
+ int rval;
+
+ rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
+
+ if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
+ dtrace_cacheid_t cid = probe->dtpr_predcache;
+
+ if (cid != DTRACE_CACHEIDNONE && !onintr) {
+ /*
+ * Update the predicate cache...
+ */
+ ASSERT(cid == pred->dtp_cacheid);
+ curthread->t_predcache = cid;
+ }
+
+ continue;
+ }
+ }
+
+ for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
+ act != NULL; act = act->dta_next) {
+ size_t valoffs;
+ dtrace_difo_t *dp;
+ dtrace_recdesc_t *rec = &act->dta_rec;
+
+ size = rec->dtrd_size;
+ valoffs = offs + rec->dtrd_offset;
+
+ if (DTRACEACT_ISAGG(act->dta_kind)) {
+ uint64_t v = 0xbad;
+ dtrace_aggregation_t *agg;
+
+ agg = (dtrace_aggregation_t *)act;
+
+ if ((dp = act->dta_difo) != NULL)
+ v = dtrace_dif_emulate(dp,
+ &mstate, vstate, state);
+
+ if (*flags & CPU_DTRACE_ERROR)
+ continue;
+
+ /*
+ * Note that we always pass the expression
+ * value from the previous iteration of the
+ * action loop. This value will only be used
+ * if there is an expression argument to the
+ * aggregating action, denoted by the
+ * dtag_hasarg field.
+ */
+ dtrace_aggregate(agg, buf,
+ offs, aggbuf, v, val);
+ continue;
+ }
+
+ switch (act->dta_kind) {
+ case DTRACEACT_STOP:
+ if (dtrace_priv_proc_destructive(state))
+ dtrace_action_stop();
+ continue;
+
+ case DTRACEACT_BREAKPOINT:
+ if (dtrace_priv_kernel_destructive(state))
+ dtrace_action_breakpoint(ecb);
+ continue;
+
+ case DTRACEACT_PANIC:
+ if (dtrace_priv_kernel_destructive(state))
+ dtrace_action_panic(ecb);
+ continue;
+
+ case DTRACEACT_STACK:
+ if (!dtrace_priv_kernel(state))
+ continue;
+
+ dtrace_getpcstack((pc_t *)(tomax + valoffs),
+ size / sizeof (pc_t), probe->dtpr_aframes,
+ DTRACE_ANCHORED(probe) ? NULL :
+ (uint32_t *)arg0);
+
+ continue;
+
+ case DTRACEACT_JSTACK:
+ case DTRACEACT_USTACK:
+ if (!dtrace_priv_proc(state))
+ continue;
+
+ /*
+ * See comment in DIF_VAR_PID.
+ */
+ if (DTRACE_ANCHORED(mstate.dtms_probe) &&
+ CPU_ON_INTR(CPU)) {
+ int depth = DTRACE_USTACK_NFRAMES(
+ rec->dtrd_arg) + 1;
+
+ dtrace_bzero((void *)(tomax + valoffs),
+ DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
+ + depth * sizeof (uint64_t));
+
+ continue;
+ }
+
+ if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
+ curproc->p_dtrace_helpers != NULL) {
+ /*
+ * This is the slow path -- we have
+ * allocated string space, and we're
+ * getting the stack of a process that
+ * has helpers. Call into a separate
+ * routine to perform this processing.
+ */
+ dtrace_action_ustack(&mstate, state,
+ (uint64_t *)(tomax + valoffs),
+ rec->dtrd_arg);
+ continue;
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ dtrace_getupcstack((uint64_t *)
+ (tomax + valoffs),
+ DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ continue;
+
+ default:
+ break;
+ }
+
+ dp = act->dta_difo;
+ ASSERT(dp != NULL);
+
+ val = dtrace_dif_emulate(dp, &mstate, vstate, state);
+
+ if (*flags & CPU_DTRACE_ERROR)
+ continue;
+
+ switch (act->dta_kind) {
+ case DTRACEACT_SPECULATE:
+ ASSERT(buf == &state->dts_buffer[cpuid]);
+ buf = dtrace_speculation_buffer(state,
+ cpuid, val);
+
+ if (buf == NULL) {
+ *flags |= CPU_DTRACE_DROP;
+ continue;
+ }
+
+ offs = dtrace_buffer_reserve(buf,
+ ecb->dte_needed, ecb->dte_alignment,
+ state, NULL);
+
+ if (offs < 0) {
+ *flags |= CPU_DTRACE_DROP;
+ continue;
+ }
+
+ tomax = buf->dtb_tomax;
+ ASSERT(tomax != NULL);
+
+ if (ecb->dte_size != 0)
+ DTRACE_STORE(uint32_t, tomax, offs,
+ ecb->dte_epid);
+ continue;
+
+ case DTRACEACT_CHILL:
+ if (dtrace_priv_kernel_destructive(state))
+ dtrace_action_chill(&mstate, val);
+ continue;
+
+ case DTRACEACT_RAISE:
+ if (dtrace_priv_proc_destructive(state))
+ dtrace_action_raise(val);
+ continue;
+
+ case DTRACEACT_COMMIT:
+ ASSERT(!committed);
+
+ /*
+ * We need to commit our buffer state.
+ */
+ if (ecb->dte_size)
+ buf->dtb_offset = offs + ecb->dte_size;
+ buf = &state->dts_buffer[cpuid];
+ dtrace_speculation_commit(state, cpuid, val);
+ committed = 1;
+ continue;
+
+ case DTRACEACT_DISCARD:
+ dtrace_speculation_discard(state, cpuid, val);
+ continue;
+
+ case DTRACEACT_DIFEXPR:
+ case DTRACEACT_LIBACT:
+ case DTRACEACT_PRINTF:
+ case DTRACEACT_PRINTA:
+ case DTRACEACT_SYSTEM:
+ case DTRACEACT_FREOPEN:
+ break;
+
+ case DTRACEACT_SYM:
+ case DTRACEACT_MOD:
+ if (!dtrace_priv_kernel(state))
+ continue;
+ break;
+
+ case DTRACEACT_USYM:
+ case DTRACEACT_UMOD:
+ case DTRACEACT_UADDR: {
+ struct pid *pid = curthread->t_procp->p_pidp;
+
+ if (!dtrace_priv_proc(state))
+ continue;
+
+ DTRACE_STORE(uint64_t, tomax,
+ valoffs, (uint64_t)pid->pid_id);
+ DTRACE_STORE(uint64_t, tomax,
+ valoffs + sizeof (uint64_t), val);
+
+ continue;
+ }
+
+ case DTRACEACT_EXIT: {
+ /*
+ * For the exit action, we are going to attempt
+ * to atomically set our activity to be
+ * draining. If this fails (either because
+ * another CPU has beat us to the exit action,
+ * or because our current activity is something
+ * other than ACTIVE or WARMUP), we will
+ * continue. This assures that the exit action
+ * can be successfully recorded at most once
+ * when we're in the ACTIVE state. If we're
+ * encountering the exit() action while in
+ * COOLDOWN, however, we want to honor the new
+ * status code. (We know that we're the only
+ * thread in COOLDOWN, so there is no race.)
+ */
+ void *activity = &state->dts_activity;
+ dtrace_activity_t current = state->dts_activity;
+
+ if (current == DTRACE_ACTIVITY_COOLDOWN)
+ break;
+
+ if (current != DTRACE_ACTIVITY_WARMUP)
+ current = DTRACE_ACTIVITY_ACTIVE;
+
+ if (dtrace_cas32(activity, current,
+ DTRACE_ACTIVITY_DRAINING) != current) {
+ *flags |= CPU_DTRACE_DROP;
+ continue;
+ }
+
+ break;
+ }
+
+ default:
+ ASSERT(0);
+ }
+
+ if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
+ uintptr_t end = valoffs + size;
+
+ if (!dtrace_vcanload((void *)(uintptr_t)val,
+ &dp->dtdo_rtype, &mstate, vstate))
+ continue;
+
+ /*
+ * If this is a string, we're going to only
+ * load until we find the zero byte -- after
+ * which we'll store zero bytes.
+ */
+ if (dp->dtdo_rtype.dtdt_kind ==
+ DIF_TYPE_STRING) {
+ char c = '\0' + 1;
+ int intuple = act->dta_intuple;
+ size_t s;
+
+ for (s = 0; s < size; s++) {
+ if (c != '\0')
+ c = dtrace_load8(val++);
+
+ DTRACE_STORE(uint8_t, tomax,
+ valoffs++, c);
+
+ if (c == '\0' && intuple)
+ break;
+ }
+
+ continue;
+ }
+
+ while (valoffs < end) {
+ DTRACE_STORE(uint8_t, tomax, valoffs++,
+ dtrace_load8(val++));
+ }
+
+ continue;
+ }
+
+ switch (size) {
+ case 0:
+ break;
+
+ case sizeof (uint8_t):
+ DTRACE_STORE(uint8_t, tomax, valoffs, val);
+ break;
+ case sizeof (uint16_t):
+ DTRACE_STORE(uint16_t, tomax, valoffs, val);
+ break;
+ case sizeof (uint32_t):
+ DTRACE_STORE(uint32_t, tomax, valoffs, val);
+ break;
+ case sizeof (uint64_t):
+ DTRACE_STORE(uint64_t, tomax, valoffs, val);
+ break;
+ default:
+ /*
+ * Any other size should have been returned by
+ * reference, not by value.
+ */
+ ASSERT(0);
+ break;
+ }
+ }
+
+ if (*flags & CPU_DTRACE_DROP)
+ continue;
+
+ if (*flags & CPU_DTRACE_FAULT) {
+ int ndx;
+ dtrace_action_t *err;
+
+ buf->dtb_errors++;
+
+ if (probe->dtpr_id == dtrace_probeid_error) {
+ /*
+ * There's nothing we can do -- we had an
+ * error on the error probe. We bump an
+ * error counter to at least indicate that
+ * this condition happened.
+ */
+ dtrace_error(&state->dts_dblerrors);
+ continue;
+ }
+
+ if (vtime) {
+ /*
+ * Before recursing on dtrace_probe(), we
+ * need to explicitly clear out our start
+ * time to prevent it from being accumulated
+ * into t_dtrace_vtime.
+ */
+ curthread->t_dtrace_start = 0;
+ }
+
+ /*
+ * Iterate over the actions to figure out which action
+ * we were processing when we experienced the error.
+ * Note that act points _past_ the faulting action; if
+ * act is ecb->dte_action, the fault was in the
+ * predicate, if it's ecb->dte_action->dta_next it's
+ * in action #1, and so on.
+ */
+ for (err = ecb->dte_action, ndx = 0;
+ err != act; err = err->dta_next, ndx++)
+ continue;
+
+ dtrace_probe_error(state, ecb->dte_epid, ndx,
+ (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
+ mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
+ cpu_core[cpuid].cpuc_dtrace_illval);
+
+ continue;
+ }
+
+ if (!committed)
+ buf->dtb_offset = offs + ecb->dte_size;
+ }
+
+ if (vtime)
+ curthread->t_dtrace_start = dtrace_gethrtime();
+
+ dtrace_interrupt_enable(cookie);
+}
+
+/*
+ * DTrace Probe Hashing Functions
+ *
+ * The functions in this section (and indeed, the functions in remaining
+ * sections) are not _called_ from probe context. (Any exceptions to this are
+ * marked with a "Note:".) Rather, they are called from elsewhere in the
+ * DTrace framework to look-up probes in, add probes to and remove probes from
+ * the DTrace probe hashes. (Each probe is hashed by each element of the
+ * probe tuple -- allowing for fast lookups, regardless of what was
+ * specified.)
+ */
+static uint_t
+dtrace_hash_str(char *p)
+{
+ unsigned int g;
+ uint_t hval = 0;
+
+ while (*p) {
+ hval = (hval << 4) + *p++;
+ if ((g = (hval & 0xf0000000)) != 0)
+ hval ^= g >> 24;
+ hval &= ~g;
+ }
+ return (hval);
+}
+
+static dtrace_hash_t *
+dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
+{
+ dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
+
+ hash->dth_stroffs = stroffs;
+ hash->dth_nextoffs = nextoffs;
+ hash->dth_prevoffs = prevoffs;
+
+ hash->dth_size = 1;
+ hash->dth_mask = hash->dth_size - 1;
+
+ hash->dth_tab = kmem_zalloc(hash->dth_size *
+ sizeof (dtrace_hashbucket_t *), KM_SLEEP);
+
+ return (hash);
+}
+
+static void
+dtrace_hash_destroy(dtrace_hash_t *hash)
+{
+#ifdef DEBUG
+ int i;
+
+ for (i = 0; i < hash->dth_size; i++)
+ ASSERT(hash->dth_tab[i] == NULL);
+#endif
+
+ kmem_free(hash->dth_tab,
+ hash->dth_size * sizeof (dtrace_hashbucket_t *));
+ kmem_free(hash, sizeof (dtrace_hash_t));
+}
+
+static void
+dtrace_hash_resize(dtrace_hash_t *hash)
+{
+ int size = hash->dth_size, i, ndx;
+ int new_size = hash->dth_size << 1;
+ int new_mask = new_size - 1;
+ dtrace_hashbucket_t **new_tab, *bucket, *next;
+
+ ASSERT((new_size & new_mask) == 0);
+
+ new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
+
+ for (i = 0; i < size; i++) {
+ for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
+ dtrace_probe_t *probe = bucket->dthb_chain;
+
+ ASSERT(probe != NULL);
+ ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
+
+ next = bucket->dthb_next;
+ bucket->dthb_next = new_tab[ndx];
+ new_tab[ndx] = bucket;
+ }
+ }
+
+ kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
+ hash->dth_tab = new_tab;
+ hash->dth_size = new_size;
+ hash->dth_mask = new_mask;
+}
+
+static void
+dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
+{
+ int hashval = DTRACE_HASHSTR(hash, new);
+ int ndx = hashval & hash->dth_mask;
+ dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
+ dtrace_probe_t **nextp, **prevp;
+
+ for (; bucket != NULL; bucket = bucket->dthb_next) {
+ if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
+ goto add;
+ }
+
+ if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
+ dtrace_hash_resize(hash);
+ dtrace_hash_add(hash, new);
+ return;
+ }
+
+ bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
+ bucket->dthb_next = hash->dth_tab[ndx];
+ hash->dth_tab[ndx] = bucket;
+ hash->dth_nbuckets++;
+
+add:
+ nextp = DTRACE_HASHNEXT(hash, new);
+ ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
+ *nextp = bucket->dthb_chain;
+
+ if (bucket->dthb_chain != NULL) {
+ prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
+ ASSERT(*prevp == NULL);
+ *prevp = new;
+ }
+
+ bucket->dthb_chain = new;
+ bucket->dthb_len++;
+}
+
+static dtrace_probe_t *
+dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
+{
+ int hashval = DTRACE_HASHSTR(hash, template);
+ int ndx = hashval & hash->dth_mask;
+ dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
+
+ for (; bucket != NULL; bucket = bucket->dthb_next) {
+ if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
+ return (bucket->dthb_chain);
+ }
+
+ return (NULL);
+}
+
+static int
+dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
+{
+ int hashval = DTRACE_HASHSTR(hash, template);
+ int ndx = hashval & hash->dth_mask;
+ dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
+
+ for (; bucket != NULL; bucket = bucket->dthb_next) {
+ if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
+ return (bucket->dthb_len);
+ }
+
+ return (NULL);
+}
+
+static void
+dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
+{
+ int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
+ dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
+
+ dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
+ dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
+
+ /*
+ * Find the bucket that we're removing this probe from.
+ */
+ for (; bucket != NULL; bucket = bucket->dthb_next) {
+ if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
+ break;
+ }
+
+ ASSERT(bucket != NULL);
+
+ if (*prevp == NULL) {
+ if (*nextp == NULL) {
+ /*
+ * The removed probe was the only probe on this
+ * bucket; we need to remove the bucket.
+ */
+ dtrace_hashbucket_t *b = hash->dth_tab[ndx];
+
+ ASSERT(bucket->dthb_chain == probe);
+ ASSERT(b != NULL);
+
+ if (b == bucket) {
+ hash->dth_tab[ndx] = bucket->dthb_next;
+ } else {
+ while (b->dthb_next != bucket)
+ b = b->dthb_next;
+ b->dthb_next = bucket->dthb_next;
+ }
+
+ ASSERT(hash->dth_nbuckets > 0);
+ hash->dth_nbuckets--;
+ kmem_free(bucket, sizeof (dtrace_hashbucket_t));
+ return;
+ }
+
+ bucket->dthb_chain = *nextp;
+ } else {
+ *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
+ }
+
+ if (*nextp != NULL)
+ *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
+}
+
+/*
+ * DTrace Utility Functions
+ *
+ * These are random utility functions that are _not_ called from probe context.
+ */
+static int
+dtrace_badattr(const dtrace_attribute_t *a)
+{
+ return (a->dtat_name > DTRACE_STABILITY_MAX ||
+ a->dtat_data > DTRACE_STABILITY_MAX ||
+ a->dtat_class > DTRACE_CLASS_MAX);
+}
+
+/*
+ * Return a duplicate copy of a string. If the specified string is NULL,
+ * this function returns a zero-length string.
+ */
+static char *
+dtrace_strdup(const char *str)
+{
+ char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
+
+ if (str != NULL)
+ (void) strcpy(new, str);
+
+ return (new);
+}
+
+#define DTRACE_ISALPHA(c) \
+ (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
+
+static int
+dtrace_badname(const char *s)
+{
+ char c;
+
+ if (s == NULL || (c = *s++) == '\0')
+ return (0);
+
+ if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
+ return (1);
+
+ while ((c = *s++) != '\0') {
+ if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
+ c != '-' && c != '_' && c != '.' && c != '`')
+ return (1);
+ }
+
+ return (0);
+}
+
+static void
+dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
+{
+ uint32_t priv;
+
+ if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
+ /*
+ * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
+ */
+ priv = DTRACE_PRIV_ALL;
+ } else {
+ *uidp = crgetuid(cr);
+ *zoneidp = crgetzoneid(cr);
+
+ priv = 0;
+ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
+ priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
+ else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
+ priv |= DTRACE_PRIV_USER;
+ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
+ priv |= DTRACE_PRIV_PROC;
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
+ priv |= DTRACE_PRIV_OWNER;
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
+ priv |= DTRACE_PRIV_ZONEOWNER;
+ }
+
+ *privp = priv;
+}
+
+#ifdef DTRACE_ERRDEBUG
+static void
+dtrace_errdebug(const char *str)
+{
+ int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
+ int occupied = 0;
+
+ mutex_enter(&dtrace_errlock);
+ dtrace_errlast = str;
+ dtrace_errthread = curthread;
+
+ while (occupied++ < DTRACE_ERRHASHSZ) {
+ if (dtrace_errhash[hval].dter_msg == str) {
+ dtrace_errhash[hval].dter_count++;
+ goto out;
+ }
+
+ if (dtrace_errhash[hval].dter_msg != NULL) {
+ hval = (hval + 1) % DTRACE_ERRHASHSZ;
+ continue;
+ }
+
+ dtrace_errhash[hval].dter_msg = str;
+ dtrace_errhash[hval].dter_count = 1;
+ goto out;
+ }
+
+ panic("dtrace: undersized error hash");
+out:
+ mutex_exit(&dtrace_errlock);
+}
+#endif
+
+/*
+ * DTrace Matching Functions
+ *
+ * These functions are used to match groups of probes, given some elements of
+ * a probe tuple, or some globbed expressions for elements of a probe tuple.
+ */
+static int
+dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
+ zoneid_t zoneid)
+{
+ if (priv != DTRACE_PRIV_ALL) {
+ uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
+ uint32_t match = priv & ppriv;
+
+ /*
+ * No PRIV_DTRACE_* privileges...
+ */
+ if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
+ DTRACE_PRIV_KERNEL)) == 0)
+ return (0);
+
+ /*
+ * No matching bits, but there were bits to match...
+ */
+ if (match == 0 && ppriv != 0)
+ return (0);
+
+ /*
+ * Need to have permissions to the process, but don't...
+ */
+ if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
+ uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
+ return (0);
+ }
+
+ /*
+ * Need to be in the same zone unless we possess the
+ * privilege to examine all zones.
+ */
+ if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
+ zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
+ return (0);
+ }
+ }
+
+ return (1);
+}
+
+/*
+ * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
+ * consists of input pattern strings and an ops-vector to evaluate them.
+ * This function returns >0 for match, 0 for no match, and <0 for error.
+ */
+static int
+dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
+ uint32_t priv, uid_t uid, zoneid_t zoneid)
+{
+ dtrace_provider_t *pvp = prp->dtpr_provider;
+ int rv;
+
+ if (pvp->dtpv_defunct)
+ return (0);
+
+ if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
+ return (rv);
+
+ if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
+ return (rv);
+
+ if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
+ return (rv);
+
+ if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
+ return (rv);
+
+ if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
+ return (0);
+
+ return (rv);
+}
+
+/*
+ * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
+ * interface for matching a glob pattern 'p' to an input string 's'. Unlike
+ * libc's version, the kernel version only applies to 8-bit ASCII strings.
+ * In addition, all of the recursion cases except for '*' matching have been
+ * unwound. For '*', we still implement recursive evaluation, but a depth
+ * counter is maintained and matching is aborted if we recurse too deep.
+ * The function returns 0 if no match, >0 if match, and <0 if recursion error.
+ */
+static int
+dtrace_match_glob(const char *s, const char *p, int depth)
+{
+ const char *olds;
+ char s1, c;
+ int gs;
+
+ if (depth > DTRACE_PROBEKEY_MAXDEPTH)
+ return (-1);
+
+ if (s == NULL)
+ s = ""; /* treat NULL as empty string */
+
+top:
+ olds = s;
+ s1 = *s++;
+
+ if (p == NULL)
+ return (0);
+
+ if ((c = *p++) == '\0')
+ return (s1 == '\0');
+
+ switch (c) {
+ case '[': {
+ int ok = 0, notflag = 0;
+ char lc = '\0';
+
+ if (s1 == '\0')
+ return (0);
+
+ if (*p == '!') {
+ notflag = 1;
+ p++;
+ }
+
+ if ((c = *p++) == '\0')
+ return (0);
+
+ do {
+ if (c == '-' && lc != '\0' && *p != ']') {
+ if ((c = *p++) == '\0')
+ return (0);
+ if (c == '\\' && (c = *p++) == '\0')
+ return (0);
+
+ if (notflag) {
+ if (s1 < lc || s1 > c)
+ ok++;
+ else
+ return (0);
+ } else if (lc <= s1 && s1 <= c)
+ ok++;
+
+ } else if (c == '\\' && (c = *p++) == '\0')
+ return (0);
+
+ lc = c; /* save left-hand 'c' for next iteration */
+
+ if (notflag) {
+ if (s1 != c)
+ ok++;
+ else
+ return (0);
+ } else if (s1 == c)
+ ok++;
+
+ if ((c = *p++) == '\0')
+ return (0);
+
+ } while (c != ']');
+
+ if (ok)
+ goto top;
+
+ return (0);
+ }
+
+ case '\\':
+ if ((c = *p++) == '\0')
+ return (0);
+ /*FALLTHRU*/
+
+ default:
+ if (c != s1)
+ return (0);
+ /*FALLTHRU*/
+
+ case '?':
+ if (s1 != '\0')
+ goto top;
+ return (0);
+
+ case '*':
+ while (*p == '*')
+ p++; /* consecutive *'s are identical to a single one */
+
+ if (*p == '\0')
+ return (1);
+
+ for (s = olds; *s != '\0'; s++) {
+ if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
+ return (gs);
+ }
+
+ return (0);
+ }
+}
+
+/*ARGSUSED*/
+static int
+dtrace_match_string(const char *s, const char *p, int depth)
+{
+ return (s != NULL && strcmp(s, p) == 0);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_match_nul(const char *s, const char *p, int depth)
+{
+ return (1); /* always match the empty pattern */
+}
+
+/*ARGSUSED*/
+static int
+dtrace_match_nonzero(const char *s, const char *p, int depth)
+{
+ return (s != NULL && s[0] != '\0');
+}
+
+static int
+dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
+ zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
+{
+ dtrace_probe_t template, *probe;
+ dtrace_hash_t *hash = NULL;
+ int len, best = INT_MAX, nmatched = 0;
+ dtrace_id_t i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ /*
+ * If the probe ID is specified in the key, just lookup by ID and
+ * invoke the match callback once if a matching probe is found.
+ */
+ if (pkp->dtpk_id != DTRACE_IDNONE) {
+ if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
+ dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
+ (void) (*matched)(probe, arg);
+ nmatched++;
+ }
+ return (nmatched);
+ }
+
+ template.dtpr_mod = (char *)pkp->dtpk_mod;
+ template.dtpr_func = (char *)pkp->dtpk_func;
+ template.dtpr_name = (char *)pkp->dtpk_name;
+
+ /*
+ * We want to find the most distinct of the module name, function
+ * name, and name. So for each one that is not a glob pattern or
+ * empty string, we perform a lookup in the corresponding hash and
+ * use the hash table with the fewest collisions to do our search.
+ */
+ if (pkp->dtpk_mmatch == &dtrace_match_string &&
+ (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
+ best = len;
+ hash = dtrace_bymod;
+ }
+
+ if (pkp->dtpk_fmatch == &dtrace_match_string &&
+ (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
+ best = len;
+ hash = dtrace_byfunc;
+ }
+
+ if (pkp->dtpk_nmatch == &dtrace_match_string &&
+ (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
+ best = len;
+ hash = dtrace_byname;
+ }
+
+ /*
+ * If we did not select a hash table, iterate over every probe and
+ * invoke our callback for each one that matches our input probe key.
+ */
+ if (hash == NULL) {
+ for (i = 0; i < dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i]) == NULL ||
+ dtrace_match_probe(probe, pkp, priv, uid,
+ zoneid) <= 0)
+ continue;
+
+ nmatched++;
+
+ if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
+ break;
+ }
+
+ return (nmatched);
+ }
+
+ /*
+ * If we selected a hash table, iterate over each probe of the same key
+ * name and invoke the callback for every probe that matches the other
+ * attributes of our input probe key.
+ */
+ for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
+ probe = *(DTRACE_HASHNEXT(hash, probe))) {
+
+ if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
+ continue;
+
+ nmatched++;
+
+ if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
+ break;
+ }
+
+ return (nmatched);
+}
+
+/*
+ * Return the function pointer dtrace_probecmp() should use to compare the
+ * specified pattern with a string. For NULL or empty patterns, we select
+ * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
+ * For non-empty non-glob strings, we use dtrace_match_string().
+ */
+static dtrace_probekey_f *
+dtrace_probekey_func(const char *p)
+{
+ char c;
+
+ if (p == NULL || *p == '\0')
+ return (&dtrace_match_nul);
+
+ while ((c = *p++) != '\0') {
+ if (c == '[' || c == '?' || c == '*' || c == '\\')
+ return (&dtrace_match_glob);
+ }
+
+ return (&dtrace_match_string);
+}
+
+/*
+ * Build a probe comparison key for use with dtrace_match_probe() from the
+ * given probe description. By convention, a null key only matches anchored
+ * probes: if each field is the empty string, reset dtpk_fmatch to
+ * dtrace_match_nonzero().
+ */
+static void
+dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
+{
+ pkp->dtpk_prov = pdp->dtpd_provider;
+ pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
+
+ pkp->dtpk_mod = pdp->dtpd_mod;
+ pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
+
+ pkp->dtpk_func = pdp->dtpd_func;
+ pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
+
+ pkp->dtpk_name = pdp->dtpd_name;
+ pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
+
+ pkp->dtpk_id = pdp->dtpd_id;
+
+ if (pkp->dtpk_id == DTRACE_IDNONE &&
+ pkp->dtpk_pmatch == &dtrace_match_nul &&
+ pkp->dtpk_mmatch == &dtrace_match_nul &&
+ pkp->dtpk_fmatch == &dtrace_match_nul &&
+ pkp->dtpk_nmatch == &dtrace_match_nul)
+ pkp->dtpk_fmatch = &dtrace_match_nonzero;
+}
+
+/*
+ * DTrace Provider-to-Framework API Functions
+ *
+ * These functions implement much of the Provider-to-Framework API, as
+ * described in <sys/dtrace.h>. The parts of the API not in this section are
+ * the functions in the API for probe management (found below), and
+ * dtrace_probe() itself (found above).
+ */
+
+/*
+ * Register the calling provider with the DTrace framework. This should
+ * generally be called by DTrace providers in their attach(9E) entry point.
+ */
+int
+dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
+ cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
+{
+ dtrace_provider_t *provider;
+
+ if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
+ cmn_err(CE_WARN, "failed to register provider '%s': invalid "
+ "arguments", name ? name : "<NULL>");
+ return (EINVAL);
+ }
+
+ if (name[0] == '\0' || dtrace_badname(name)) {
+ cmn_err(CE_WARN, "failed to register provider '%s': invalid "
+ "provider name", name);
+ return (EINVAL);
+ }
+
+ if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
+ pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
+ pops->dtps_destroy == NULL ||
+ ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
+ cmn_err(CE_WARN, "failed to register provider '%s': invalid "
+ "provider ops", name);
+ return (EINVAL);
+ }
+
+ if (dtrace_badattr(&pap->dtpa_provider) ||
+ dtrace_badattr(&pap->dtpa_mod) ||
+ dtrace_badattr(&pap->dtpa_func) ||
+ dtrace_badattr(&pap->dtpa_name) ||
+ dtrace_badattr(&pap->dtpa_args)) {
+ cmn_err(CE_WARN, "failed to register provider '%s': invalid "
+ "provider attributes", name);
+ return (EINVAL);
+ }
+
+ if (priv & ~DTRACE_PRIV_ALL) {
+ cmn_err(CE_WARN, "failed to register provider '%s': invalid "
+ "privilege attributes", name);
+ return (EINVAL);
+ }
+
+ if ((priv & DTRACE_PRIV_KERNEL) &&
+ (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
+ pops->dtps_usermode == NULL) {
+ cmn_err(CE_WARN, "failed to register provider '%s': need "
+ "dtps_usermode() op for given privilege attributes", name);
+ return (EINVAL);
+ }
+
+ provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
+ provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
+ (void) strcpy(provider->dtpv_name, name);
+
+ provider->dtpv_attr = *pap;
+ provider->dtpv_priv.dtpp_flags = priv;
+ if (cr != NULL) {
+ provider->dtpv_priv.dtpp_uid = crgetuid(cr);
+ provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
+ }
+ provider->dtpv_pops = *pops;
+
+ if (pops->dtps_provide == NULL) {
+ ASSERT(pops->dtps_provide_module != NULL);
+ provider->dtpv_pops.dtps_provide =
+ (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
+ }
+
+ if (pops->dtps_provide_module == NULL) {
+ ASSERT(pops->dtps_provide != NULL);
+ provider->dtpv_pops.dtps_provide_module =
+ (void (*)(void *, struct modctl *))dtrace_nullop;
+ }
+
+ if (pops->dtps_suspend == NULL) {
+ ASSERT(pops->dtps_resume == NULL);
+ provider->dtpv_pops.dtps_suspend =
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
+ provider->dtpv_pops.dtps_resume =
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
+ }
+
+ provider->dtpv_arg = arg;
+ *idp = (dtrace_provider_id_t)provider;
+
+ if (pops == &dtrace_provider_ops) {
+ ASSERT(MUTEX_HELD(&dtrace_provider_lock));
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dtrace_anon.dta_enabling == NULL);
+
+ /*
+ * We make sure that the DTrace provider is at the head of
+ * the provider chain.
+ */
+ provider->dtpv_next = dtrace_provider;
+ dtrace_provider = provider;
+ return (0);
+ }
+
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&dtrace_lock);
+
+ /*
+ * If there is at least one provider registered, we'll add this
+ * provider after the first provider.
+ */
+ if (dtrace_provider != NULL) {
+ provider->dtpv_next = dtrace_provider->dtpv_next;
+ dtrace_provider->dtpv_next = provider;
+ } else {
+ dtrace_provider = provider;
+ }
+
+ if (dtrace_retained != NULL) {
+ dtrace_enabling_provide(provider);
+
+ /*
+ * Now we need to call dtrace_enabling_matchall() -- which
+ * will acquire cpu_lock and dtrace_lock. We therefore need
+ * to drop all of our locks before calling into it...
+ */
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+ dtrace_enabling_matchall();
+
+ return (0);
+ }
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ return (0);
+}
+
+/*
+ * Unregister the specified provider from the DTrace framework. This should
+ * generally be called by DTrace providers in their detach(9E) entry point.
+ */
+int
+dtrace_unregister(dtrace_provider_id_t id)
+{
+ dtrace_provider_t *old = (dtrace_provider_t *)id;
+ dtrace_provider_t *prev = NULL;
+ int i, self = 0;
+ dtrace_probe_t *probe, *first = NULL;
+
+ if (old->dtpv_pops.dtps_enable ==
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
+ /*
+ * If DTrace itself is the provider, we're called with locks
+ * already held.
+ */
+ ASSERT(old == dtrace_provider);
+ ASSERT(dtrace_devi != NULL);
+ ASSERT(MUTEX_HELD(&dtrace_provider_lock));
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ self = 1;
+
+ if (dtrace_provider->dtpv_next != NULL) {
+ /*
+ * There's another provider here; return failure.
+ */
+ return (EBUSY);
+ }
+ } else {
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&mod_lock);
+ mutex_enter(&dtrace_lock);
+ }
+
+ /*
+ * If anyone has /dev/dtrace open, or if there are anonymous enabled
+ * probes, we refuse to let providers slither away, unless this
+ * provider has already been explicitly invalidated.
+ */
+ if (!old->dtpv_defunct &&
+ (dtrace_opens || (dtrace_anon.dta_state != NULL &&
+ dtrace_anon.dta_state->dts_necbs > 0))) {
+ if (!self) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+ }
+ return (EBUSY);
+ }
+
+ /*
+ * Attempt to destroy the probes associated with this provider.
+ */
+ for (i = 0; i < dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i]) == NULL)
+ continue;
+
+ if (probe->dtpr_provider != old)
+ continue;
+
+ if (probe->dtpr_ecb == NULL)
+ continue;
+
+ /*
+ * We have at least one ECB; we can't remove this provider.
+ */
+ if (!self) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+ }
+ return (EBUSY);
+ }
+
+ /*
+ * All of the probes for this provider are disabled; we can safely
+ * remove all of them from their hash chains and from the probe array.
+ */
+ for (i = 0; i < dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i]) == NULL)
+ continue;
+
+ if (probe->dtpr_provider != old)
+ continue;
+
+ dtrace_probes[i] = NULL;
+
+ dtrace_hash_remove(dtrace_bymod, probe);
+ dtrace_hash_remove(dtrace_byfunc, probe);
+ dtrace_hash_remove(dtrace_byname, probe);
+
+ if (first == NULL) {
+ first = probe;
+ probe->dtpr_nextmod = NULL;
+ } else {
+ probe->dtpr_nextmod = first;
+ first = probe;
+ }
+ }
+
+ /*
+ * The provider's probes have been removed from the hash chains and
+ * from the probe array. Now issue a dtrace_sync() to be sure that
+ * everyone has cleared out from any probe array processing.
+ */
+ dtrace_sync();
+
+ for (probe = first; probe != NULL; probe = first) {
+ first = probe->dtpr_nextmod;
+
+ old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
+ probe->dtpr_arg);
+ kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
+ kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
+ kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
+ vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
+ kmem_free(probe, sizeof (dtrace_probe_t));
+ }
+
+ if ((prev = dtrace_provider) == old) {
+ ASSERT(self || dtrace_devi == NULL);
+ ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
+ dtrace_provider = old->dtpv_next;
+ } else {
+ while (prev != NULL && prev->dtpv_next != old)
+ prev = prev->dtpv_next;
+
+ if (prev == NULL) {
+ panic("attempt to unregister non-existent "
+ "dtrace provider %p\n", (void *)id);
+ }
+
+ prev->dtpv_next = old->dtpv_next;
+ }
+
+ if (!self) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+ }
+
+ kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
+ kmem_free(old, sizeof (dtrace_provider_t));
+
+ return (0);
+}
+
+/*
+ * Invalidate the specified provider. All subsequent probe lookups for the
+ * specified provider will fail, but its probes will not be removed.
+ */
+void
+dtrace_invalidate(dtrace_provider_id_t id)
+{
+ dtrace_provider_t *pvp = (dtrace_provider_t *)id;
+
+ ASSERT(pvp->dtpv_pops.dtps_enable !=
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
+
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&dtrace_lock);
+
+ pvp->dtpv_defunct = 1;
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+}
+
+/*
+ * Indicate whether or not DTrace has attached.
+ */
+int
+dtrace_attached(void)
+{
+ /*
+ * dtrace_provider will be non-NULL iff the DTrace driver has
+ * attached. (It's non-NULL because DTrace is always itself a
+ * provider.)
+ */
+ return (dtrace_provider != NULL);
+}
+
+/*
+ * Remove all the unenabled probes for the given provider. This function is
+ * not unlike dtrace_unregister(), except that it doesn't remove the provider
+ * -- just as many of its associated probes as it can.
+ */
+int
+dtrace_condense(dtrace_provider_id_t id)
+{
+ dtrace_provider_t *prov = (dtrace_provider_t *)id;
+ int i;
+ dtrace_probe_t *probe;
+
+ /*
+ * Make sure this isn't the dtrace provider itself.
+ */
+ ASSERT(prov->dtpv_pops.dtps_enable !=
+ (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
+
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&dtrace_lock);
+
+ /*
+ * Attempt to destroy the probes associated with this provider.
+ */
+ for (i = 0; i < dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i]) == NULL)
+ continue;
+
+ if (probe->dtpr_provider != prov)
+ continue;
+
+ if (probe->dtpr_ecb != NULL)
+ continue;
+
+ dtrace_probes[i] = NULL;
+
+ dtrace_hash_remove(dtrace_bymod, probe);
+ dtrace_hash_remove(dtrace_byfunc, probe);
+ dtrace_hash_remove(dtrace_byname, probe);
+
+ prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
+ probe->dtpr_arg);
+ kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
+ kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
+ kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
+ kmem_free(probe, sizeof (dtrace_probe_t));
+ vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
+ }
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ return (0);
+}
+
+/*
+ * DTrace Probe Management Functions
+ *
+ * The functions in this section perform the DTrace probe management,
+ * including functions to create probes, look-up probes, and call into the
+ * providers to request that probes be provided. Some of these functions are
+ * in the Provider-to-Framework API; these functions can be identified by the
+ * fact that they are not declared "static".
+ */
+
+/*
+ * Create a probe with the specified module name, function name, and name.
+ */
+dtrace_id_t
+dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
+ const char *func, const char *name, int aframes, void *arg)
+{
+ dtrace_probe_t *probe, **probes;
+ dtrace_provider_t *provider = (dtrace_provider_t *)prov;
+ dtrace_id_t id;
+
+ if (provider == dtrace_provider) {
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ } else {
+ mutex_enter(&dtrace_lock);
+ }
+
+ id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
+ VM_BESTFIT | VM_SLEEP);
+ probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
+
+ probe->dtpr_id = id;
+ probe->dtpr_gen = dtrace_probegen++;
+ probe->dtpr_mod = dtrace_strdup(mod);
+ probe->dtpr_func = dtrace_strdup(func);
+ probe->dtpr_name = dtrace_strdup(name);
+ probe->dtpr_arg = arg;
+ probe->dtpr_aframes = aframes;
+ probe->dtpr_provider = provider;
+
+ dtrace_hash_add(dtrace_bymod, probe);
+ dtrace_hash_add(dtrace_byfunc, probe);
+ dtrace_hash_add(dtrace_byname, probe);
+
+ if (id - 1 >= dtrace_nprobes) {
+ size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
+ size_t nsize = osize << 1;
+
+ if (nsize == 0) {
+ ASSERT(osize == 0);
+ ASSERT(dtrace_probes == NULL);
+ nsize = sizeof (dtrace_probe_t *);
+ }
+
+ probes = kmem_zalloc(nsize, KM_SLEEP);
+
+ if (dtrace_probes == NULL) {
+ ASSERT(osize == 0);
+ dtrace_probes = probes;
+ dtrace_nprobes = 1;
+ } else {
+ dtrace_probe_t **oprobes = dtrace_probes;
+
+ bcopy(oprobes, probes, osize);
+ dtrace_membar_producer();
+ dtrace_probes = probes;
+
+ dtrace_sync();
+
+ /*
+ * All CPUs are now seeing the new probes array; we can
+ * safely free the old array.
+ */
+ kmem_free(oprobes, osize);
+ dtrace_nprobes <<= 1;
+ }
+
+ ASSERT(id - 1 < dtrace_nprobes);
+ }
+
+ ASSERT(dtrace_probes[id - 1] == NULL);
+ dtrace_probes[id - 1] = probe;
+
+ if (provider != dtrace_provider)
+ mutex_exit(&dtrace_lock);
+
+ return (id);
+}
+
+static dtrace_probe_t *
+dtrace_probe_lookup_id(dtrace_id_t id)
+{
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (id == 0 || id > dtrace_nprobes)
+ return (NULL);
+
+ return (dtrace_probes[id - 1]);
+}
+
+static int
+dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
+{
+ *((dtrace_id_t *)arg) = probe->dtpr_id;
+
+ return (DTRACE_MATCH_DONE);
+}
+
+/*
+ * Look up a probe based on provider and one or more of module name, function
+ * name and probe name.
+ */
+dtrace_id_t
+dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
+ const char *func, const char *name)
+{
+ dtrace_probekey_t pkey;
+ dtrace_id_t id;
+ int match;
+
+ pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
+ pkey.dtpk_pmatch = &dtrace_match_string;
+ pkey.dtpk_mod = mod;
+ pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
+ pkey.dtpk_func = func;
+ pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
+ pkey.dtpk_name = name;
+ pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
+ pkey.dtpk_id = DTRACE_IDNONE;
+
+ mutex_enter(&dtrace_lock);
+ match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
+ dtrace_probe_lookup_match, &id);
+ mutex_exit(&dtrace_lock);
+
+ ASSERT(match == 1 || match == 0);
+ return (match ? id : 0);
+}
+
+/*
+ * Returns the probe argument associated with the specified probe.
+ */
+void *
+dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
+{
+ dtrace_probe_t *probe;
+ void *rval = NULL;
+
+ mutex_enter(&dtrace_lock);
+
+ if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
+ probe->dtpr_provider == (dtrace_provider_t *)id)
+ rval = probe->dtpr_arg;
+
+ mutex_exit(&dtrace_lock);
+
+ return (rval);
+}
+
+/*
+ * Copy a probe into a probe description.
+ */
+static void
+dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
+{
+ bzero(pdp, sizeof (dtrace_probedesc_t));
+ pdp->dtpd_id = prp->dtpr_id;
+
+ (void) strncpy(pdp->dtpd_provider,
+ prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
+
+ (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
+ (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
+ (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
+}
+
+/*
+ * Called to indicate that a probe -- or probes -- should be provided by a
+ * specfied provider. If the specified description is NULL, the provider will
+ * be told to provide all of its probes. (This is done whenever a new
+ * consumer comes along, or whenever a retained enabling is to be matched.) If
+ * the specified description is non-NULL, the provider is given the
+ * opportunity to dynamically provide the specified probe, allowing providers
+ * to support the creation of probes on-the-fly. (So-called _autocreated_
+ * probes.) If the provider is NULL, the operations will be applied to all
+ * providers; if the provider is non-NULL the operations will only be applied
+ * to the specified provider. The dtrace_provider_lock must be held, and the
+ * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
+ * will need to grab the dtrace_lock when it reenters the framework through
+ * dtrace_probe_lookup(), dtrace_probe_create(), etc.
+ */
+static void
+dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
+{
+ struct modctl *ctl;
+ int all = 0;
+
+ ASSERT(MUTEX_HELD(&dtrace_provider_lock));
+
+ if (prv == NULL) {
+ all = 1;
+ prv = dtrace_provider;
+ }
+
+ do {
+ /*
+ * First, call the blanket provide operation.
+ */
+ prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
+
+ /*
+ * Now call the per-module provide operation. We will grab
+ * mod_lock to prevent the list from being modified. Note
+ * that this also prevents the mod_busy bits from changing.
+ * (mod_busy can only be changed with mod_lock held.)
+ */
+ mutex_enter(&mod_lock);
+
+ ctl = &modules;
+ do {
+ if (ctl->mod_busy || ctl->mod_mp == NULL)
+ continue;
+
+ prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
+
+ } while ((ctl = ctl->mod_next) != &modules);
+
+ mutex_exit(&mod_lock);
+ } while (all && (prv = prv->dtpv_next) != NULL);
+}
+
+/*
+ * Iterate over each probe, and call the Framework-to-Provider API function
+ * denoted by offs.
+ */
+static void
+dtrace_probe_foreach(uintptr_t offs)
+{
+ dtrace_provider_t *prov;
+ void (*func)(void *, dtrace_id_t, void *);
+ dtrace_probe_t *probe;
+ dtrace_icookie_t cookie;
+ int i;
+
+ /*
+ * We disable interrupts to walk through the probe array. This is
+ * safe -- the dtrace_sync() in dtrace_unregister() assures that we
+ * won't see stale data.
+ */
+ cookie = dtrace_interrupt_disable();
+
+ for (i = 0; i < dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i]) == NULL)
+ continue;
+
+ if (probe->dtpr_ecb == NULL) {
+ /*
+ * This probe isn't enabled -- don't call the function.
+ */
+ continue;
+ }
+
+ prov = probe->dtpr_provider;
+ func = *((void(**)(void *, dtrace_id_t, void *))
+ ((uintptr_t)&prov->dtpv_pops + offs));
+
+ func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
+ }
+
+ dtrace_interrupt_enable(cookie);
+}
+
+static int
+dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
+{
+ dtrace_probekey_t pkey;
+ uint32_t priv;
+ uid_t uid;
+ zoneid_t zoneid;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ dtrace_ecb_create_cache = NULL;
+
+ if (desc == NULL) {
+ /*
+ * If we're passed a NULL description, we're being asked to
+ * create an ECB with a NULL probe.
+ */
+ (void) dtrace_ecb_create_enable(NULL, enab);
+ return (0);
+ }
+
+ dtrace_probekey(desc, &pkey);
+ dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
+ &priv, &uid, &zoneid);
+
+ return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
+ enab));
+}
+
+/*
+ * DTrace Helper Provider Functions
+ */
+static void
+dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
+{
+ attr->dtat_name = DOF_ATTR_NAME(dofattr);
+ attr->dtat_data = DOF_ATTR_DATA(dofattr);
+ attr->dtat_class = DOF_ATTR_CLASS(dofattr);
+}
+
+static void
+dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
+ const dof_provider_t *dofprov, char *strtab)
+{
+ hprov->dthpv_provname = strtab + dofprov->dofpv_name;
+ dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
+ dofprov->dofpv_provattr);
+ dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
+ dofprov->dofpv_modattr);
+ dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
+ dofprov->dofpv_funcattr);
+ dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
+ dofprov->dofpv_nameattr);
+ dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
+ dofprov->dofpv_argsattr);
+}
+
+static void
+dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
+{
+ uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
+ dof_hdr_t *dof = (dof_hdr_t *)daddr;
+ dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
+ dof_provider_t *provider;
+ dof_probe_t *probe;
+ uint32_t *off, *enoff;
+ uint8_t *arg;
+ char *strtab;
+ uint_t i, nprobes;
+ dtrace_helper_provdesc_t dhpv;
+ dtrace_helper_probedesc_t dhpb;
+ dtrace_meta_t *meta = dtrace_meta_pid;
+ dtrace_mops_t *mops = &meta->dtm_mops;
+ void *parg;
+
+ provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
+ str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
+ provider->dofpv_strtab * dof->dofh_secsize);
+ prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
+ provider->dofpv_probes * dof->dofh_secsize);
+ arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
+ provider->dofpv_prargs * dof->dofh_secsize);
+ off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
+ provider->dofpv_proffs * dof->dofh_secsize);
+
+ strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
+ off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
+ arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
+ enoff = NULL;
+
+ /*
+ * See dtrace_helper_provider_validate().
+ */
+ if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
+ provider->dofpv_prenoffs != DOF_SECT_NONE) {
+ enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
+ provider->dofpv_prenoffs * dof->dofh_secsize);
+ enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
+ }
+
+ nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
+
+ /*
+ * Create the provider.
+ */
+ dtrace_dofprov2hprov(&dhpv, provider, strtab);
+
+ if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
+ return;
+
+ meta->dtm_count++;
+
+ /*
+ * Create the probes.
+ */
+ for (i = 0; i < nprobes; i++) {
+ probe = (dof_probe_t *)(uintptr_t)(daddr +
+ prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
+
+ dhpb.dthpb_mod = dhp->dofhp_mod;
+ dhpb.dthpb_func = strtab + probe->dofpr_func;
+ dhpb.dthpb_name = strtab + probe->dofpr_name;
+ dhpb.dthpb_base = probe->dofpr_addr;
+ dhpb.dthpb_offs = off + probe->dofpr_offidx;
+ dhpb.dthpb_noffs = probe->dofpr_noffs;
+ if (enoff != NULL) {
+ dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
+ dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
+ } else {
+ dhpb.dthpb_enoffs = NULL;
+ dhpb.dthpb_nenoffs = 0;
+ }
+ dhpb.dthpb_args = arg + probe->dofpr_argidx;
+ dhpb.dthpb_nargc = probe->dofpr_nargc;
+ dhpb.dthpb_xargc = probe->dofpr_xargc;
+ dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
+ dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
+
+ mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
+ }
+}
+
+static void
+dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
+{
+ uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
+ dof_hdr_t *dof = (dof_hdr_t *)daddr;
+ int i;
+
+ ASSERT(MUTEX_HELD(&dtrace_meta_lock));
+
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
+ dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (sec->dofs_type != DOF_SECT_PROVIDER)
+ continue;
+
+ dtrace_helper_provide_one(dhp, sec, pid);
+ }
+
+ /*
+ * We may have just created probes, so we must now rematch against
+ * any retained enablings. Note that this call will acquire both
+ * cpu_lock and dtrace_lock; the fact that we are holding
+ * dtrace_meta_lock now is what defines the ordering with respect to
+ * these three locks.
+ */
+ dtrace_enabling_matchall();
+}
+
+static void
+dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
+{
+ uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
+ dof_hdr_t *dof = (dof_hdr_t *)daddr;
+ dof_sec_t *str_sec;
+ dof_provider_t *provider;
+ char *strtab;
+ dtrace_helper_provdesc_t dhpv;
+ dtrace_meta_t *meta = dtrace_meta_pid;
+ dtrace_mops_t *mops = &meta->dtm_mops;
+
+ provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
+ str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
+ provider->dofpv_strtab * dof->dofh_secsize);
+
+ strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
+
+ /*
+ * Create the provider.
+ */
+ dtrace_dofprov2hprov(&dhpv, provider, strtab);
+
+ mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
+
+ meta->dtm_count--;
+}
+
+static void
+dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
+{
+ uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
+ dof_hdr_t *dof = (dof_hdr_t *)daddr;
+ int i;
+
+ ASSERT(MUTEX_HELD(&dtrace_meta_lock));
+
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
+ dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (sec->dofs_type != DOF_SECT_PROVIDER)
+ continue;
+
+ dtrace_helper_provider_remove_one(dhp, sec, pid);
+ }
+}
+
+/*
+ * DTrace Meta Provider-to-Framework API Functions
+ *
+ * These functions implement the Meta Provider-to-Framework API, as described
+ * in <sys/dtrace.h>.
+ */
+int
+dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
+ dtrace_meta_provider_id_t *idp)
+{
+ dtrace_meta_t *meta;
+ dtrace_helpers_t *help, *next;
+ int i;
+
+ *idp = DTRACE_METAPROVNONE;
+
+ /*
+ * We strictly don't need the name, but we hold onto it for
+ * debuggability. All hail error queues!
+ */
+ if (name == NULL) {
+ cmn_err(CE_WARN, "failed to register meta-provider: "
+ "invalid name");
+ return (EINVAL);
+ }
+
+ if (mops == NULL ||
+ mops->dtms_create_probe == NULL ||
+ mops->dtms_provide_pid == NULL ||
+ mops->dtms_remove_pid == NULL) {
+ cmn_err(CE_WARN, "failed to register meta-register %s: "
+ "invalid ops", name);
+ return (EINVAL);
+ }
+
+ meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
+ meta->dtm_mops = *mops;
+ meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
+ (void) strcpy(meta->dtm_name, name);
+ meta->dtm_arg = arg;
+
+ mutex_enter(&dtrace_meta_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (dtrace_meta_pid != NULL) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_meta_lock);
+ cmn_err(CE_WARN, "failed to register meta-register %s: "
+ "user-land meta-provider exists", name);
+ kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
+ kmem_free(meta, sizeof (dtrace_meta_t));
+ return (EINVAL);
+ }
+
+ dtrace_meta_pid = meta;
+ *idp = (dtrace_meta_provider_id_t)meta;
+
+ /*
+ * If there are providers and probes ready to go, pass them
+ * off to the new meta provider now.
+ */
+
+ help = dtrace_deferred_pid;
+ dtrace_deferred_pid = NULL;
+
+ mutex_exit(&dtrace_lock);
+
+ while (help != NULL) {
+ for (i = 0; i < help->dthps_nprovs; i++) {
+ dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
+ help->dthps_pid);
+ }
+
+ next = help->dthps_next;
+ help->dthps_next = NULL;
+ help->dthps_prev = NULL;
+ help->dthps_deferred = 0;
+ help = next;
+ }
+
+ mutex_exit(&dtrace_meta_lock);
+
+ return (0);
+}
+
+int
+dtrace_meta_unregister(dtrace_meta_provider_id_t id)
+{
+ dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
+
+ mutex_enter(&dtrace_meta_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (old == dtrace_meta_pid) {
+ pp = &dtrace_meta_pid;
+ } else {
+ panic("attempt to unregister non-existent "
+ "dtrace meta-provider %p\n", (void *)old);
+ }
+
+ if (old->dtm_count != 0) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_meta_lock);
+ return (EBUSY);
+ }
+
+ *pp = NULL;
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_meta_lock);
+
+ kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
+ kmem_free(old, sizeof (dtrace_meta_t));
+
+ return (0);
+}
+
+
+/*
+ * DTrace DIF Object Functions
+ */
+static int
+dtrace_difo_err(uint_t pc, const char *format, ...)
+{
+ if (dtrace_err_verbose) {
+ va_list alist;
+
+ (void) uprintf("dtrace DIF object error: [%u]: ", pc);
+ va_start(alist, format);
+ (void) vuprintf(format, alist);
+ va_end(alist);
+ }
+
+#ifdef DTRACE_ERRDEBUG
+ dtrace_errdebug(format);
+#endif
+ return (1);
+}
+
+/*
+ * Validate a DTrace DIF object by checking the IR instructions. The following
+ * rules are currently enforced by dtrace_difo_validate():
+ *
+ * 1. Each instruction must have a valid opcode
+ * 2. Each register, string, variable, or subroutine reference must be valid
+ * 3. No instruction can modify register %r0 (must be zero)
+ * 4. All instruction reserved bits must be set to zero
+ * 5. The last instruction must be a "ret" instruction
+ * 6. All branch targets must reference a valid instruction _after_ the branch
+ */
+static int
+dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
+ cred_t *cr)
+{
+ int err = 0, i;
+ int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
+ int kcheckload;
+ uint_t pc;
+
+ kcheckload = cr == NULL ||
+ (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
+
+ dp->dtdo_destructive = 0;
+
+ for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
+ dif_instr_t instr = dp->dtdo_buf[pc];
+
+ uint_t r1 = DIF_INSTR_R1(instr);
+ uint_t r2 = DIF_INSTR_R2(instr);
+ uint_t rd = DIF_INSTR_RD(instr);
+ uint_t rs = DIF_INSTR_RS(instr);
+ uint_t label = DIF_INSTR_LABEL(instr);
+ uint_t v = DIF_INSTR_VAR(instr);
+ uint_t subr = DIF_INSTR_SUBR(instr);
+ uint_t type = DIF_INSTR_TYPE(instr);
+ uint_t op = DIF_INSTR_OP(instr);
+
+ switch (op) {
+ case DIF_OP_OR:
+ case DIF_OP_XOR:
+ case DIF_OP_AND:
+ case DIF_OP_SLL:
+ case DIF_OP_SRL:
+ case DIF_OP_SRA:
+ case DIF_OP_SUB:
+ case DIF_OP_ADD:
+ case DIF_OP_MUL:
+ case DIF_OP_SDIV:
+ case DIF_OP_UDIV:
+ case DIF_OP_SREM:
+ case DIF_OP_UREM:
+ case DIF_OP_COPYS:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r2);
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_NOT:
+ case DIF_OP_MOV:
+ case DIF_OP_ALLOCS:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_LDSB:
+ case DIF_OP_LDSH:
+ case DIF_OP_LDSW:
+ case DIF_OP_LDUB:
+ case DIF_OP_LDUH:
+ case DIF_OP_LDUW:
+ case DIF_OP_LDX:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ if (kcheckload)
+ dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
+ DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
+ break;
+ case DIF_OP_RLDSB:
+ case DIF_OP_RLDSH:
+ case DIF_OP_RLDSW:
+ case DIF_OP_RLDUB:
+ case DIF_OP_RLDUH:
+ case DIF_OP_RLDUW:
+ case DIF_OP_RLDX:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_ULDSB:
+ case DIF_OP_ULDSH:
+ case DIF_OP_ULDSW:
+ case DIF_OP_ULDUB:
+ case DIF_OP_ULDUH:
+ case DIF_OP_ULDUW:
+ case DIF_OP_ULDX:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_STB:
+ case DIF_OP_STH:
+ case DIF_OP_STW:
+ case DIF_OP_STX:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to 0 address\n");
+ break;
+ case DIF_OP_CMP:
+ case DIF_OP_SCMP:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r2);
+ if (rd != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ break;
+ case DIF_OP_TST:
+ if (r1 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r1);
+ if (r2 != 0 || rd != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ break;
+ case DIF_OP_BA:
+ case DIF_OP_BE:
+ case DIF_OP_BNE:
+ case DIF_OP_BG:
+ case DIF_OP_BGU:
+ case DIF_OP_BGE:
+ case DIF_OP_BGEU:
+ case DIF_OP_BL:
+ case DIF_OP_BLU:
+ case DIF_OP_BLE:
+ case DIF_OP_BLEU:
+ if (label >= dp->dtdo_len) {
+ err += efunc(pc, "invalid branch target %u\n",
+ label);
+ }
+ if (label <= pc) {
+ err += efunc(pc, "backward branch to %u\n",
+ label);
+ }
+ break;
+ case DIF_OP_RET:
+ if (r1 != 0 || r2 != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ break;
+ case DIF_OP_NOP:
+ case DIF_OP_POPTS:
+ case DIF_OP_FLUSHTS:
+ if (r1 != 0 || r2 != 0 || rd != 0)
+ err += efunc(pc, "non-zero reserved bits\n");
+ break;
+ case DIF_OP_SETX:
+ if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
+ err += efunc(pc, "invalid integer ref %u\n",
+ DIF_INSTR_INTEGER(instr));
+ }
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_SETS:
+ if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
+ err += efunc(pc, "invalid string ref %u\n",
+ DIF_INSTR_STRING(instr));
+ }
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_LDGA:
+ case DIF_OP_LDTA:
+ if (r1 > DIF_VAR_ARRAY_MAX)
+ err += efunc(pc, "invalid array %u\n", r1);
+ if (r2 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r2);
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_LDGS:
+ case DIF_OP_LDTS:
+ case DIF_OP_LDLS:
+ case DIF_OP_LDGAA:
+ case DIF_OP_LDTAA:
+ if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
+ err += efunc(pc, "invalid variable %u\n", v);
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+ break;
+ case DIF_OP_STGS:
+ case DIF_OP_STTS:
+ case DIF_OP_STLS:
+ case DIF_OP_STGAA:
+ case DIF_OP_STTAA:
+ if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
+ err += efunc(pc, "invalid variable %u\n", v);
+ if (rs >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ break;
+ case DIF_OP_CALL:
+ if (subr > DIF_SUBR_MAX)
+ err += efunc(pc, "invalid subr %u\n", subr);
+ if (rd >= nregs)
+ err += efunc(pc, "invalid register %u\n", rd);
+ if (rd == 0)
+ err += efunc(pc, "cannot write to %r0\n");
+
+ if (subr == DIF_SUBR_COPYOUT ||
+ subr == DIF_SUBR_COPYOUTSTR) {
+ dp->dtdo_destructive = 1;
+ }
+ break;
+ case DIF_OP_PUSHTR:
+ if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
+ err += efunc(pc, "invalid ref type %u\n", type);
+ if (r2 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r2);
+ if (rs >= nregs)
+ err += efunc(pc, "invalid register %u\n", rs);
+ break;
+ case DIF_OP_PUSHTV:
+ if (type != DIF_TYPE_CTF)
+ err += efunc(pc, "invalid val type %u\n", type);
+ if (r2 >= nregs)
+ err += efunc(pc, "invalid register %u\n", r2);
+ if (rs >= nregs)
+ err += efunc(pc, "invalid register %u\n", rs);
+ break;
+ default:
+ err += efunc(pc, "invalid opcode %u\n",
+ DIF_INSTR_OP(instr));
+ }
+ }
+
+ if (dp->dtdo_len != 0 &&
+ DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
+ err += efunc(dp->dtdo_len - 1,
+ "expected 'ret' as last DIF instruction\n");
+ }
+
+ if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
+ /*
+ * If we're not returning by reference, the size must be either
+ * 0 or the size of one of the base types.
+ */
+ switch (dp->dtdo_rtype.dtdt_size) {
+ case 0:
+ case sizeof (uint8_t):
+ case sizeof (uint16_t):
+ case sizeof (uint32_t):
+ case sizeof (uint64_t):
+ break;
+
+ default:
+ err += efunc(dp->dtdo_len - 1, "bad return size");
+ }
+ }
+
+ for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
+ dtrace_diftype_t *vt, *et;
+ uint_t id, ndx;
+
+ if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
+ v->dtdv_scope != DIFV_SCOPE_THREAD &&
+ v->dtdv_scope != DIFV_SCOPE_LOCAL) {
+ err += efunc(i, "unrecognized variable scope %d\n",
+ v->dtdv_scope);
+ break;
+ }
+
+ if (v->dtdv_kind != DIFV_KIND_ARRAY &&
+ v->dtdv_kind != DIFV_KIND_SCALAR) {
+ err += efunc(i, "unrecognized variable type %d\n",
+ v->dtdv_kind);
+ break;
+ }
+
+ if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
+ err += efunc(i, "%d exceeds variable id limit\n", id);
+ break;
+ }
+
+ if (id < DIF_VAR_OTHER_UBASE)
+ continue;
+
+ /*
+ * For user-defined variables, we need to check that this
+ * definition is identical to any previous definition that we
+ * encountered.
+ */
+ ndx = id - DIF_VAR_OTHER_UBASE;
+
+ switch (v->dtdv_scope) {
+ case DIFV_SCOPE_GLOBAL:
+ if (ndx < vstate->dtvs_nglobals) {
+ dtrace_statvar_t *svar;
+
+ if ((svar = vstate->dtvs_globals[ndx]) != NULL)
+ existing = &svar->dtsv_var;
+ }
+
+ break;
+
+ case DIFV_SCOPE_THREAD:
+ if (ndx < vstate->dtvs_ntlocals)
+ existing = &vstate->dtvs_tlocals[ndx];
+ break;
+
+ case DIFV_SCOPE_LOCAL:
+ if (ndx < vstate->dtvs_nlocals) {
+ dtrace_statvar_t *svar;
+
+ if ((svar = vstate->dtvs_locals[ndx]) != NULL)
+ existing = &svar->dtsv_var;
+ }
+
+ break;
+ }
+
+ vt = &v->dtdv_type;
+
+ if (vt->dtdt_flags & DIF_TF_BYREF) {
+ if (vt->dtdt_size == 0) {
+ err += efunc(i, "zero-sized variable\n");
+ break;
+ }
+
+ if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
+ vt->dtdt_size > dtrace_global_maxsize) {
+ err += efunc(i, "oversized by-ref global\n");
+ break;
+ }
+ }
+
+ if (existing == NULL || existing->dtdv_id == 0)
+ continue;
+
+ ASSERT(existing->dtdv_id == v->dtdv_id);
+ ASSERT(existing->dtdv_scope == v->dtdv_scope);
+
+ if (existing->dtdv_kind != v->dtdv_kind)
+ err += efunc(i, "%d changed variable kind\n", id);
+
+ et = &existing->dtdv_type;
+
+ if (vt->dtdt_flags != et->dtdt_flags) {
+ err += efunc(i, "%d changed variable type flags\n", id);
+ break;
+ }
+
+ if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
+ err += efunc(i, "%d changed variable type size\n", id);
+ break;
+ }
+ }
+
+ return (err);
+}
+
+/*
+ * Validate a DTrace DIF object that it is to be used as a helper. Helpers
+ * are much more constrained than normal DIFOs. Specifically, they may
+ * not:
+ *
+ * 1. Make calls to subroutines other than copyin(), copyinstr() or
+ * miscellaneous string routines
+ * 2. Access DTrace variables other than the args[] array, and the
+ * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
+ * 3. Have thread-local variables.
+ * 4. Have dynamic variables.
+ */
+static int
+dtrace_difo_validate_helper(dtrace_difo_t *dp)
+{
+ int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
+ int err = 0;
+ uint_t pc;
+
+ for (pc = 0; pc < dp->dtdo_len; pc++) {
+ dif_instr_t instr = dp->dtdo_buf[pc];
+
+ uint_t v = DIF_INSTR_VAR(instr);
+ uint_t subr = DIF_INSTR_SUBR(instr);
+ uint_t op = DIF_INSTR_OP(instr);
+
+ switch (op) {
+ case DIF_OP_OR:
+ case DIF_OP_XOR:
+ case DIF_OP_AND:
+ case DIF_OP_SLL:
+ case DIF_OP_SRL:
+ case DIF_OP_SRA:
+ case DIF_OP_SUB:
+ case DIF_OP_ADD:
+ case DIF_OP_MUL:
+ case DIF_OP_SDIV:
+ case DIF_OP_UDIV:
+ case DIF_OP_SREM:
+ case DIF_OP_UREM:
+ case DIF_OP_COPYS:
+ case DIF_OP_NOT:
+ case DIF_OP_MOV:
+ case DIF_OP_RLDSB:
+ case DIF_OP_RLDSH:
+ case DIF_OP_RLDSW:
+ case DIF_OP_RLDUB:
+ case DIF_OP_RLDUH:
+ case DIF_OP_RLDUW:
+ case DIF_OP_RLDX:
+ case DIF_OP_ULDSB:
+ case DIF_OP_ULDSH:
+ case DIF_OP_ULDSW:
+ case DIF_OP_ULDUB:
+ case DIF_OP_ULDUH:
+ case DIF_OP_ULDUW:
+ case DIF_OP_ULDX:
+ case DIF_OP_STB:
+ case DIF_OP_STH:
+ case DIF_OP_STW:
+ case DIF_OP_STX:
+ case DIF_OP_ALLOCS:
+ case DIF_OP_CMP:
+ case DIF_OP_SCMP:
+ case DIF_OP_TST:
+ case DIF_OP_BA:
+ case DIF_OP_BE:
+ case DIF_OP_BNE:
+ case DIF_OP_BG:
+ case DIF_OP_BGU:
+ case DIF_OP_BGE:
+ case DIF_OP_BGEU:
+ case DIF_OP_BL:
+ case DIF_OP_BLU:
+ case DIF_OP_BLE:
+ case DIF_OP_BLEU:
+ case DIF_OP_RET:
+ case DIF_OP_NOP:
+ case DIF_OP_POPTS:
+ case DIF_OP_FLUSHTS:
+ case DIF_OP_SETX:
+ case DIF_OP_SETS:
+ case DIF_OP_LDGA:
+ case DIF_OP_LDLS:
+ case DIF_OP_STGS:
+ case DIF_OP_STLS:
+ case DIF_OP_PUSHTR:
+ case DIF_OP_PUSHTV:
+ break;
+
+ case DIF_OP_LDGS:
+ if (v >= DIF_VAR_OTHER_UBASE)
+ break;
+
+ if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
+ break;
+
+ if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
+ v == DIF_VAR_PPID || v == DIF_VAR_TID ||
+ v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
+ v == DIF_VAR_UID || v == DIF_VAR_GID)
+ break;
+
+ err += efunc(pc, "illegal variable %u\n", v);
+ break;
+
+ case DIF_OP_LDTA:
+ case DIF_OP_LDTS:
+ case DIF_OP_LDGAA:
+ case DIF_OP_LDTAA:
+ err += efunc(pc, "illegal dynamic variable load\n");
+ break;
+
+ case DIF_OP_STTS:
+ case DIF_OP_STGAA:
+ case DIF_OP_STTAA:
+ err += efunc(pc, "illegal dynamic variable store\n");
+ break;
+
+ case DIF_OP_CALL:
+ if (subr == DIF_SUBR_ALLOCA ||
+ subr == DIF_SUBR_BCOPY ||
+ subr == DIF_SUBR_COPYIN ||
+ subr == DIF_SUBR_COPYINTO ||
+ subr == DIF_SUBR_COPYINSTR ||
+ subr == DIF_SUBR_INDEX ||
+ subr == DIF_SUBR_INET_NTOA ||
+ subr == DIF_SUBR_INET_NTOA6 ||
+ subr == DIF_SUBR_INET_NTOP ||
+ subr == DIF_SUBR_LLTOSTR ||
+ subr == DIF_SUBR_RINDEX ||
+ subr == DIF_SUBR_STRCHR ||
+ subr == DIF_SUBR_STRJOIN ||
+ subr == DIF_SUBR_STRRCHR ||
+ subr == DIF_SUBR_STRSTR ||
+ subr == DIF_SUBR_HTONS ||
+ subr == DIF_SUBR_HTONL ||
+ subr == DIF_SUBR_HTONLL ||
+ subr == DIF_SUBR_NTOHS ||
+ subr == DIF_SUBR_NTOHL ||
+ subr == DIF_SUBR_NTOHLL)
+ break;
+
+ err += efunc(pc, "invalid subr %u\n", subr);
+ break;
+
+ default:
+ err += efunc(pc, "invalid opcode %u\n",
+ DIF_INSTR_OP(instr));
+ }
+ }
+
+ return (err);
+}
+
+/*
+ * Returns 1 if the expression in the DIF object can be cached on a per-thread
+ * basis; 0 if not.
+ */
+static int
+dtrace_difo_cacheable(dtrace_difo_t *dp)
+{
+ int i;
+
+ if (dp == NULL)
+ return (0);
+
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+
+ if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
+ continue;
+
+ switch (v->dtdv_id) {
+ case DIF_VAR_CURTHREAD:
+ case DIF_VAR_PID:
+ case DIF_VAR_TID:
+ case DIF_VAR_EXECNAME:
+ case DIF_VAR_ZONENAME:
+ break;
+
+ default:
+ return (0);
+ }
+ }
+
+ /*
+ * This DIF object may be cacheable. Now we need to look for any
+ * array loading instructions, any memory loading instructions, or
+ * any stores to thread-local variables.
+ */
+ for (i = 0; i < dp->dtdo_len; i++) {
+ uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
+
+ if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
+ (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
+ (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
+ op == DIF_OP_LDGA || op == DIF_OP_STTS)
+ return (0);
+ }
+
+ return (1);
+}
+
+static void
+dtrace_difo_hold(dtrace_difo_t *dp)
+{
+ int i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ dp->dtdo_refcnt++;
+ ASSERT(dp->dtdo_refcnt != 0);
+
+ /*
+ * We need to check this DIF object for references to the variable
+ * DIF_VAR_VTIMESTAMP.
+ */
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+
+ if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
+ continue;
+
+ if (dtrace_vtime_references++ == 0)
+ dtrace_vtime_enable();
+ }
+}
+
+/*
+ * This routine calculates the dynamic variable chunksize for a given DIF
+ * object. The calculation is not fool-proof, and can probably be tricked by
+ * malicious DIF -- but it works for all compiler-generated DIF. Because this
+ * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
+ * if a dynamic variable size exceeds the chunksize.
+ */
+static void
+dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
+{
+ uint64_t sval;
+ dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
+ const dif_instr_t *text = dp->dtdo_buf;
+ uint_t pc, srd = 0;
+ uint_t ttop = 0;
+ size_t size, ksize;
+ uint_t id, i;
+
+ for (pc = 0; pc < dp->dtdo_len; pc++) {
+ dif_instr_t instr = text[pc];
+ uint_t op = DIF_INSTR_OP(instr);
+ uint_t rd = DIF_INSTR_RD(instr);
+ uint_t r1 = DIF_INSTR_R1(instr);
+ uint_t nkeys = 0;
+ uchar_t scope;
+
+ dtrace_key_t *key = tupregs;
+
+ switch (op) {
+ case DIF_OP_SETX:
+ sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
+ srd = rd;
+ continue;
+
+ case DIF_OP_STTS:
+ key = &tupregs[DIF_DTR_NREGS];
+ key[0].dttk_size = 0;
+ key[1].dttk_size = 0;
+ nkeys = 2;
+ scope = DIFV_SCOPE_THREAD;
+ break;
+
+ case DIF_OP_STGAA:
+ case DIF_OP_STTAA:
+ nkeys = ttop;
+
+ if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
+ key[nkeys++].dttk_size = 0;
+
+ key[nkeys++].dttk_size = 0;
+
+ if (op == DIF_OP_STTAA) {
+ scope = DIFV_SCOPE_THREAD;
+ } else {
+ scope = DIFV_SCOPE_GLOBAL;
+ }
+
+ break;
+
+ case DIF_OP_PUSHTR:
+ if (ttop == DIF_DTR_NREGS)
+ return;
+
+ if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
+ /*
+ * If the register for the size of the "pushtr"
+ * is %r0 (or the value is 0) and the type is
+ * a string, we'll use the system-wide default
+ * string size.
+ */
+ tupregs[ttop++].dttk_size =
+ dtrace_strsize_default;
+ } else {
+ if (srd == 0)
+ return;
+
+ tupregs[ttop++].dttk_size = sval;
+ }
+
+ break;
+
+ case DIF_OP_PUSHTV:
+ if (ttop == DIF_DTR_NREGS)
+ return;
+
+ tupregs[ttop++].dttk_size = 0;
+ break;
+
+ case DIF_OP_FLUSHTS:
+ ttop = 0;
+ break;
+
+ case DIF_OP_POPTS:
+ if (ttop != 0)
+ ttop--;
+ break;
+ }
+
+ sval = 0;
+ srd = 0;
+
+ if (nkeys == 0)
+ continue;
+
+ /*
+ * We have a dynamic variable allocation; calculate its size.
+ */
+ for (ksize = 0, i = 0; i < nkeys; i++)
+ ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
+
+ size = sizeof (dtrace_dynvar_t);
+ size += sizeof (dtrace_key_t) * (nkeys - 1);
+ size += ksize;
+
+ /*
+ * Now we need to determine the size of the stored data.
+ */
+ id = DIF_INSTR_VAR(instr);
+
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+
+ if (v->dtdv_id == id && v->dtdv_scope == scope) {
+ size += v->dtdv_type.dtdt_size;
+ break;
+ }
+ }
+
+ if (i == dp->dtdo_varlen)
+ return;
+
+ /*
+ * We have the size. If this is larger than the chunk size
+ * for our dynamic variable state, reset the chunk size.
+ */
+ size = P2ROUNDUP(size, sizeof (uint64_t));
+
+ if (size > vstate->dtvs_dynvars.dtds_chunksize)
+ vstate->dtvs_dynvars.dtds_chunksize = size;
+ }
+}
+
+static void
+dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
+{
+ int i, oldsvars, osz, nsz, otlocals, ntlocals;
+ uint_t id;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
+
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+ dtrace_statvar_t *svar, ***svarp;
+ size_t dsize = 0;
+ uint8_t scope = v->dtdv_scope;
+ int *np;
+
+ if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
+ continue;
+
+ id -= DIF_VAR_OTHER_UBASE;
+
+ switch (scope) {
+ case DIFV_SCOPE_THREAD:
+ while (id >= (otlocals = vstate->dtvs_ntlocals)) {
+ dtrace_difv_t *tlocals;
+
+ if ((ntlocals = (otlocals << 1)) == 0)
+ ntlocals = 1;
+
+ osz = otlocals * sizeof (dtrace_difv_t);
+ nsz = ntlocals * sizeof (dtrace_difv_t);
+
+ tlocals = kmem_zalloc(nsz, KM_SLEEP);
+
+ if (osz != 0) {
+ bcopy(vstate->dtvs_tlocals,
+ tlocals, osz);
+ kmem_free(vstate->dtvs_tlocals, osz);
+ }
+
+ vstate->dtvs_tlocals = tlocals;
+ vstate->dtvs_ntlocals = ntlocals;
+ }
+
+ vstate->dtvs_tlocals[id] = *v;
+ continue;
+
+ case DIFV_SCOPE_LOCAL:
+ np = &vstate->dtvs_nlocals;
+ svarp = &vstate->dtvs_locals;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
+ dsize = NCPU * (v->dtdv_type.dtdt_size +
+ sizeof (uint64_t));
+ else
+ dsize = NCPU * sizeof (uint64_t);
+
+ break;
+
+ case DIFV_SCOPE_GLOBAL:
+ np = &vstate->dtvs_nglobals;
+ svarp = &vstate->dtvs_globals;
+
+ if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
+ dsize = v->dtdv_type.dtdt_size +
+ sizeof (uint64_t);
+
+ break;
+
+ default:
+ ASSERT(0);
+ }
+
+ while (id >= (oldsvars = *np)) {
+ dtrace_statvar_t **statics;
+ int newsvars, oldsize, newsize;
+
+ if ((newsvars = (oldsvars << 1)) == 0)
+ newsvars = 1;
+
+ oldsize = oldsvars * sizeof (dtrace_statvar_t *);
+ newsize = newsvars * sizeof (dtrace_statvar_t *);
+
+ statics = kmem_zalloc(newsize, KM_SLEEP);
+
+ if (oldsize != 0) {
+ bcopy(*svarp, statics, oldsize);
+ kmem_free(*svarp, oldsize);
+ }
+
+ *svarp = statics;
+ *np = newsvars;
+ }
+
+ if ((svar = (*svarp)[id]) == NULL) {
+ svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
+ svar->dtsv_var = *v;
+
+ if ((svar->dtsv_size = dsize) != 0) {
+ svar->dtsv_data = (uint64_t)(uintptr_t)
+ kmem_zalloc(dsize, KM_SLEEP);
+ }
+
+ (*svarp)[id] = svar;
+ }
+
+ svar->dtsv_refcnt++;
+ }
+
+ dtrace_difo_chunksize(dp, vstate);
+ dtrace_difo_hold(dp);
+}
+
+static dtrace_difo_t *
+dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
+{
+ dtrace_difo_t *new;
+ size_t sz;
+
+ ASSERT(dp->dtdo_buf != NULL);
+ ASSERT(dp->dtdo_refcnt != 0);
+
+ new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
+
+ ASSERT(dp->dtdo_buf != NULL);
+ sz = dp->dtdo_len * sizeof (dif_instr_t);
+ new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
+ bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
+ new->dtdo_len = dp->dtdo_len;
+
+ if (dp->dtdo_strtab != NULL) {
+ ASSERT(dp->dtdo_strlen != 0);
+ new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
+ bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
+ new->dtdo_strlen = dp->dtdo_strlen;
+ }
+
+ if (dp->dtdo_inttab != NULL) {
+ ASSERT(dp->dtdo_intlen != 0);
+ sz = dp->dtdo_intlen * sizeof (uint64_t);
+ new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
+ bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
+ new->dtdo_intlen = dp->dtdo_intlen;
+ }
+
+ if (dp->dtdo_vartab != NULL) {
+ ASSERT(dp->dtdo_varlen != 0);
+ sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
+ new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
+ bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
+ new->dtdo_varlen = dp->dtdo_varlen;
+ }
+
+ dtrace_difo_init(new, vstate);
+ return (new);
+}
+
+static void
+dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
+{
+ int i;
+
+ ASSERT(dp->dtdo_refcnt == 0);
+
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+ dtrace_statvar_t *svar, **svarp;
+ uint_t id;
+ uint8_t scope = v->dtdv_scope;
+ int *np;
+
+ switch (scope) {
+ case DIFV_SCOPE_THREAD:
+ continue;
+
+ case DIFV_SCOPE_LOCAL:
+ np = &vstate->dtvs_nlocals;
+ svarp = vstate->dtvs_locals;
+ break;
+
+ case DIFV_SCOPE_GLOBAL:
+ np = &vstate->dtvs_nglobals;
+ svarp = vstate->dtvs_globals;
+ break;
+
+ default:
+ ASSERT(0);
+ }
+
+ if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
+ continue;
+
+ id -= DIF_VAR_OTHER_UBASE;
+ ASSERT(id < *np);
+
+ svar = svarp[id];
+ ASSERT(svar != NULL);
+ ASSERT(svar->dtsv_refcnt > 0);
+
+ if (--svar->dtsv_refcnt > 0)
+ continue;
+
+ if (svar->dtsv_size != 0) {
+ ASSERT(svar->dtsv_data != NULL);
+ kmem_free((void *)(uintptr_t)svar->dtsv_data,
+ svar->dtsv_size);
+ }
+
+ kmem_free(svar, sizeof (dtrace_statvar_t));
+ svarp[id] = NULL;
+ }
+
+ kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
+ kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
+ kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
+ kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
+
+ kmem_free(dp, sizeof (dtrace_difo_t));
+}
+
+static void
+dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
+{
+ int i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dp->dtdo_refcnt != 0);
+
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+
+ if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
+ continue;
+
+ ASSERT(dtrace_vtime_references > 0);
+ if (--dtrace_vtime_references == 0)
+ dtrace_vtime_disable();
+ }
+
+ if (--dp->dtdo_refcnt == 0)
+ dtrace_difo_destroy(dp, vstate);
+}
+
+/*
+ * DTrace Format Functions
+ */
+static uint16_t
+dtrace_format_add(dtrace_state_t *state, char *str)
+{
+ char *fmt, **new;
+ uint16_t ndx, len = strlen(str) + 1;
+
+ fmt = kmem_zalloc(len, KM_SLEEP);
+ bcopy(str, fmt, len);
+
+ for (ndx = 0; ndx < state->dts_nformats; ndx++) {
+ if (state->dts_formats[ndx] == NULL) {
+ state->dts_formats[ndx] = fmt;
+ return (ndx + 1);
+ }
+ }
+
+ if (state->dts_nformats == USHRT_MAX) {
+ /*
+ * This is only likely if a denial-of-service attack is being
+ * attempted. As such, it's okay to fail silently here.
+ */
+ kmem_free(fmt, len);
+ return (0);
+ }
+
+ /*
+ * For simplicity, we always resize the formats array to be exactly the
+ * number of formats.
+ */
+ ndx = state->dts_nformats++;
+ new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
+
+ if (state->dts_formats != NULL) {
+ ASSERT(ndx != 0);
+ bcopy(state->dts_formats, new, ndx * sizeof (char *));
+ kmem_free(state->dts_formats, ndx * sizeof (char *));
+ }
+
+ state->dts_formats = new;
+ state->dts_formats[ndx] = fmt;
+
+ return (ndx + 1);
+}
+
+static void
+dtrace_format_remove(dtrace_state_t *state, uint16_t format)
+{
+ char *fmt;
+
+ ASSERT(state->dts_formats != NULL);
+ ASSERT(format <= state->dts_nformats);
+ ASSERT(state->dts_formats[format - 1] != NULL);
+
+ fmt = state->dts_formats[format - 1];
+ kmem_free(fmt, strlen(fmt) + 1);
+ state->dts_formats[format - 1] = NULL;
+}
+
+static void
+dtrace_format_destroy(dtrace_state_t *state)
+{
+ int i;
+
+ if (state->dts_nformats == 0) {
+ ASSERT(state->dts_formats == NULL);
+ return;
+ }
+
+ ASSERT(state->dts_formats != NULL);
+
+ for (i = 0; i < state->dts_nformats; i++) {
+ char *fmt = state->dts_formats[i];
+
+ if (fmt == NULL)
+ continue;
+
+ kmem_free(fmt, strlen(fmt) + 1);
+ }
+
+ kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
+ state->dts_nformats = 0;
+ state->dts_formats = NULL;
+}
+
+/*
+ * DTrace Predicate Functions
+ */
+static dtrace_predicate_t *
+dtrace_predicate_create(dtrace_difo_t *dp)
+{
+ dtrace_predicate_t *pred;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dp->dtdo_refcnt != 0);
+
+ pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
+ pred->dtp_difo = dp;
+ pred->dtp_refcnt = 1;
+
+ if (!dtrace_difo_cacheable(dp))
+ return (pred);
+
+ if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
+ /*
+ * This is only theoretically possible -- we have had 2^32
+ * cacheable predicates on this machine. We cannot allow any
+ * more predicates to become cacheable: as unlikely as it is,
+ * there may be a thread caching a (now stale) predicate cache
+ * ID. (N.B.: the temptation is being successfully resisted to
+ * have this cmn_err() "Holy shit -- we executed this code!")
+ */
+ return (pred);
+ }
+
+ pred->dtp_cacheid = dtrace_predcache_id++;
+
+ return (pred);
+}
+
+static void
+dtrace_predicate_hold(dtrace_predicate_t *pred)
+{
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
+ ASSERT(pred->dtp_refcnt > 0);
+
+ pred->dtp_refcnt++;
+}
+
+static void
+dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
+{
+ dtrace_difo_t *dp = pred->dtp_difo;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
+ ASSERT(pred->dtp_refcnt > 0);
+
+ if (--pred->dtp_refcnt == 0) {
+ dtrace_difo_release(pred->dtp_difo, vstate);
+ kmem_free(pred, sizeof (dtrace_predicate_t));
+ }
+}
+
+/*
+ * DTrace Action Description Functions
+ */
+static dtrace_actdesc_t *
+dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
+ uint64_t uarg, uint64_t arg)
+{
+ dtrace_actdesc_t *act;
+
+ ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
+ arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
+
+ act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
+ act->dtad_kind = kind;
+ act->dtad_ntuple = ntuple;
+ act->dtad_uarg = uarg;
+ act->dtad_arg = arg;
+ act->dtad_refcnt = 1;
+
+ return (act);
+}
+
+static void
+dtrace_actdesc_hold(dtrace_actdesc_t *act)
+{
+ ASSERT(act->dtad_refcnt >= 1);
+ act->dtad_refcnt++;
+}
+
+static void
+dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
+{
+ dtrace_actkind_t kind = act->dtad_kind;
+ dtrace_difo_t *dp;
+
+ ASSERT(act->dtad_refcnt >= 1);
+
+ if (--act->dtad_refcnt != 0)
+ return;
+
+ if ((dp = act->dtad_difo) != NULL)
+ dtrace_difo_release(dp, vstate);
+
+ if (DTRACEACT_ISPRINTFLIKE(kind)) {
+ char *str = (char *)(uintptr_t)act->dtad_arg;
+
+ ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
+ (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
+
+ if (str != NULL)
+ kmem_free(str, strlen(str) + 1);
+ }
+
+ kmem_free(act, sizeof (dtrace_actdesc_t));
+}
+
+/*
+ * DTrace ECB Functions
+ */
+static dtrace_ecb_t *
+dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
+{
+ dtrace_ecb_t *ecb;
+ dtrace_epid_t epid;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
+ ecb->dte_predicate = NULL;
+ ecb->dte_probe = probe;
+
+ /*
+ * The default size is the size of the default action: recording
+ * the epid.
+ */
+ ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
+ ecb->dte_alignment = sizeof (dtrace_epid_t);
+
+ epid = state->dts_epid++;
+
+ if (epid - 1 >= state->dts_necbs) {
+ dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
+ int necbs = state->dts_necbs << 1;
+
+ ASSERT(epid == state->dts_necbs + 1);
+
+ if (necbs == 0) {
+ ASSERT(oecbs == NULL);
+ necbs = 1;
+ }
+
+ ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
+
+ if (oecbs != NULL)
+ bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
+
+ dtrace_membar_producer();
+ state->dts_ecbs = ecbs;
+
+ if (oecbs != NULL) {
+ /*
+ * If this state is active, we must dtrace_sync()
+ * before we can free the old dts_ecbs array: we're
+ * coming in hot, and there may be active ring
+ * buffer processing (which indexes into the dts_ecbs
+ * array) on another CPU.
+ */
+ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
+ dtrace_sync();
+
+ kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
+ }
+
+ dtrace_membar_producer();
+ state->dts_necbs = necbs;
+ }
+
+ ecb->dte_state = state;
+
+ ASSERT(state->dts_ecbs[epid - 1] == NULL);
+ dtrace_membar_producer();
+ state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
+
+ return (ecb);
+}
+
+static void
+dtrace_ecb_enable(dtrace_ecb_t *ecb)
+{
+ dtrace_probe_t *probe = ecb->dte_probe;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(ecb->dte_next == NULL);
+
+ if (probe == NULL) {
+ /*
+ * This is the NULL probe -- there's nothing to do.
+ */
+ return;
+ }
+
+ if (probe->dtpr_ecb == NULL) {
+ dtrace_provider_t *prov = probe->dtpr_provider;
+
+ /*
+ * We're the first ECB on this probe.
+ */
+ probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
+
+ if (ecb->dte_predicate != NULL)
+ probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
+
+ prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
+ probe->dtpr_id, probe->dtpr_arg);
+ } else {
+ /*
+ * This probe is already active. Swing the last pointer to
+ * point to the new ECB, and issue a dtrace_sync() to assure
+ * that all CPUs have seen the change.
+ */
+ ASSERT(probe->dtpr_ecb_last != NULL);
+ probe->dtpr_ecb_last->dte_next = ecb;
+ probe->dtpr_ecb_last = ecb;
+ probe->dtpr_predcache = 0;
+
+ dtrace_sync();
+ }
+}
+
+static void
+dtrace_ecb_resize(dtrace_ecb_t *ecb)
+{
+ uint32_t maxalign = sizeof (dtrace_epid_t);
+ uint32_t align = sizeof (uint8_t), offs, diff;
+ dtrace_action_t *act;
+ int wastuple = 0;
+ uint32_t aggbase = UINT32_MAX;
+ dtrace_state_t *state = ecb->dte_state;
+
+ /*
+ * If we record anything, we always record the epid. (And we always
+ * record it first.)
+ */
+ offs = sizeof (dtrace_epid_t);
+ ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
+
+ for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
+ dtrace_recdesc_t *rec = &act->dta_rec;
+
+ if ((align = rec->dtrd_alignment) > maxalign)
+ maxalign = align;
+
+ if (!wastuple && act->dta_intuple) {
+ /*
+ * This is the first record in a tuple. Align the
+ * offset to be at offset 4 in an 8-byte aligned
+ * block.
+ */
+ diff = offs + sizeof (dtrace_aggid_t);
+
+ if (diff = (diff & (sizeof (uint64_t) - 1)))
+ offs += sizeof (uint64_t) - diff;
+
+ aggbase = offs - sizeof (dtrace_aggid_t);
+ ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
+ }
+
+ /*LINTED*/
+ if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
+ /*
+ * The current offset is not properly aligned; align it.
+ */
+ offs += align - diff;
+ }
+
+ rec->dtrd_offset = offs;
+
+ if (offs + rec->dtrd_size > ecb->dte_needed) {
+ ecb->dte_needed = offs + rec->dtrd_size;
+
+ if (ecb->dte_needed > state->dts_needed)
+ state->dts_needed = ecb->dte_needed;
+ }
+
+ if (DTRACEACT_ISAGG(act->dta_kind)) {
+ dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
+ dtrace_action_t *first = agg->dtag_first, *prev;
+
+ ASSERT(rec->dtrd_size != 0 && first != NULL);
+ ASSERT(wastuple);
+ ASSERT(aggbase != UINT32_MAX);
+
+ agg->dtag_base = aggbase;
+
+ while ((prev = first->dta_prev) != NULL &&
+ DTRACEACT_ISAGG(prev->dta_kind)) {
+ agg = (dtrace_aggregation_t *)prev;
+ first = agg->dtag_first;
+ }
+
+ if (prev != NULL) {
+ offs = prev->dta_rec.dtrd_offset +
+ prev->dta_rec.dtrd_size;
+ } else {
+ offs = sizeof (dtrace_epid_t);
+ }
+ wastuple = 0;
+ } else {
+ if (!act->dta_intuple)
+ ecb->dte_size = offs + rec->dtrd_size;
+
+ offs += rec->dtrd_size;
+ }
+
+ wastuple = act->dta_intuple;
+ }
+
+ if ((act = ecb->dte_action) != NULL &&
+ !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
+ ecb->dte_size == sizeof (dtrace_epid_t)) {
+ /*
+ * If the size is still sizeof (dtrace_epid_t), then all
+ * actions store no data; set the size to 0.
+ */
+ ecb->dte_alignment = maxalign;
+ ecb->dte_size = 0;
+
+ /*
+ * If the needed space is still sizeof (dtrace_epid_t), then
+ * all actions need no additional space; set the needed
+ * size to 0.
+ */
+ if (ecb->dte_needed == sizeof (dtrace_epid_t))
+ ecb->dte_needed = 0;
+
+ return;
+ }
+
+ /*
+ * Set our alignment, and make sure that the dte_size and dte_needed
+ * are aligned to the size of an EPID.
+ */
+ ecb->dte_alignment = maxalign;
+ ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
+ ~(sizeof (dtrace_epid_t) - 1);
+ ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
+ ~(sizeof (dtrace_epid_t) - 1);
+ ASSERT(ecb->dte_size <= ecb->dte_needed);
+}
+
+static dtrace_action_t *
+dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
+{
+ dtrace_aggregation_t *agg;
+ size_t size = sizeof (uint64_t);
+ int ntuple = desc->dtad_ntuple;
+ dtrace_action_t *act;
+ dtrace_recdesc_t *frec;
+ dtrace_aggid_t aggid;
+ dtrace_state_t *state = ecb->dte_state;
+
+ agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
+ agg->dtag_ecb = ecb;
+
+ ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
+
+ switch (desc->dtad_kind) {
+ case DTRACEAGG_MIN:
+ agg->dtag_initial = INT64_MAX;
+ agg->dtag_aggregate = dtrace_aggregate_min;
+ break;
+
+ case DTRACEAGG_MAX:
+ agg->dtag_initial = INT64_MIN;
+ agg->dtag_aggregate = dtrace_aggregate_max;
+ break;
+
+ case DTRACEAGG_COUNT:
+ agg->dtag_aggregate = dtrace_aggregate_count;
+ break;
+
+ case DTRACEAGG_QUANTIZE:
+ agg->dtag_aggregate = dtrace_aggregate_quantize;
+ size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
+ sizeof (uint64_t);
+ break;
+
+ case DTRACEAGG_LQUANTIZE: {
+ uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
+ uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
+
+ agg->dtag_initial = desc->dtad_arg;
+ agg->dtag_aggregate = dtrace_aggregate_lquantize;
+
+ if (step == 0 || levels == 0)
+ goto err;
+
+ size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
+ break;
+ }
+
+ case DTRACEAGG_AVG:
+ agg->dtag_aggregate = dtrace_aggregate_avg;
+ size = sizeof (uint64_t) * 2;
+ break;
+
+ case DTRACEAGG_STDDEV:
+ agg->dtag_aggregate = dtrace_aggregate_stddev;
+ size = sizeof (uint64_t) * 4;
+ break;
+
+ case DTRACEAGG_SUM:
+ agg->dtag_aggregate = dtrace_aggregate_sum;
+ break;
+
+ default:
+ goto err;
+ }
+
+ agg->dtag_action.dta_rec.dtrd_size = size;
+
+ if (ntuple == 0)
+ goto err;
+
+ /*
+ * We must make sure that we have enough actions for the n-tuple.
+ */
+ for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
+ if (DTRACEACT_ISAGG(act->dta_kind))
+ break;
+
+ if (--ntuple == 0) {
+ /*
+ * This is the action with which our n-tuple begins.
+ */
+ agg->dtag_first = act;
+ goto success;
+ }
+ }
+
+ /*
+ * This n-tuple is short by ntuple elements. Return failure.
+ */
+ ASSERT(ntuple != 0);
+err:
+ kmem_free(agg, sizeof (dtrace_aggregation_t));
+ return (NULL);
+
+success:
+ /*
+ * If the last action in the tuple has a size of zero, it's actually
+ * an expression argument for the aggregating action.
+ */
+ ASSERT(ecb->dte_action_last != NULL);
+ act = ecb->dte_action_last;
+
+ if (act->dta_kind == DTRACEACT_DIFEXPR) {
+ ASSERT(act->dta_difo != NULL);
+
+ if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
+ agg->dtag_hasarg = 1;
+ }
+
+ /*
+ * We need to allocate an id for this aggregation.
+ */
+ aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
+ VM_BESTFIT | VM_SLEEP);
+
+ if (aggid - 1 >= state->dts_naggregations) {
+ dtrace_aggregation_t **oaggs = state->dts_aggregations;
+ dtrace_aggregation_t **aggs;
+ int naggs = state->dts_naggregations << 1;
+ int onaggs = state->dts_naggregations;
+
+ ASSERT(aggid == state->dts_naggregations + 1);
+
+ if (naggs == 0) {
+ ASSERT(oaggs == NULL);
+ naggs = 1;
+ }
+
+ aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
+
+ if (oaggs != NULL) {
+ bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
+ kmem_free(oaggs, onaggs * sizeof (*aggs));
+ }
+
+ state->dts_aggregations = aggs;
+ state->dts_naggregations = naggs;
+ }
+
+ ASSERT(state->dts_aggregations[aggid - 1] == NULL);
+ state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
+
+ frec = &agg->dtag_first->dta_rec;
+ if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
+ frec->dtrd_alignment = sizeof (dtrace_aggid_t);
+
+ for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
+ ASSERT(!act->dta_intuple);
+ act->dta_intuple = 1;
+ }
+
+ return (&agg->dtag_action);
+}
+
+static void
+dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
+{
+ dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
+ dtrace_state_t *state = ecb->dte_state;
+ dtrace_aggid_t aggid = agg->dtag_id;
+
+ ASSERT(DTRACEACT_ISAGG(act->dta_kind));
+ vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
+
+ ASSERT(state->dts_aggregations[aggid - 1] == agg);
+ state->dts_aggregations[aggid - 1] = NULL;
+
+ kmem_free(agg, sizeof (dtrace_aggregation_t));
+}
+
+static int
+dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
+{
+ dtrace_action_t *action, *last;
+ dtrace_difo_t *dp = desc->dtad_difo;
+ uint32_t size = 0, align = sizeof (uint8_t), mask;
+ uint16_t format = 0;
+ dtrace_recdesc_t *rec;
+ dtrace_state_t *state = ecb->dte_state;
+ dtrace_optval_t *opt = state->dts_options, nframes, strsize;
+ uint64_t arg = desc->dtad_arg;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
+
+ if (DTRACEACT_ISAGG(desc->dtad_kind)) {
+ /*
+ * If this is an aggregating action, there must be neither
+ * a speculate nor a commit on the action chain.
+ */
+ dtrace_action_t *act;
+
+ for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
+ if (act->dta_kind == DTRACEACT_COMMIT)
+ return (EINVAL);
+
+ if (act->dta_kind == DTRACEACT_SPECULATE)
+ return (EINVAL);
+ }
+
+ action = dtrace_ecb_aggregation_create(ecb, desc);
+
+ if (action == NULL)
+ return (EINVAL);
+ } else {
+ if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
+ (desc->dtad_kind == DTRACEACT_DIFEXPR &&
+ dp != NULL && dp->dtdo_destructive)) {
+ state->dts_destructive = 1;
+ }
+
+ switch (desc->dtad_kind) {
+ case DTRACEACT_PRINTF:
+ case DTRACEACT_PRINTA:
+ case DTRACEACT_SYSTEM:
+ case DTRACEACT_FREOPEN:
+ /*
+ * We know that our arg is a string -- turn it into a
+ * format.
+ */
+ if (arg == NULL) {
+ ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
+ format = 0;
+ } else {
+ ASSERT(arg != NULL);
+ ASSERT(arg > KERNELBASE);
+ format = dtrace_format_add(state,
+ (char *)(uintptr_t)arg);
+ }
+
+ /*FALLTHROUGH*/
+ case DTRACEACT_LIBACT:
+ case DTRACEACT_DIFEXPR:
+ if (dp == NULL)
+ return (EINVAL);
+
+ if ((size = dp->dtdo_rtype.dtdt_size) != 0)
+ break;
+
+ if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
+ if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
+ return (EINVAL);
+
+ size = opt[DTRACEOPT_STRSIZE];
+ }
+
+ break;
+
+ case DTRACEACT_STACK:
+ if ((nframes = arg) == 0) {
+ nframes = opt[DTRACEOPT_STACKFRAMES];
+ ASSERT(nframes > 0);
+ arg = nframes;
+ }
+
+ size = nframes * sizeof (pc_t);
+ break;
+
+ case DTRACEACT_JSTACK:
+ if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
+ strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
+
+ if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
+ nframes = opt[DTRACEOPT_JSTACKFRAMES];
+
+ arg = DTRACE_USTACK_ARG(nframes, strsize);
+
+ /*FALLTHROUGH*/
+ case DTRACEACT_USTACK:
+ if (desc->dtad_kind != DTRACEACT_JSTACK &&
+ (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
+ strsize = DTRACE_USTACK_STRSIZE(arg);
+ nframes = opt[DTRACEOPT_USTACKFRAMES];
+ ASSERT(nframes > 0);
+ arg = DTRACE_USTACK_ARG(nframes, strsize);
+ }
+
+ /*
+ * Save a slot for the pid.
+ */
+ size = (nframes + 1) * sizeof (uint64_t);
+ size += DTRACE_USTACK_STRSIZE(arg);
+ size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
+
+ break;
+
+ case DTRACEACT_SYM:
+ case DTRACEACT_MOD:
+ if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
+ sizeof (uint64_t)) ||
+ (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
+ return (EINVAL);
+ break;
+
+ case DTRACEACT_USYM:
+ case DTRACEACT_UMOD:
+ case DTRACEACT_UADDR:
+ if (dp == NULL ||
+ (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
+ (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
+ return (EINVAL);
+
+ /*
+ * We have a slot for the pid, plus a slot for the
+ * argument. To keep things simple (aligned with
+ * bitness-neutral sizing), we store each as a 64-bit
+ * quantity.
+ */
+ size = 2 * sizeof (uint64_t);
+ break;
+
+ case DTRACEACT_STOP:
+ case DTRACEACT_BREAKPOINT:
+ case DTRACEACT_PANIC:
+ break;
+
+ case DTRACEACT_CHILL:
+ case DTRACEACT_DISCARD:
+ case DTRACEACT_RAISE:
+ if (dp == NULL)
+ return (EINVAL);
+ break;
+
+ case DTRACEACT_EXIT:
+ if (dp == NULL ||
+ (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
+ (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
+ return (EINVAL);
+ break;
+
+ case DTRACEACT_SPECULATE:
+ if (ecb->dte_size > sizeof (dtrace_epid_t))
+ return (EINVAL);
+
+ if (dp == NULL)
+ return (EINVAL);
+
+ state->dts_speculates = 1;
+ break;
+
+ case DTRACEACT_COMMIT: {
+ dtrace_action_t *act = ecb->dte_action;
+
+ for (; act != NULL; act = act->dta_next) {
+ if (act->dta_kind == DTRACEACT_COMMIT)
+ return (EINVAL);
+ }
+
+ if (dp == NULL)
+ return (EINVAL);
+ break;
+ }
+
+ default:
+ return (EINVAL);
+ }
+
+ if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
+ /*
+ * If this is a data-storing action or a speculate,
+ * we must be sure that there isn't a commit on the
+ * action chain.
+ */
+ dtrace_action_t *act = ecb->dte_action;
+
+ for (; act != NULL; act = act->dta_next) {
+ if (act->dta_kind == DTRACEACT_COMMIT)
+ return (EINVAL);
+ }
+ }
+
+ action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
+ action->dta_rec.dtrd_size = size;
+ }
+
+ action->dta_refcnt = 1;
+ rec = &action->dta_rec;
+ size = rec->dtrd_size;
+
+ for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
+ if (!(size & mask)) {
+ align = mask + 1;
+ break;
+ }
+ }
+
+ action->dta_kind = desc->dtad_kind;
+
+ if ((action->dta_difo = dp) != NULL)
+ dtrace_difo_hold(dp);
+
+ rec->dtrd_action = action->dta_kind;
+ rec->dtrd_arg = arg;
+ rec->dtrd_uarg = desc->dtad_uarg;
+ rec->dtrd_alignment = (uint16_t)align;
+ rec->dtrd_format = format;
+
+ if ((last = ecb->dte_action_last) != NULL) {
+ ASSERT(ecb->dte_action != NULL);
+ action->dta_prev = last;
+ last->dta_next = action;
+ } else {
+ ASSERT(ecb->dte_action == NULL);
+ ecb->dte_action = action;
+ }
+
+ ecb->dte_action_last = action;
+
+ return (0);
+}
+
+static void
+dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
+{
+ dtrace_action_t *act = ecb->dte_action, *next;
+ dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
+ dtrace_difo_t *dp;
+ uint16_t format;
+
+ if (act != NULL && act->dta_refcnt > 1) {
+ ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
+ act->dta_refcnt--;
+ } else {
+ for (; act != NULL; act = next) {
+ next = act->dta_next;
+ ASSERT(next != NULL || act == ecb->dte_action_last);
+ ASSERT(act->dta_refcnt == 1);
+
+ if ((format = act->dta_rec.dtrd_format) != 0)
+ dtrace_format_remove(ecb->dte_state, format);
+
+ if ((dp = act->dta_difo) != NULL)
+ dtrace_difo_release(dp, vstate);
+
+ if (DTRACEACT_ISAGG(act->dta_kind)) {
+ dtrace_ecb_aggregation_destroy(ecb, act);
+ } else {
+ kmem_free(act, sizeof (dtrace_action_t));
+ }
+ }
+ }
+
+ ecb->dte_action = NULL;
+ ecb->dte_action_last = NULL;
+ ecb->dte_size = sizeof (dtrace_epid_t);
+}
+
+static void
+dtrace_ecb_disable(dtrace_ecb_t *ecb)
+{
+ /*
+ * We disable the ECB by removing it from its probe.
+ */
+ dtrace_ecb_t *pecb, *prev = NULL;
+ dtrace_probe_t *probe = ecb->dte_probe;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (probe == NULL) {
+ /*
+ * This is the NULL probe; there is nothing to disable.
+ */
+ return;
+ }
+
+ for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
+ if (pecb == ecb)
+ break;
+ prev = pecb;
+ }
+
+ ASSERT(pecb != NULL);
+
+ if (prev == NULL) {
+ probe->dtpr_ecb = ecb->dte_next;
+ } else {
+ prev->dte_next = ecb->dte_next;
+ }
+
+ if (ecb == probe->dtpr_ecb_last) {
+ ASSERT(ecb->dte_next == NULL);
+ probe->dtpr_ecb_last = prev;
+ }
+
+ /*
+ * The ECB has been disconnected from the probe; now sync to assure
+ * that all CPUs have seen the change before returning.
+ */
+ dtrace_sync();
+
+ if (probe->dtpr_ecb == NULL) {
+ /*
+ * That was the last ECB on the probe; clear the predicate
+ * cache ID for the probe, disable it and sync one more time
+ * to assure that we'll never hit it again.
+ */
+ dtrace_provider_t *prov = probe->dtpr_provider;
+
+ ASSERT(ecb->dte_next == NULL);
+ ASSERT(probe->dtpr_ecb_last == NULL);
+ probe->dtpr_predcache = DTRACE_CACHEIDNONE;
+ prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
+ probe->dtpr_id, probe->dtpr_arg);
+ dtrace_sync();
+ } else {
+ /*
+ * There is at least one ECB remaining on the probe. If there
+ * is _exactly_ one, set the probe's predicate cache ID to be
+ * the predicate cache ID of the remaining ECB.
+ */
+ ASSERT(probe->dtpr_ecb_last != NULL);
+ ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
+
+ if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
+ dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
+
+ ASSERT(probe->dtpr_ecb->dte_next == NULL);
+
+ if (p != NULL)
+ probe->dtpr_predcache = p->dtp_cacheid;
+ }
+
+ ecb->dte_next = NULL;
+ }
+}
+
+static void
+dtrace_ecb_destroy(dtrace_ecb_t *ecb)
+{
+ dtrace_state_t *state = ecb->dte_state;
+ dtrace_vstate_t *vstate = &state->dts_vstate;
+ dtrace_predicate_t *pred;
+ dtrace_epid_t epid = ecb->dte_epid;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(ecb->dte_next == NULL);
+ ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
+
+ if ((pred = ecb->dte_predicate) != NULL)
+ dtrace_predicate_release(pred, vstate);
+
+ dtrace_ecb_action_remove(ecb);
+
+ ASSERT(state->dts_ecbs[epid - 1] == ecb);
+ state->dts_ecbs[epid - 1] = NULL;
+
+ kmem_free(ecb, sizeof (dtrace_ecb_t));
+}
+
+static dtrace_ecb_t *
+dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
+ dtrace_enabling_t *enab)
+{
+ dtrace_ecb_t *ecb;
+ dtrace_predicate_t *pred;
+ dtrace_actdesc_t *act;
+ dtrace_provider_t *prov;
+ dtrace_ecbdesc_t *desc = enab->dten_current;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(state != NULL);
+
+ ecb = dtrace_ecb_add(state, probe);
+ ecb->dte_uarg = desc->dted_uarg;
+
+ if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
+ dtrace_predicate_hold(pred);
+ ecb->dte_predicate = pred;
+ }
+
+ if (probe != NULL) {
+ /*
+ * If the provider shows more leg than the consumer is old
+ * enough to see, we need to enable the appropriate implicit
+ * predicate bits to prevent the ecb from activating at
+ * revealing times.
+ *
+ * Providers specifying DTRACE_PRIV_USER at register time
+ * are stating that they need the /proc-style privilege
+ * model to be enforced, and this is what DTRACE_COND_OWNER
+ * and DTRACE_COND_ZONEOWNER will then do at probe time.
+ */
+ prov = probe->dtpr_provider;
+ if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
+ (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
+ ecb->dte_cond |= DTRACE_COND_OWNER;
+
+ if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
+ (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
+ ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
+
+ /*
+ * If the provider shows us kernel innards and the user
+ * is lacking sufficient privilege, enable the
+ * DTRACE_COND_USERMODE implicit predicate.
+ */
+ if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
+ (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
+ ecb->dte_cond |= DTRACE_COND_USERMODE;
+ }
+
+ if (dtrace_ecb_create_cache != NULL) {
+ /*
+ * If we have a cached ecb, we'll use its action list instead
+ * of creating our own (saving both time and space).
+ */
+ dtrace_ecb_t *cached = dtrace_ecb_create_cache;
+ dtrace_action_t *act = cached->dte_action;
+
+ if (act != NULL) {
+ ASSERT(act->dta_refcnt > 0);
+ act->dta_refcnt++;
+ ecb->dte_action = act;
+ ecb->dte_action_last = cached->dte_action_last;
+ ecb->dte_needed = cached->dte_needed;
+ ecb->dte_size = cached->dte_size;
+ ecb->dte_alignment = cached->dte_alignment;
+ }
+
+ return (ecb);
+ }
+
+ for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
+ if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
+ dtrace_ecb_destroy(ecb);
+ return (NULL);
+ }
+ }
+
+ dtrace_ecb_resize(ecb);
+
+ return (dtrace_ecb_create_cache = ecb);
+}
+
+static int
+dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
+{
+ dtrace_ecb_t *ecb;
+ dtrace_enabling_t *enab = arg;
+ dtrace_state_t *state = enab->dten_vstate->dtvs_state;
+
+ ASSERT(state != NULL);
+
+ if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
+ /*
+ * This probe was created in a generation for which this
+ * enabling has previously created ECBs; we don't want to
+ * enable it again, so just kick out.
+ */
+ return (DTRACE_MATCH_NEXT);
+ }
+
+ if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
+ return (DTRACE_MATCH_DONE);
+
+ dtrace_ecb_enable(ecb);
+ return (DTRACE_MATCH_NEXT);
+}
+
+static dtrace_ecb_t *
+dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
+{
+ dtrace_ecb_t *ecb;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (id == 0 || id > state->dts_necbs)
+ return (NULL);
+
+ ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
+ ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
+
+ return (state->dts_ecbs[id - 1]);
+}
+
+static dtrace_aggregation_t *
+dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
+{
+ dtrace_aggregation_t *agg;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (id == 0 || id > state->dts_naggregations)
+ return (NULL);
+
+ ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
+ ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
+ agg->dtag_id == id);
+
+ return (state->dts_aggregations[id - 1]);
+}
+
+/*
+ * DTrace Buffer Functions
+ *
+ * The following functions manipulate DTrace buffers. Most of these functions
+ * are called in the context of establishing or processing consumer state;
+ * exceptions are explicitly noted.
+ */
+
+/*
+ * Note: called from cross call context. This function switches the two
+ * buffers on a given CPU. The atomicity of this operation is assured by
+ * disabling interrupts while the actual switch takes place; the disabling of
+ * interrupts serializes the execution with any execution of dtrace_probe() on
+ * the same CPU.
+ */
+static void
+dtrace_buffer_switch(dtrace_buffer_t *buf)
+{
+ caddr_t tomax = buf->dtb_tomax;
+ caddr_t xamot = buf->dtb_xamot;
+ dtrace_icookie_t cookie;
+
+ ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
+ ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
+
+ cookie = dtrace_interrupt_disable();
+ buf->dtb_tomax = xamot;
+ buf->dtb_xamot = tomax;
+ buf->dtb_xamot_drops = buf->dtb_drops;
+ buf->dtb_xamot_offset = buf->dtb_offset;
+ buf->dtb_xamot_errors = buf->dtb_errors;
+ buf->dtb_xamot_flags = buf->dtb_flags;
+ buf->dtb_offset = 0;
+ buf->dtb_drops = 0;
+ buf->dtb_errors = 0;
+ buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
+ dtrace_interrupt_enable(cookie);
+}
+
+/*
+ * Note: called from cross call context. This function activates a buffer
+ * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
+ * is guaranteed by the disabling of interrupts.
+ */
+static void
+dtrace_buffer_activate(dtrace_state_t *state)
+{
+ dtrace_buffer_t *buf;
+ dtrace_icookie_t cookie = dtrace_interrupt_disable();
+
+ buf = &state->dts_buffer[CPU->cpu_id];
+
+ if (buf->dtb_tomax != NULL) {
+ /*
+ * We might like to assert that the buffer is marked inactive,
+ * but this isn't necessarily true: the buffer for the CPU
+ * that processes the BEGIN probe has its buffer activated
+ * manually. In this case, we take the (harmless) action
+ * re-clearing the bit INACTIVE bit.
+ */
+ buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
+ }
+
+ dtrace_interrupt_enable(cookie);
+}
+
+static int
+dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
+ processorid_t cpu)
+{
+ cpu_t *cp;
+ dtrace_buffer_t *buf;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (size > dtrace_nonroot_maxsize &&
+ !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
+ return (EFBIG);
+
+ cp = cpu_list;
+
+ do {
+ if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
+ continue;
+
+ buf = &bufs[cp->cpu_id];
+
+ /*
+ * If there is already a buffer allocated for this CPU, it
+ * is only possible that this is a DR event. In this case,
+ * the buffer size must match our specified size.
+ */
+ if (buf->dtb_tomax != NULL) {
+ ASSERT(buf->dtb_size == size);
+ continue;
+ }
+
+ ASSERT(buf->dtb_xamot == NULL);
+
+ if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
+ goto err;
+
+ buf->dtb_size = size;
+ buf->dtb_flags = flags;
+ buf->dtb_offset = 0;
+ buf->dtb_drops = 0;
+
+ if (flags & DTRACEBUF_NOSWITCH)
+ continue;
+
+ if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
+ goto err;
+ } while ((cp = cp->cpu_next) != cpu_list);
+
+ return (0);
+
+err:
+ cp = cpu_list;
+
+ do {
+ if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
+ continue;
+
+ buf = &bufs[cp->cpu_id];
+
+ if (buf->dtb_xamot != NULL) {
+ ASSERT(buf->dtb_tomax != NULL);
+ ASSERT(buf->dtb_size == size);
+ kmem_free(buf->dtb_xamot, size);
+ }
+
+ if (buf->dtb_tomax != NULL) {
+ ASSERT(buf->dtb_size == size);
+ kmem_free(buf->dtb_tomax, size);
+ }
+
+ buf->dtb_tomax = NULL;
+ buf->dtb_xamot = NULL;
+ buf->dtb_size = 0;
+ } while ((cp = cp->cpu_next) != cpu_list);
+
+ return (ENOMEM);
+}
+
+/*
+ * Note: called from probe context. This function just increments the drop
+ * count on a buffer. It has been made a function to allow for the
+ * possibility of understanding the source of mysterious drop counts. (A
+ * problem for which one may be particularly disappointed that DTrace cannot
+ * be used to understand DTrace.)
+ */
+static void
+dtrace_buffer_drop(dtrace_buffer_t *buf)
+{
+ buf->dtb_drops++;
+}
+
+/*
+ * Note: called from probe context. This function is called to reserve space
+ * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
+ * mstate. Returns the new offset in the buffer, or a negative value if an
+ * error has occurred.
+ */
+static intptr_t
+dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
+ dtrace_state_t *state, dtrace_mstate_t *mstate)
+{
+ intptr_t offs = buf->dtb_offset, soffs;
+ intptr_t woffs;
+ caddr_t tomax;
+ size_t total;
+
+ if (buf->dtb_flags & DTRACEBUF_INACTIVE)
+ return (-1);
+
+ if ((tomax = buf->dtb_tomax) == NULL) {
+ dtrace_buffer_drop(buf);
+ return (-1);
+ }
+
+ if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
+ while (offs & (align - 1)) {
+ /*
+ * Assert that our alignment is off by a number which
+ * is itself sizeof (uint32_t) aligned.
+ */
+ ASSERT(!((align - (offs & (align - 1))) &
+ (sizeof (uint32_t) - 1)));
+ DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
+ offs += sizeof (uint32_t);
+ }
+
+ if ((soffs = offs + needed) > buf->dtb_size) {
+ dtrace_buffer_drop(buf);
+ return (-1);
+ }
+
+ if (mstate == NULL)
+ return (offs);
+
+ mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
+ mstate->dtms_scratch_size = buf->dtb_size - soffs;
+ mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
+
+ return (offs);
+ }
+
+ if (buf->dtb_flags & DTRACEBUF_FILL) {
+ if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
+ (buf->dtb_flags & DTRACEBUF_FULL))
+ return (-1);
+ goto out;
+ }
+
+ total = needed + (offs & (align - 1));
+
+ /*
+ * For a ring buffer, life is quite a bit more complicated. Before
+ * we can store any padding, we need to adjust our wrapping offset.
+ * (If we've never before wrapped or we're not about to, no adjustment
+ * is required.)
+ */
+ if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
+ offs + total > buf->dtb_size) {
+ woffs = buf->dtb_xamot_offset;
+
+ if (offs + total > buf->dtb_size) {
+ /*
+ * We can't fit in the end of the buffer. First, a
+ * sanity check that we can fit in the buffer at all.
+ */
+ if (total > buf->dtb_size) {
+ dtrace_buffer_drop(buf);
+ return (-1);
+ }
+
+ /*
+ * We're going to be storing at the top of the buffer,
+ * so now we need to deal with the wrapped offset. We
+ * only reset our wrapped offset to 0 if it is
+ * currently greater than the current offset. If it
+ * is less than the current offset, it is because a
+ * previous allocation induced a wrap -- but the
+ * allocation didn't subsequently take the space due
+ * to an error or false predicate evaluation. In this
+ * case, we'll just leave the wrapped offset alone: if
+ * the wrapped offset hasn't been advanced far enough
+ * for this allocation, it will be adjusted in the
+ * lower loop.
+ */
+ if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
+ if (woffs >= offs)
+ woffs = 0;
+ } else {
+ woffs = 0;
+ }
+
+ /*
+ * Now we know that we're going to be storing to the
+ * top of the buffer and that there is room for us
+ * there. We need to clear the buffer from the current
+ * offset to the end (there may be old gunk there).
+ */
+ while (offs < buf->dtb_size)
+ tomax[offs++] = 0;
+
+ /*
+ * We need to set our offset to zero. And because we
+ * are wrapping, we need to set the bit indicating as
+ * much. We can also adjust our needed space back
+ * down to the space required by the ECB -- we know
+ * that the top of the buffer is aligned.
+ */
+ offs = 0;
+ total = needed;
+ buf->dtb_flags |= DTRACEBUF_WRAPPED;
+ } else {
+ /*
+ * There is room for us in the buffer, so we simply
+ * need to check the wrapped offset.
+ */
+ if (woffs < offs) {
+ /*
+ * The wrapped offset is less than the offset.
+ * This can happen if we allocated buffer space
+ * that induced a wrap, but then we didn't
+ * subsequently take the space due to an error
+ * or false predicate evaluation. This is
+ * okay; we know that _this_ allocation isn't
+ * going to induce a wrap. We still can't
+ * reset the wrapped offset to be zero,
+ * however: the space may have been trashed in
+ * the previous failed probe attempt. But at
+ * least the wrapped offset doesn't need to
+ * be adjusted at all...
+ */
+ goto out;
+ }
+ }
+
+ while (offs + total > woffs) {
+ dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
+ size_t size;
+
+ if (epid == DTRACE_EPIDNONE) {
+ size = sizeof (uint32_t);
+ } else {
+ ASSERT(epid <= state->dts_necbs);
+ ASSERT(state->dts_ecbs[epid - 1] != NULL);
+
+ size = state->dts_ecbs[epid - 1]->dte_size;
+ }
+
+ ASSERT(woffs + size <= buf->dtb_size);
+ ASSERT(size != 0);
+
+ if (woffs + size == buf->dtb_size) {
+ /*
+ * We've reached the end of the buffer; we want
+ * to set the wrapped offset to 0 and break
+ * out. However, if the offs is 0, then we're
+ * in a strange edge-condition: the amount of
+ * space that we want to reserve plus the size
+ * of the record that we're overwriting is
+ * greater than the size of the buffer. This
+ * is problematic because if we reserve the
+ * space but subsequently don't consume it (due
+ * to a failed predicate or error) the wrapped
+ * offset will be 0 -- yet the EPID at offset 0
+ * will not be committed. This situation is
+ * relatively easy to deal with: if we're in
+ * this case, the buffer is indistinguishable
+ * from one that hasn't wrapped; we need only
+ * finish the job by clearing the wrapped bit,
+ * explicitly setting the offset to be 0, and
+ * zero'ing out the old data in the buffer.
+ */
+ if (offs == 0) {
+ buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
+ buf->dtb_offset = 0;
+ woffs = total;
+
+ while (woffs < buf->dtb_size)
+ tomax[woffs++] = 0;
+ }
+
+ woffs = 0;
+ break;
+ }
+
+ woffs += size;
+ }
+
+ /*
+ * We have a wrapped offset. It may be that the wrapped offset
+ * has become zero -- that's okay.
+ */
+ buf->dtb_xamot_offset = woffs;
+ }
+
+out:
+ /*
+ * Now we can plow the buffer with any necessary padding.
+ */
+ while (offs & (align - 1)) {
+ /*
+ * Assert that our alignment is off by a number which
+ * is itself sizeof (uint32_t) aligned.
+ */
+ ASSERT(!((align - (offs & (align - 1))) &
+ (sizeof (uint32_t) - 1)));
+ DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
+ offs += sizeof (uint32_t);
+ }
+
+ if (buf->dtb_flags & DTRACEBUF_FILL) {
+ if (offs + needed > buf->dtb_size - state->dts_reserve) {
+ buf->dtb_flags |= DTRACEBUF_FULL;
+ return (-1);
+ }
+ }
+
+ if (mstate == NULL)
+ return (offs);
+
+ /*
+ * For ring buffers and fill buffers, the scratch space is always
+ * the inactive buffer.
+ */
+ mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
+ mstate->dtms_scratch_size = buf->dtb_size;
+ mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
+
+ return (offs);
+}
+
+static void
+dtrace_buffer_polish(dtrace_buffer_t *buf)
+{
+ ASSERT(buf->dtb_flags & DTRACEBUF_RING);
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
+ return;
+
+ /*
+ * We need to polish the ring buffer. There are three cases:
+ *
+ * - The first (and presumably most common) is that there is no gap
+ * between the buffer offset and the wrapped offset. In this case,
+ * there is nothing in the buffer that isn't valid data; we can
+ * mark the buffer as polished and return.
+ *
+ * - The second (less common than the first but still more common
+ * than the third) is that there is a gap between the buffer offset
+ * and the wrapped offset, and the wrapped offset is larger than the
+ * buffer offset. This can happen because of an alignment issue, or
+ * can happen because of a call to dtrace_buffer_reserve() that
+ * didn't subsequently consume the buffer space. In this case,
+ * we need to zero the data from the buffer offset to the wrapped
+ * offset.
+ *
+ * - The third (and least common) is that there is a gap between the
+ * buffer offset and the wrapped offset, but the wrapped offset is
+ * _less_ than the buffer offset. This can only happen because a
+ * call to dtrace_buffer_reserve() induced a wrap, but the space
+ * was not subsequently consumed. In this case, we need to zero the
+ * space from the offset to the end of the buffer _and_ from the
+ * top of the buffer to the wrapped offset.
+ */
+ if (buf->dtb_offset < buf->dtb_xamot_offset) {
+ bzero(buf->dtb_tomax + buf->dtb_offset,
+ buf->dtb_xamot_offset - buf->dtb_offset);
+ }
+
+ if (buf->dtb_offset > buf->dtb_xamot_offset) {
+ bzero(buf->dtb_tomax + buf->dtb_offset,
+ buf->dtb_size - buf->dtb_offset);
+ bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
+ }
+}
+
+static void
+dtrace_buffer_free(dtrace_buffer_t *bufs)
+{
+ int i;
+
+ for (i = 0; i < NCPU; i++) {
+ dtrace_buffer_t *buf = &bufs[i];
+
+ if (buf->dtb_tomax == NULL) {
+ ASSERT(buf->dtb_xamot == NULL);
+ ASSERT(buf->dtb_size == 0);
+ continue;
+ }
+
+ if (buf->dtb_xamot != NULL) {
+ ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
+ kmem_free(buf->dtb_xamot, buf->dtb_size);
+ }
+
+ kmem_free(buf->dtb_tomax, buf->dtb_size);
+ buf->dtb_size = 0;
+ buf->dtb_tomax = NULL;
+ buf->dtb_xamot = NULL;
+ }
+}
+
+/*
+ * DTrace Enabling Functions
+ */
+static dtrace_enabling_t *
+dtrace_enabling_create(dtrace_vstate_t *vstate)
+{
+ dtrace_enabling_t *enab;
+
+ enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
+ enab->dten_vstate = vstate;
+
+ return (enab);
+}
+
+static void
+dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
+{
+ dtrace_ecbdesc_t **ndesc;
+ size_t osize, nsize;
+
+ /*
+ * We can't add to enablings after we've enabled them, or after we've
+ * retained them.
+ */
+ ASSERT(enab->dten_probegen == 0);
+ ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
+
+ if (enab->dten_ndesc < enab->dten_maxdesc) {
+ enab->dten_desc[enab->dten_ndesc++] = ecb;
+ return;
+ }
+
+ osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
+
+ if (enab->dten_maxdesc == 0) {
+ enab->dten_maxdesc = 1;
+ } else {
+ enab->dten_maxdesc <<= 1;
+ }
+
+ ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
+
+ nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
+ ndesc = kmem_zalloc(nsize, KM_SLEEP);
+ bcopy(enab->dten_desc, ndesc, osize);
+ kmem_free(enab->dten_desc, osize);
+
+ enab->dten_desc = ndesc;
+ enab->dten_desc[enab->dten_ndesc++] = ecb;
+}
+
+static void
+dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
+ dtrace_probedesc_t *pd)
+{
+ dtrace_ecbdesc_t *new;
+ dtrace_predicate_t *pred;
+ dtrace_actdesc_t *act;
+
+ /*
+ * We're going to create a new ECB description that matches the
+ * specified ECB in every way, but has the specified probe description.
+ */
+ new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
+
+ if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
+ dtrace_predicate_hold(pred);
+
+ for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
+ dtrace_actdesc_hold(act);
+
+ new->dted_action = ecb->dted_action;
+ new->dted_pred = ecb->dted_pred;
+ new->dted_probe = *pd;
+ new->dted_uarg = ecb->dted_uarg;
+
+ dtrace_enabling_add(enab, new);
+}
+
+static void
+dtrace_enabling_dump(dtrace_enabling_t *enab)
+{
+ int i;
+
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
+
+ cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
+ desc->dtpd_provider, desc->dtpd_mod,
+ desc->dtpd_func, desc->dtpd_name);
+ }
+}
+
+static void
+dtrace_enabling_destroy(dtrace_enabling_t *enab)
+{
+ int i;
+ dtrace_ecbdesc_t *ep;
+ dtrace_vstate_t *vstate = enab->dten_vstate;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ dtrace_actdesc_t *act, *next;
+ dtrace_predicate_t *pred;
+
+ ep = enab->dten_desc[i];
+
+ if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
+ dtrace_predicate_release(pred, vstate);
+
+ for (act = ep->dted_action; act != NULL; act = next) {
+ next = act->dtad_next;
+ dtrace_actdesc_release(act, vstate);
+ }
+
+ kmem_free(ep, sizeof (dtrace_ecbdesc_t));
+ }
+
+ kmem_free(enab->dten_desc,
+ enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
+
+ /*
+ * If this was a retained enabling, decrement the dts_nretained count
+ * and take it off of the dtrace_retained list.
+ */
+ if (enab->dten_prev != NULL || enab->dten_next != NULL ||
+ dtrace_retained == enab) {
+ ASSERT(enab->dten_vstate->dtvs_state != NULL);
+ ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
+ enab->dten_vstate->dtvs_state->dts_nretained--;
+ }
+
+ if (enab->dten_prev == NULL) {
+ if (dtrace_retained == enab) {
+ dtrace_retained = enab->dten_next;
+
+ if (dtrace_retained != NULL)
+ dtrace_retained->dten_prev = NULL;
+ }
+ } else {
+ ASSERT(enab != dtrace_retained);
+ ASSERT(dtrace_retained != NULL);
+ enab->dten_prev->dten_next = enab->dten_next;
+ }
+
+ if (enab->dten_next != NULL) {
+ ASSERT(dtrace_retained != NULL);
+ enab->dten_next->dten_prev = enab->dten_prev;
+ }
+
+ kmem_free(enab, sizeof (dtrace_enabling_t));
+}
+
+static int
+dtrace_enabling_retain(dtrace_enabling_t *enab)
+{
+ dtrace_state_t *state;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
+ ASSERT(enab->dten_vstate != NULL);
+
+ state = enab->dten_vstate->dtvs_state;
+ ASSERT(state != NULL);
+
+ /*
+ * We only allow each state to retain dtrace_retain_max enablings.
+ */
+ if (state->dts_nretained >= dtrace_retain_max)
+ return (ENOSPC);
+
+ state->dts_nretained++;
+
+ if (dtrace_retained == NULL) {
+ dtrace_retained = enab;
+ return (0);
+ }
+
+ enab->dten_next = dtrace_retained;
+ dtrace_retained->dten_prev = enab;
+ dtrace_retained = enab;
+
+ return (0);
+}
+
+static int
+dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
+ dtrace_probedesc_t *create)
+{
+ dtrace_enabling_t *new, *enab;
+ int found = 0, err = ENOENT;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
+ ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
+ ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
+ ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
+
+ new = dtrace_enabling_create(&state->dts_vstate);
+
+ /*
+ * Iterate over all retained enablings, looking for enablings that
+ * match the specified state.
+ */
+ for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
+ int i;
+
+ /*
+ * dtvs_state can only be NULL for helper enablings -- and
+ * helper enablings can't be retained.
+ */
+ ASSERT(enab->dten_vstate->dtvs_state != NULL);
+
+ if (enab->dten_vstate->dtvs_state != state)
+ continue;
+
+ /*
+ * Now iterate over each probe description; we're looking for
+ * an exact match to the specified probe description.
+ */
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ dtrace_ecbdesc_t *ep = enab->dten_desc[i];
+ dtrace_probedesc_t *pd = &ep->dted_probe;
+
+ if (strcmp(pd->dtpd_provider, match->dtpd_provider))
+ continue;
+
+ if (strcmp(pd->dtpd_mod, match->dtpd_mod))
+ continue;
+
+ if (strcmp(pd->dtpd_func, match->dtpd_func))
+ continue;
+
+ if (strcmp(pd->dtpd_name, match->dtpd_name))
+ continue;
+
+ /*
+ * We have a winning probe! Add it to our growing
+ * enabling.
+ */
+ found = 1;
+ dtrace_enabling_addlike(new, ep, create);
+ }
+ }
+
+ if (!found || (err = dtrace_enabling_retain(new)) != 0) {
+ dtrace_enabling_destroy(new);
+ return (err);
+ }
+
+ return (0);
+}
+
+static void
+dtrace_enabling_retract(dtrace_state_t *state)
+{
+ dtrace_enabling_t *enab, *next;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ /*
+ * Iterate over all retained enablings, destroy the enablings retained
+ * for the specified state.
+ */
+ for (enab = dtrace_retained; enab != NULL; enab = next) {
+ next = enab->dten_next;
+
+ /*
+ * dtvs_state can only be NULL for helper enablings -- and
+ * helper enablings can't be retained.
+ */
+ ASSERT(enab->dten_vstate->dtvs_state != NULL);
+
+ if (enab->dten_vstate->dtvs_state == state) {
+ ASSERT(state->dts_nretained > 0);
+ dtrace_enabling_destroy(enab);
+ }
+ }
+
+ ASSERT(state->dts_nretained == 0);
+}
+
+static int
+dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
+{
+ int i = 0;
+ int matched = 0;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ dtrace_ecbdesc_t *ep = enab->dten_desc[i];
+
+ enab->dten_current = ep;
+ enab->dten_error = 0;
+
+ matched += dtrace_probe_enable(&ep->dted_probe, enab);
+
+ if (enab->dten_error != 0) {
+ /*
+ * If we get an error half-way through enabling the
+ * probes, we kick out -- perhaps with some number of
+ * them enabled. Leaving enabled probes enabled may
+ * be slightly confusing for user-level, but we expect
+ * that no one will attempt to actually drive on in
+ * the face of such errors. If this is an anonymous
+ * enabling (indicated with a NULL nmatched pointer),
+ * we cmn_err() a message. We aren't expecting to
+ * get such an error -- such as it can exist at all,
+ * it would be a result of corrupted DOF in the driver
+ * properties.
+ */
+ if (nmatched == NULL) {
+ cmn_err(CE_WARN, "dtrace_enabling_match() "
+ "error on %p: %d", (void *)ep,
+ enab->dten_error);
+ }
+
+ return (enab->dten_error);
+ }
+ }
+
+ enab->dten_probegen = dtrace_probegen;
+ if (nmatched != NULL)
+ *nmatched = matched;
+
+ return (0);
+}
+
+static void
+dtrace_enabling_matchall(void)
+{
+ dtrace_enabling_t *enab;
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_lock);
+
+ /*
+ * Because we can be called after dtrace_detach() has been called, we
+ * cannot assert that there are retained enablings. We can safely
+ * load from dtrace_retained, however: the taskq_destroy() at the
+ * end of dtrace_detach() will block pending our completion.
+ */
+ for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
+ (void) dtrace_enabling_match(enab, NULL);
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+}
+
+static int
+dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
+{
+ dtrace_enabling_t *enab;
+ int matched, total = 0, err;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
+ ASSERT(enab->dten_vstate->dtvs_state != NULL);
+
+ if (enab->dten_vstate->dtvs_state != state)
+ continue;
+
+ if ((err = dtrace_enabling_match(enab, &matched)) != 0)
+ return (err);
+
+ total += matched;
+ }
+
+ if (nmatched != NULL)
+ *nmatched = total;
+
+ return (0);
+}
+
+/*
+ * If an enabling is to be enabled without having matched probes (that is, if
+ * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
+ * enabling must be _primed_ by creating an ECB for every ECB description.
+ * This must be done to assure that we know the number of speculations, the
+ * number of aggregations, the minimum buffer size needed, etc. before we
+ * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
+ * enabling any probes, we create ECBs for every ECB decription, but with a
+ * NULL probe -- which is exactly what this function does.
+ */
+static void
+dtrace_enabling_prime(dtrace_state_t *state)
+{
+ dtrace_enabling_t *enab;
+ int i;
+
+ for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
+ ASSERT(enab->dten_vstate->dtvs_state != NULL);
+
+ if (enab->dten_vstate->dtvs_state != state)
+ continue;
+
+ /*
+ * We don't want to prime an enabling more than once, lest
+ * we allow a malicious user to induce resource exhaustion.
+ * (The ECBs that result from priming an enabling aren't
+ * leaked -- but they also aren't deallocated until the
+ * consumer state is destroyed.)
+ */
+ if (enab->dten_primed)
+ continue;
+
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ enab->dten_current = enab->dten_desc[i];
+ (void) dtrace_probe_enable(NULL, enab);
+ }
+
+ enab->dten_primed = 1;
+ }
+}
+
+/*
+ * Called to indicate that probes should be provided due to retained
+ * enablings. This is implemented in terms of dtrace_probe_provide(), but it
+ * must take an initial lap through the enabling calling the dtps_provide()
+ * entry point explicitly to allow for autocreated probes.
+ */
+static void
+dtrace_enabling_provide(dtrace_provider_t *prv)
+{
+ int i, all = 0;
+ dtrace_probedesc_t desc;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(MUTEX_HELD(&dtrace_provider_lock));
+
+ if (prv == NULL) {
+ all = 1;
+ prv = dtrace_provider;
+ }
+
+ do {
+ dtrace_enabling_t *enab = dtrace_retained;
+ void *parg = prv->dtpv_arg;
+
+ for (; enab != NULL; enab = enab->dten_next) {
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ desc = enab->dten_desc[i]->dted_probe;
+ mutex_exit(&dtrace_lock);
+ prv->dtpv_pops.dtps_provide(parg, &desc);
+ mutex_enter(&dtrace_lock);
+ }
+ }
+ } while (all && (prv = prv->dtpv_next) != NULL);
+
+ mutex_exit(&dtrace_lock);
+ dtrace_probe_provide(NULL, all ? NULL : prv);
+ mutex_enter(&dtrace_lock);
+}
+
+/*
+ * DTrace DOF Functions
+ */
+/*ARGSUSED*/
+static void
+dtrace_dof_error(dof_hdr_t *dof, const char *str)
+{
+ if (dtrace_err_verbose)
+ cmn_err(CE_WARN, "failed to process DOF: %s", str);
+
+#ifdef DTRACE_ERRDEBUG
+ dtrace_errdebug(str);
+#endif
+}
+
+/*
+ * Create DOF out of a currently enabled state. Right now, we only create
+ * DOF containing the run-time options -- but this could be expanded to create
+ * complete DOF representing the enabled state.
+ */
+static dof_hdr_t *
+dtrace_dof_create(dtrace_state_t *state)
+{
+ dof_hdr_t *dof;
+ dof_sec_t *sec;
+ dof_optdesc_t *opt;
+ int i, len = sizeof (dof_hdr_t) +
+ roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
+ sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ dof = kmem_zalloc(len, KM_SLEEP);
+ dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
+ dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
+ dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
+ dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
+
+ dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
+ dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
+ dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
+ dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
+ dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
+ dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
+
+ dof->dofh_flags = 0;
+ dof->dofh_hdrsize = sizeof (dof_hdr_t);
+ dof->dofh_secsize = sizeof (dof_sec_t);
+ dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
+ dof->dofh_secoff = sizeof (dof_hdr_t);
+ dof->dofh_loadsz = len;
+ dof->dofh_filesz = len;
+ dof->dofh_pad = 0;
+
+ /*
+ * Fill in the option section header...
+ */
+ sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
+ sec->dofs_type = DOF_SECT_OPTDESC;
+ sec->dofs_align = sizeof (uint64_t);
+ sec->dofs_flags = DOF_SECF_LOAD;
+ sec->dofs_entsize = sizeof (dof_optdesc_t);
+
+ opt = (dof_optdesc_t *)((uintptr_t)sec +
+ roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
+
+ sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
+ sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
+
+ for (i = 0; i < DTRACEOPT_MAX; i++) {
+ opt[i].dofo_option = i;
+ opt[i].dofo_strtab = DOF_SECIDX_NONE;
+ opt[i].dofo_value = state->dts_options[i];
+ }
+
+ return (dof);
+}
+
+static dof_hdr_t *
+dtrace_dof_copyin(uintptr_t uarg, int *errp)
+{
+ dof_hdr_t hdr, *dof;
+
+ ASSERT(!MUTEX_HELD(&dtrace_lock));
+
+ /*
+ * First, we're going to copyin() the sizeof (dof_hdr_t).
+ */
+ if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
+ dtrace_dof_error(NULL, "failed to copyin DOF header");
+ *errp = EFAULT;
+ return (NULL);
+ }
+
+ /*
+ * Now we'll allocate the entire DOF and copy it in -- provided
+ * that the length isn't outrageous.
+ */
+ if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
+ dtrace_dof_error(&hdr, "load size exceeds maximum");
+ *errp = E2BIG;
+ return (NULL);
+ }
+
+ if (hdr.dofh_loadsz < sizeof (hdr)) {
+ dtrace_dof_error(&hdr, "invalid load size");
+ *errp = EINVAL;
+ return (NULL);
+ }
+
+ dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
+
+ if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
+ kmem_free(dof, hdr.dofh_loadsz);
+ *errp = EFAULT;
+ return (NULL);
+ }
+
+ return (dof);
+}
+
+static dof_hdr_t *
+dtrace_dof_property(const char *name)
+{
+ uchar_t *buf;
+ uint64_t loadsz;
+ unsigned int len, i;
+ dof_hdr_t *dof;
+
+ /*
+ * Unfortunately, array of values in .conf files are always (and
+ * only) interpreted to be integer arrays. We must read our DOF
+ * as an integer array, and then squeeze it into a byte array.
+ */
+ if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
+ (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
+ return (NULL);
+
+ for (i = 0; i < len; i++)
+ buf[i] = (uchar_t)(((int *)buf)[i]);
+
+ if (len < sizeof (dof_hdr_t)) {
+ ddi_prop_free(buf);
+ dtrace_dof_error(NULL, "truncated header");
+ return (NULL);
+ }
+
+ if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
+ ddi_prop_free(buf);
+ dtrace_dof_error(NULL, "truncated DOF");
+ return (NULL);
+ }
+
+ if (loadsz >= dtrace_dof_maxsize) {
+ ddi_prop_free(buf);
+ dtrace_dof_error(NULL, "oversized DOF");
+ return (NULL);
+ }
+
+ dof = kmem_alloc(loadsz, KM_SLEEP);
+ bcopy(buf, dof, loadsz);
+ ddi_prop_free(buf);
+
+ return (dof);
+}
+
+static void
+dtrace_dof_destroy(dof_hdr_t *dof)
+{
+ kmem_free(dof, dof->dofh_loadsz);
+}
+
+/*
+ * Return the dof_sec_t pointer corresponding to a given section index. If the
+ * index is not valid, dtrace_dof_error() is called and NULL is returned. If
+ * a type other than DOF_SECT_NONE is specified, the header is checked against
+ * this type and NULL is returned if the types do not match.
+ */
+static dof_sec_t *
+dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
+{
+ dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
+ ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (i >= dof->dofh_secnum) {
+ dtrace_dof_error(dof, "referenced section index is invalid");
+ return (NULL);
+ }
+
+ if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
+ dtrace_dof_error(dof, "referenced section is not loadable");
+ return (NULL);
+ }
+
+ if (type != DOF_SECT_NONE && type != sec->dofs_type) {
+ dtrace_dof_error(dof, "referenced section is the wrong type");
+ return (NULL);
+ }
+
+ return (sec);
+}
+
+static dtrace_probedesc_t *
+dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
+{
+ dof_probedesc_t *probe;
+ dof_sec_t *strtab;
+ uintptr_t daddr = (uintptr_t)dof;
+ uintptr_t str;
+ size_t size;
+
+ if (sec->dofs_type != DOF_SECT_PROBEDESC) {
+ dtrace_dof_error(dof, "invalid probe section");
+ return (NULL);
+ }
+
+ if (sec->dofs_align != sizeof (dof_secidx_t)) {
+ dtrace_dof_error(dof, "bad alignment in probe description");
+ return (NULL);
+ }
+
+ if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
+ dtrace_dof_error(dof, "truncated probe description");
+ return (NULL);
+ }
+
+ probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
+ strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
+
+ if (strtab == NULL)
+ return (NULL);
+
+ str = daddr + strtab->dofs_offset;
+ size = strtab->dofs_size;
+
+ if (probe->dofp_provider >= strtab->dofs_size) {
+ dtrace_dof_error(dof, "corrupt probe provider");
+ return (NULL);
+ }
+
+ (void) strncpy(desc->dtpd_provider,
+ (char *)(str + probe->dofp_provider),
+ MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
+
+ if (probe->dofp_mod >= strtab->dofs_size) {
+ dtrace_dof_error(dof, "corrupt probe module");
+ return (NULL);
+ }
+
+ (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
+ MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
+
+ if (probe->dofp_func >= strtab->dofs_size) {
+ dtrace_dof_error(dof, "corrupt probe function");
+ return (NULL);
+ }
+
+ (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
+ MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
+
+ if (probe->dofp_name >= strtab->dofs_size) {
+ dtrace_dof_error(dof, "corrupt probe name");
+ return (NULL);
+ }
+
+ (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
+ MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
+
+ return (desc);
+}
+
+static dtrace_difo_t *
+dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
+ cred_t *cr)
+{
+ dtrace_difo_t *dp;
+ size_t ttl = 0;
+ dof_difohdr_t *dofd;
+ uintptr_t daddr = (uintptr_t)dof;
+ size_t max = dtrace_difo_maxsize;
+ int i, l, n;
+
+ static const struct {
+ int section;
+ int bufoffs;
+ int lenoffs;
+ int entsize;
+ int align;
+ const char *msg;
+ } difo[] = {
+ { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
+ offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
+ sizeof (dif_instr_t), "multiple DIF sections" },
+
+ { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
+ offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
+ sizeof (uint64_t), "multiple integer tables" },
+
+ { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
+ offsetof(dtrace_difo_t, dtdo_strlen), 0,
+ sizeof (char), "multiple string tables" },
+
+ { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
+ offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
+ sizeof (uint_t), "multiple variable tables" },
+
+ { DOF_SECT_NONE, 0, 0, 0, NULL }
+ };
+
+ if (sec->dofs_type != DOF_SECT_DIFOHDR) {
+ dtrace_dof_error(dof, "invalid DIFO header section");
+ return (NULL);
+ }
+
+ if (sec->dofs_align != sizeof (dof_secidx_t)) {
+ dtrace_dof_error(dof, "bad alignment in DIFO header");
+ return (NULL);
+ }
+
+ if (sec->dofs_size < sizeof (dof_difohdr_t) ||
+ sec->dofs_size % sizeof (dof_secidx_t)) {
+ dtrace_dof_error(dof, "bad size in DIFO header");
+ return (NULL);
+ }
+
+ dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
+ n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
+
+ dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
+ dp->dtdo_rtype = dofd->dofd_rtype;
+
+ for (l = 0; l < n; l++) {
+ dof_sec_t *subsec;
+ void **bufp;
+ uint32_t *lenp;
+
+ if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
+ dofd->dofd_links[l])) == NULL)
+ goto err; /* invalid section link */
+
+ if (ttl + subsec->dofs_size > max) {
+ dtrace_dof_error(dof, "exceeds maximum size");
+ goto err;
+ }
+
+ ttl += subsec->dofs_size;
+
+ for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
+ if (subsec->dofs_type != difo[i].section)
+ continue;
+
+ if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
+ dtrace_dof_error(dof, "section not loaded");
+ goto err;
+ }
+
+ if (subsec->dofs_align != difo[i].align) {
+ dtrace_dof_error(dof, "bad alignment");
+ goto err;
+ }
+
+ bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
+ lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
+
+ if (*bufp != NULL) {
+ dtrace_dof_error(dof, difo[i].msg);
+ goto err;
+ }
+
+ if (difo[i].entsize != subsec->dofs_entsize) {
+ dtrace_dof_error(dof, "entry size mismatch");
+ goto err;
+ }
+
+ if (subsec->dofs_entsize != 0 &&
+ (subsec->dofs_size % subsec->dofs_entsize) != 0) {
+ dtrace_dof_error(dof, "corrupt entry size");
+ goto err;
+ }
+
+ *lenp = subsec->dofs_size;
+ *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
+ bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
+ *bufp, subsec->dofs_size);
+
+ if (subsec->dofs_entsize != 0)
+ *lenp /= subsec->dofs_entsize;
+
+ break;
+ }
+
+ /*
+ * If we encounter a loadable DIFO sub-section that is not
+ * known to us, assume this is a broken program and fail.
+ */
+ if (difo[i].section == DOF_SECT_NONE &&
+ (subsec->dofs_flags & DOF_SECF_LOAD)) {
+ dtrace_dof_error(dof, "unrecognized DIFO subsection");
+ goto err;
+ }
+ }
+
+ if (dp->dtdo_buf == NULL) {
+ /*
+ * We can't have a DIF object without DIF text.
+ */
+ dtrace_dof_error(dof, "missing DIF text");
+ goto err;
+ }
+
+ /*
+ * Before we validate the DIF object, run through the variable table
+ * looking for the strings -- if any of their size are under, we'll set
+ * their size to be the system-wide default string size. Note that
+ * this should _not_ happen if the "strsize" option has been set --
+ * in this case, the compiler should have set the size to reflect the
+ * setting of the option.
+ */
+ for (i = 0; i < dp->dtdo_varlen; i++) {
+ dtrace_difv_t *v = &dp->dtdo_vartab[i];
+ dtrace_diftype_t *t = &v->dtdv_type;
+
+ if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
+ continue;
+
+ if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
+ t->dtdt_size = dtrace_strsize_default;
+ }
+
+ if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
+ goto err;
+
+ dtrace_difo_init(dp, vstate);
+ return (dp);
+
+err:
+ kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
+ kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
+ kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
+ kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
+
+ kmem_free(dp, sizeof (dtrace_difo_t));
+ return (NULL);
+}
+
+static dtrace_predicate_t *
+dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
+ cred_t *cr)
+{
+ dtrace_difo_t *dp;
+
+ if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
+ return (NULL);
+
+ return (dtrace_predicate_create(dp));
+}
+
+static dtrace_actdesc_t *
+dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
+ cred_t *cr)
+{
+ dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
+ dof_actdesc_t *desc;
+ dof_sec_t *difosec;
+ size_t offs;
+ uintptr_t daddr = (uintptr_t)dof;
+ uint64_t arg;
+ dtrace_actkind_t kind;
+
+ if (sec->dofs_type != DOF_SECT_ACTDESC) {
+ dtrace_dof_error(dof, "invalid action section");
+ return (NULL);
+ }
+
+ if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
+ dtrace_dof_error(dof, "truncated action description");
+ return (NULL);
+ }
+
+ if (sec->dofs_align != sizeof (uint64_t)) {
+ dtrace_dof_error(dof, "bad alignment in action description");
+ return (NULL);
+ }
+
+ if (sec->dofs_size < sec->dofs_entsize) {
+ dtrace_dof_error(dof, "section entry size exceeds total size");
+ return (NULL);
+ }
+
+ if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
+ dtrace_dof_error(dof, "bad entry size in action description");
+ return (NULL);
+ }
+
+ if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
+ dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
+ return (NULL);
+ }
+
+ for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
+ desc = (dof_actdesc_t *)(daddr +
+ (uintptr_t)sec->dofs_offset + offs);
+ kind = (dtrace_actkind_t)desc->dofa_kind;
+
+ if (DTRACEACT_ISPRINTFLIKE(kind) &&
+ (kind != DTRACEACT_PRINTA ||
+ desc->dofa_strtab != DOF_SECIDX_NONE)) {
+ dof_sec_t *strtab;
+ char *str, *fmt;
+ uint64_t i;
+
+ /*
+ * printf()-like actions must have a format string.
+ */
+ if ((strtab = dtrace_dof_sect(dof,
+ DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
+ goto err;
+
+ str = (char *)((uintptr_t)dof +
+ (uintptr_t)strtab->dofs_offset);
+
+ for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
+ if (str[i] == '\0')
+ break;
+ }
+
+ if (i >= strtab->dofs_size) {
+ dtrace_dof_error(dof, "bogus format string");
+ goto err;
+ }
+
+ if (i == desc->dofa_arg) {
+ dtrace_dof_error(dof, "empty format string");
+ goto err;
+ }
+
+ i -= desc->dofa_arg;
+ fmt = kmem_alloc(i + 1, KM_SLEEP);
+ bcopy(&str[desc->dofa_arg], fmt, i + 1);
+ arg = (uint64_t)(uintptr_t)fmt;
+ } else {
+ if (kind == DTRACEACT_PRINTA) {
+ ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
+ arg = 0;
+ } else {
+ arg = desc->dofa_arg;
+ }
+ }
+
+ act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
+ desc->dofa_uarg, arg);
+
+ if (last != NULL) {
+ last->dtad_next = act;
+ } else {
+ first = act;
+ }
+
+ last = act;
+
+ if (desc->dofa_difo == DOF_SECIDX_NONE)
+ continue;
+
+ if ((difosec = dtrace_dof_sect(dof,
+ DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
+ goto err;
+
+ act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
+
+ if (act->dtad_difo == NULL)
+ goto err;
+ }
+
+ ASSERT(first != NULL);
+ return (first);
+
+err:
+ for (act = first; act != NULL; act = next) {
+ next = act->dtad_next;
+ dtrace_actdesc_release(act, vstate);
+ }
+
+ return (NULL);
+}
+
+static dtrace_ecbdesc_t *
+dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
+ cred_t *cr)
+{
+ dtrace_ecbdesc_t *ep;
+ dof_ecbdesc_t *ecb;
+ dtrace_probedesc_t *desc;
+ dtrace_predicate_t *pred = NULL;
+
+ if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
+ dtrace_dof_error(dof, "truncated ECB description");
+ return (NULL);
+ }
+
+ if (sec->dofs_align != sizeof (uint64_t)) {
+ dtrace_dof_error(dof, "bad alignment in ECB description");
+ return (NULL);
+ }
+
+ ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
+ sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
+
+ if (sec == NULL)
+ return (NULL);
+
+ ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
+ ep->dted_uarg = ecb->dofe_uarg;
+ desc = &ep->dted_probe;
+
+ if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
+ goto err;
+
+ if (ecb->dofe_pred != DOF_SECIDX_NONE) {
+ if ((sec = dtrace_dof_sect(dof,
+ DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
+ goto err;
+
+ if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
+ goto err;
+
+ ep->dted_pred.dtpdd_predicate = pred;
+ }
+
+ if (ecb->dofe_actions != DOF_SECIDX_NONE) {
+ if ((sec = dtrace_dof_sect(dof,
+ DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
+ goto err;
+
+ ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
+
+ if (ep->dted_action == NULL)
+ goto err;
+ }
+
+ return (ep);
+
+err:
+ if (pred != NULL)
+ dtrace_predicate_release(pred, vstate);
+ kmem_free(ep, sizeof (dtrace_ecbdesc_t));
+ return (NULL);
+}
+
+/*
+ * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
+ * specified DOF. At present, this amounts to simply adding 'ubase' to the
+ * site of any user SETX relocations to account for load object base address.
+ * In the future, if we need other relocations, this function can be extended.
+ */
+static int
+dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
+{
+ uintptr_t daddr = (uintptr_t)dof;
+ dof_relohdr_t *dofr =
+ (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
+ dof_sec_t *ss, *rs, *ts;
+ dof_relodesc_t *r;
+ uint_t i, n;
+
+ if (sec->dofs_size < sizeof (dof_relohdr_t) ||
+ sec->dofs_align != sizeof (dof_secidx_t)) {
+ dtrace_dof_error(dof, "invalid relocation header");
+ return (-1);
+ }
+
+ ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
+ rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
+ ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
+
+ if (ss == NULL || rs == NULL || ts == NULL)
+ return (-1); /* dtrace_dof_error() has been called already */
+
+ if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
+ rs->dofs_align != sizeof (uint64_t)) {
+ dtrace_dof_error(dof, "invalid relocation section");
+ return (-1);
+ }
+
+ r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
+ n = rs->dofs_size / rs->dofs_entsize;
+
+ for (i = 0; i < n; i++) {
+ uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
+
+ switch (r->dofr_type) {
+ case DOF_RELO_NONE:
+ break;
+ case DOF_RELO_SETX:
+ if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
+ sizeof (uint64_t) > ts->dofs_size) {
+ dtrace_dof_error(dof, "bad relocation offset");
+ return (-1);
+ }
+
+ if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
+ dtrace_dof_error(dof, "misaligned setx relo");
+ return (-1);
+ }
+
+ *(uint64_t *)taddr += ubase;
+ break;
+ default:
+ dtrace_dof_error(dof, "invalid relocation type");
+ return (-1);
+ }
+
+ r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
+ }
+
+ return (0);
+}
+
+/*
+ * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
+ * header: it should be at the front of a memory region that is at least
+ * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
+ * size. It need not be validated in any other way.
+ */
+static int
+dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
+ dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
+{
+ uint64_t len = dof->dofh_loadsz, seclen;
+ uintptr_t daddr = (uintptr_t)dof;
+ dtrace_ecbdesc_t *ep;
+ dtrace_enabling_t *enab;
+ uint_t i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
+
+ /*
+ * Check the DOF header identification bytes. In addition to checking
+ * valid settings, we also verify that unused bits/bytes are zeroed so
+ * we can use them later without fear of regressing existing binaries.
+ */
+ if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
+ DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
+ dtrace_dof_error(dof, "DOF magic string mismatch");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
+ dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
+ dtrace_dof_error(dof, "DOF has invalid data model");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
+ dtrace_dof_error(dof, "DOF encoding mismatch");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
+ dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
+ dtrace_dof_error(dof, "DOF version mismatch");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
+ dtrace_dof_error(dof, "DOF uses unsupported instruction set");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
+ dtrace_dof_error(dof, "DOF uses too many integer registers");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
+ dtrace_dof_error(dof, "DOF uses too many tuple registers");
+ return (-1);
+ }
+
+ for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
+ if (dof->dofh_ident[i] != 0) {
+ dtrace_dof_error(dof, "DOF has invalid ident byte set");
+ return (-1);
+ }
+ }
+
+ if (dof->dofh_flags & ~DOF_FL_VALID) {
+ dtrace_dof_error(dof, "DOF has invalid flag bits set");
+ return (-1);
+ }
+
+ if (dof->dofh_secsize == 0) {
+ dtrace_dof_error(dof, "zero section header size");
+ return (-1);
+ }
+
+ /*
+ * Check that the section headers don't exceed the amount of DOF
+ * data. Note that we cast the section size and number of sections
+ * to uint64_t's to prevent possible overflow in the multiplication.
+ */
+ seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
+
+ if (dof->dofh_secoff > len || seclen > len ||
+ dof->dofh_secoff + seclen > len) {
+ dtrace_dof_error(dof, "truncated section headers");
+ return (-1);
+ }
+
+ if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
+ dtrace_dof_error(dof, "misaligned section headers");
+ return (-1);
+ }
+
+ if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
+ dtrace_dof_error(dof, "misaligned section size");
+ return (-1);
+ }
+
+ /*
+ * Take an initial pass through the section headers to be sure that
+ * the headers don't have stray offsets. If the 'noprobes' flag is
+ * set, do not permit sections relating to providers, probes, or args.
+ */
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)(daddr +
+ (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (noprobes) {
+ switch (sec->dofs_type) {
+ case DOF_SECT_PROVIDER:
+ case DOF_SECT_PROBES:
+ case DOF_SECT_PRARGS:
+ case DOF_SECT_PROFFS:
+ dtrace_dof_error(dof, "illegal sections "
+ "for enabling");
+ return (-1);
+ }
+ }
+
+ if (!(sec->dofs_flags & DOF_SECF_LOAD))
+ continue; /* just ignore non-loadable sections */
+
+ if (sec->dofs_align & (sec->dofs_align - 1)) {
+ dtrace_dof_error(dof, "bad section alignment");
+ return (-1);
+ }
+
+ if (sec->dofs_offset & (sec->dofs_align - 1)) {
+ dtrace_dof_error(dof, "misaligned section");
+ return (-1);
+ }
+
+ if (sec->dofs_offset > len || sec->dofs_size > len ||
+ sec->dofs_offset + sec->dofs_size > len) {
+ dtrace_dof_error(dof, "corrupt section header");
+ return (-1);
+ }
+
+ if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
+ sec->dofs_offset + sec->dofs_size - 1) != '\0') {
+ dtrace_dof_error(dof, "non-terminating string table");
+ return (-1);
+ }
+ }
+
+ /*
+ * Take a second pass through the sections and locate and perform any
+ * relocations that are present. We do this after the first pass to
+ * be sure that all sections have had their headers validated.
+ */
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)(daddr +
+ (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (!(sec->dofs_flags & DOF_SECF_LOAD))
+ continue; /* skip sections that are not loadable */
+
+ switch (sec->dofs_type) {
+ case DOF_SECT_URELHDR:
+ if (dtrace_dof_relocate(dof, sec, ubase) != 0)
+ return (-1);
+ break;
+ }
+ }
+
+ if ((enab = *enabp) == NULL)
+ enab = *enabp = dtrace_enabling_create(vstate);
+
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)(daddr +
+ (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (sec->dofs_type != DOF_SECT_ECBDESC)
+ continue;
+
+ if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
+ dtrace_enabling_destroy(enab);
+ *enabp = NULL;
+ return (-1);
+ }
+
+ dtrace_enabling_add(enab, ep);
+ }
+
+ return (0);
+}
+
+/*
+ * Process DOF for any options. This routine assumes that the DOF has been
+ * at least processed by dtrace_dof_slurp().
+ */
+static int
+dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
+{
+ int i, rval;
+ uint32_t entsize;
+ size_t offs;
+ dof_optdesc_t *desc;
+
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
+ (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (sec->dofs_type != DOF_SECT_OPTDESC)
+ continue;
+
+ if (sec->dofs_align != sizeof (uint64_t)) {
+ dtrace_dof_error(dof, "bad alignment in "
+ "option description");
+ return (EINVAL);
+ }
+
+ if ((entsize = sec->dofs_entsize) == 0) {
+ dtrace_dof_error(dof, "zeroed option entry size");
+ return (EINVAL);
+ }
+
+ if (entsize < sizeof (dof_optdesc_t)) {
+ dtrace_dof_error(dof, "bad option entry size");
+ return (EINVAL);
+ }
+
+ for (offs = 0; offs < sec->dofs_size; offs += entsize) {
+ desc = (dof_optdesc_t *)((uintptr_t)dof +
+ (uintptr_t)sec->dofs_offset + offs);
+
+ if (desc->dofo_strtab != DOF_SECIDX_NONE) {
+ dtrace_dof_error(dof, "non-zero option string");
+ return (EINVAL);
+ }
+
+ if (desc->dofo_value == DTRACEOPT_UNSET) {
+ dtrace_dof_error(dof, "unset option");
+ return (EINVAL);
+ }
+
+ if ((rval = dtrace_state_option(state,
+ desc->dofo_option, desc->dofo_value)) != 0) {
+ dtrace_dof_error(dof, "rejected option");
+ return (rval);
+ }
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * DTrace Consumer State Functions
+ */
+int
+dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
+{
+ size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
+ void *base;
+ uintptr_t limit;
+ dtrace_dynvar_t *dvar, *next, *start;
+ int i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
+
+ bzero(dstate, sizeof (dtrace_dstate_t));
+
+ if ((dstate->dtds_chunksize = chunksize) == 0)
+ dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
+
+ if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
+ size = min;
+
+ if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
+ return (ENOMEM);
+
+ dstate->dtds_size = size;
+ dstate->dtds_base = base;
+ dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
+ bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
+
+ hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
+
+ if (hashsize != 1 && (hashsize & 1))
+ hashsize--;
+
+ dstate->dtds_hashsize = hashsize;
+ dstate->dtds_hash = dstate->dtds_base;
+
+ /*
+ * Set all of our hash buckets to point to the single sink, and (if
+ * it hasn't already been set), set the sink's hash value to be the
+ * sink sentinel value. The sink is needed for dynamic variable
+ * lookups to know that they have iterated over an entire, valid hash
+ * chain.
+ */
+ for (i = 0; i < hashsize; i++)
+ dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
+
+ if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
+ dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
+
+ /*
+ * Determine number of active CPUs. Divide free list evenly among
+ * active CPUs.
+ */
+ start = (dtrace_dynvar_t *)
+ ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
+ limit = (uintptr_t)base + size;
+
+ maxper = (limit - (uintptr_t)start) / NCPU;
+ maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
+
+ for (i = 0; i < NCPU; i++) {
+ dstate->dtds_percpu[i].dtdsc_free = dvar = start;
+
+ /*
+ * If we don't even have enough chunks to make it once through
+ * NCPUs, we're just going to allocate everything to the first
+ * CPU. And if we're on the last CPU, we're going to allocate
+ * whatever is left over. In either case, we set the limit to
+ * be the limit of the dynamic variable space.
+ */
+ if (maxper == 0 || i == NCPU - 1) {
+ limit = (uintptr_t)base + size;
+ start = NULL;
+ } else {
+ limit = (uintptr_t)start + maxper;
+ start = (dtrace_dynvar_t *)limit;
+ }
+
+ ASSERT(limit <= (uintptr_t)base + size);
+
+ for (;;) {
+ next = (dtrace_dynvar_t *)((uintptr_t)dvar +
+ dstate->dtds_chunksize);
+
+ if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
+ break;
+
+ dvar->dtdv_next = next;
+ dvar = next;
+ }
+
+ if (maxper == 0)
+ break;
+ }
+
+ return (0);
+}
+
+void
+dtrace_dstate_fini(dtrace_dstate_t *dstate)
+{
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ if (dstate->dtds_base == NULL)
+ return;
+
+ kmem_free(dstate->dtds_base, dstate->dtds_size);
+ kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
+}
+
+static void
+dtrace_vstate_fini(dtrace_vstate_t *vstate)
+{
+ /*
+ * Logical XOR, where are you?
+ */
+ ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
+
+ if (vstate->dtvs_nglobals > 0) {
+ kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
+ sizeof (dtrace_statvar_t *));
+ }
+
+ if (vstate->dtvs_ntlocals > 0) {
+ kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
+ sizeof (dtrace_difv_t));
+ }
+
+ ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
+
+ if (vstate->dtvs_nlocals > 0) {
+ kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
+ sizeof (dtrace_statvar_t *));
+ }
+}
+
+static void
+dtrace_state_clean(dtrace_state_t *state)
+{
+ if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
+ return;
+
+ dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
+ dtrace_speculation_clean(state);
+}
+
+static void
+dtrace_state_deadman(dtrace_state_t *state)
+{
+ hrtime_t now;
+
+ dtrace_sync();
+
+ now = dtrace_gethrtime();
+
+ if (state != dtrace_anon.dta_state &&
+ now - state->dts_laststatus >= dtrace_deadman_user)
+ return;
+
+ /*
+ * We must be sure that dts_alive never appears to be less than the
+ * value upon entry to dtrace_state_deadman(), and because we lack a
+ * dtrace_cas64(), we cannot store to it atomically. We thus instead
+ * store INT64_MAX to it, followed by a memory barrier, followed by
+ * the new value. This assures that dts_alive never appears to be
+ * less than its true value, regardless of the order in which the
+ * stores to the underlying storage are issued.
+ */
+ state->dts_alive = INT64_MAX;
+ dtrace_membar_producer();
+ state->dts_alive = now;
+}
+
+dtrace_state_t *
+dtrace_state_create(dev_t *devp, cred_t *cr)
+{
+ minor_t minor;
+ major_t major;
+ char c[30];
+ dtrace_state_t *state;
+ dtrace_optval_t *opt;
+ int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
+ VM_BESTFIT | VM_SLEEP);
+
+ if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
+ vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
+ return (NULL);
+ }
+
+ state = ddi_get_soft_state(dtrace_softstate, minor);
+ state->dts_epid = DTRACE_EPIDNONE + 1;
+
+ (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
+ state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
+ NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
+
+ if (devp != NULL) {
+ major = getemajor(*devp);
+ } else {
+ major = ddi_driver_major(dtrace_devi);
+ }
+
+ state->dts_dev = makedevice(major, minor);
+
+ if (devp != NULL)
+ *devp = state->dts_dev;
+
+ /*
+ * We allocate NCPU buffers. On the one hand, this can be quite
+ * a bit of memory per instance (nearly 36K on a Starcat). On the
+ * other hand, it saves an additional memory reference in the probe
+ * path.
+ */
+ state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
+ state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
+ state->dts_cleaner = CYCLIC_NONE;
+ state->dts_deadman = CYCLIC_NONE;
+ state->dts_vstate.dtvs_state = state;
+
+ for (i = 0; i < DTRACEOPT_MAX; i++)
+ state->dts_options[i] = DTRACEOPT_UNSET;
+
+ /*
+ * Set the default options.
+ */
+ opt = state->dts_options;
+ opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
+ opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
+ opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
+ opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
+ opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
+ opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
+ opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
+ opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
+ opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
+ opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
+ opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
+ opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
+ opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
+ opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
+
+ state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
+
+ /*
+ * Depending on the user credentials, we set flag bits which alter probe
+ * visibility or the amount of destructiveness allowed. In the case of
+ * actual anonymous tracing, or the possession of all privileges, all of
+ * the normal checks are bypassed.
+ */
+ if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
+ state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
+ state->dts_cred.dcr_action = DTRACE_CRA_ALL;
+ } else {
+ /*
+ * Set up the credentials for this instantiation. We take a
+ * hold on the credential to prevent it from disappearing on
+ * us; this in turn prevents the zone_t referenced by this
+ * credential from disappearing. This means that we can
+ * examine the credential and the zone from probe context.
+ */
+ crhold(cr);
+ state->dts_cred.dcr_cred = cr;
+
+ /*
+ * CRA_PROC means "we have *some* privilege for dtrace" and
+ * unlocks the use of variables like pid, zonename, etc.
+ */
+ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
+ PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
+ state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
+ }
+
+ /*
+ * dtrace_user allows use of syscall and profile providers.
+ * If the user also has proc_owner and/or proc_zone, we
+ * extend the scope to include additional visibility and
+ * destructive power.
+ */
+ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
+ state->dts_cred.dcr_visible |=
+ DTRACE_CRV_ALLPROC;
+
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
+ }
+
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
+ state->dts_cred.dcr_visible |=
+ DTRACE_CRV_ALLZONE;
+
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
+ }
+
+ /*
+ * If we have all privs in whatever zone this is,
+ * we can do destructive things to processes which
+ * have altered credentials.
+ */
+ if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
+ cr->cr_zone->zone_privset)) {
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
+ }
+ }
+
+ /*
+ * Holding the dtrace_kernel privilege also implies that
+ * the user has the dtrace_user privilege from a visibility
+ * perspective. But without further privileges, some
+ * destructive actions are not available.
+ */
+ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
+ /*
+ * Make all probes in all zones visible. However,
+ * this doesn't mean that all actions become available
+ * to all zones.
+ */
+ state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
+ DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
+
+ state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
+ DTRACE_CRA_PROC;
+ /*
+ * Holding proc_owner means that destructive actions
+ * for *this* zone are allowed.
+ */
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
+
+ /*
+ * Holding proc_zone means that destructive actions
+ * for this user/group ID in all zones is allowed.
+ */
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
+
+ /*
+ * If we have all privs in whatever zone this is,
+ * we can do destructive things to processes which
+ * have altered credentials.
+ */
+ if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
+ cr->cr_zone->zone_privset)) {
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
+ }
+ }
+
+ /*
+ * Holding the dtrace_proc privilege gives control over fasttrap
+ * and pid providers. We need to grant wider destructive
+ * privileges in the event that the user has proc_owner and/or
+ * proc_zone.
+ */
+ if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
+
+ if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
+ state->dts_cred.dcr_action |=
+ DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
+ }
+ }
+
+ return (state);
+}
+
+static int
+dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
+{
+ dtrace_optval_t *opt = state->dts_options, size;
+ processorid_t cpu;
+ int flags = 0, rval;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ ASSERT(which < DTRACEOPT_MAX);
+ ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
+ (state == dtrace_anon.dta_state &&
+ state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
+
+ if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
+ return (0);
+
+ if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
+ cpu = opt[DTRACEOPT_CPU];
+
+ if (which == DTRACEOPT_SPECSIZE)
+ flags |= DTRACEBUF_NOSWITCH;
+
+ if (which == DTRACEOPT_BUFSIZE) {
+ if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
+ flags |= DTRACEBUF_RING;
+
+ if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
+ flags |= DTRACEBUF_FILL;
+
+ if (state != dtrace_anon.dta_state ||
+ state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
+ flags |= DTRACEBUF_INACTIVE;
+ }
+
+ for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
+ /*
+ * The size must be 8-byte aligned. If the size is not 8-byte
+ * aligned, drop it down by the difference.
+ */
+ if (size & (sizeof (uint64_t) - 1))
+ size -= size & (sizeof (uint64_t) - 1);
+
+ if (size < state->dts_reserve) {
+ /*
+ * Buffers always must be large enough to accommodate
+ * their prereserved space. We return E2BIG instead
+ * of ENOMEM in this case to allow for user-level
+ * software to differentiate the cases.
+ */
+ return (E2BIG);
+ }
+
+ rval = dtrace_buffer_alloc(buf, size, flags, cpu);
+
+ if (rval != ENOMEM) {
+ opt[which] = size;
+ return (rval);
+ }
+
+ if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
+ return (rval);
+ }
+
+ return (ENOMEM);
+}
+
+static int
+dtrace_state_buffers(dtrace_state_t *state)
+{
+ dtrace_speculation_t *spec = state->dts_speculations;
+ int rval, i;
+
+ if ((rval = dtrace_state_buffer(state, state->dts_buffer,
+ DTRACEOPT_BUFSIZE)) != 0)
+ return (rval);
+
+ if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
+ DTRACEOPT_AGGSIZE)) != 0)
+ return (rval);
+
+ for (i = 0; i < state->dts_nspeculations; i++) {
+ if ((rval = dtrace_state_buffer(state,
+ spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
+ return (rval);
+ }
+
+ return (0);
+}
+
+static void
+dtrace_state_prereserve(dtrace_state_t *state)
+{
+ dtrace_ecb_t *ecb;
+ dtrace_probe_t *probe;
+
+ state->dts_reserve = 0;
+
+ if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
+ return;
+
+ /*
+ * If our buffer policy is a "fill" buffer policy, we need to set the
+ * prereserved space to be the space required by the END probes.
+ */
+ probe = dtrace_probes[dtrace_probeid_end - 1];
+ ASSERT(probe != NULL);
+
+ for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
+ if (ecb->dte_state != state)
+ continue;
+
+ state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
+ }
+}
+
+static int
+dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
+{
+ dtrace_optval_t *opt = state->dts_options, sz, nspec;
+ dtrace_speculation_t *spec;
+ dtrace_buffer_t *buf;
+ cyc_handler_t hdlr;
+ cyc_time_t when;
+ int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
+ dtrace_icookie_t cookie;
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
+ rval = EBUSY;
+ goto out;
+ }
+
+ /*
+ * Before we can perform any checks, we must prime all of the
+ * retained enablings that correspond to this state.
+ */
+ dtrace_enabling_prime(state);
+
+ if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
+ rval = EACCES;
+ goto out;
+ }
+
+ dtrace_state_prereserve(state);
+
+ /*
+ * Now we want to do is try to allocate our speculations.
+ * We do not automatically resize the number of speculations; if
+ * this fails, we will fail the operation.
+ */
+ nspec = opt[DTRACEOPT_NSPEC];
+ ASSERT(nspec != DTRACEOPT_UNSET);
+
+ if (nspec > INT_MAX) {
+ rval = ENOMEM;
+ goto out;
+ }
+
+ spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
+
+ if (spec == NULL) {
+ rval = ENOMEM;
+ goto out;
+ }
+
+ state->dts_speculations = spec;
+ state->dts_nspeculations = (int)nspec;
+
+ for (i = 0; i < nspec; i++) {
+ if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
+ rval = ENOMEM;
+ goto err;
+ }
+
+ spec[i].dtsp_buffer = buf;
+ }
+
+ if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
+ if (dtrace_anon.dta_state == NULL) {
+ rval = ENOENT;
+ goto out;
+ }
+
+ if (state->dts_necbs != 0) {
+ rval = EALREADY;
+ goto out;
+ }
+
+ state->dts_anon = dtrace_anon_grab();
+ ASSERT(state->dts_anon != NULL);
+ state = state->dts_anon;
+
+ /*
+ * We want "grabanon" to be set in the grabbed state, so we'll
+ * copy that option value from the grabbing state into the
+ * grabbed state.
+ */
+ state->dts_options[DTRACEOPT_GRABANON] =
+ opt[DTRACEOPT_GRABANON];
+
+ *cpu = dtrace_anon.dta_beganon;
+
+ /*
+ * If the anonymous state is active (as it almost certainly
+ * is if the anonymous enabling ultimately matched anything),
+ * we don't allow any further option processing -- but we
+ * don't return failure.
+ */
+ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
+ goto out;
+ }
+
+ if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
+ opt[DTRACEOPT_AGGSIZE] != 0) {
+ if (state->dts_aggregations == NULL) {
+ /*
+ * We're not going to create an aggregation buffer
+ * because we don't have any ECBs that contain
+ * aggregations -- set this option to 0.
+ */
+ opt[DTRACEOPT_AGGSIZE] = 0;
+ } else {
+ /*
+ * If we have an aggregation buffer, we must also have
+ * a buffer to use as scratch.
+ */
+ if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
+ opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
+ opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
+ }
+ }
+ }
+
+ if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
+ opt[DTRACEOPT_SPECSIZE] != 0) {
+ if (!state->dts_speculates) {
+ /*
+ * We're not going to create speculation buffers
+ * because we don't have any ECBs that actually
+ * speculate -- set the speculation size to 0.
+ */
+ opt[DTRACEOPT_SPECSIZE] = 0;
+ }
+ }
+
+ /*
+ * The bare minimum size for any buffer that we're actually going to
+ * do anything to is sizeof (uint64_t).
+ */
+ sz = sizeof (uint64_t);
+
+ if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
+ (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
+ (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
+ /*
+ * A buffer size has been explicitly set to 0 (or to a size
+ * that will be adjusted to 0) and we need the space -- we
+ * need to return failure. We return ENOSPC to differentiate
+ * it from failing to allocate a buffer due to failure to meet
+ * the reserve (for which we return E2BIG).
+ */
+ rval = ENOSPC;
+ goto out;
+ }
+
+ if ((rval = dtrace_state_buffers(state)) != 0)
+ goto err;
+
+ if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
+ sz = dtrace_dstate_defsize;
+
+ do {
+ rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
+
+ if (rval == 0)
+ break;
+
+ if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
+ goto err;
+ } while (sz >>= 1);
+
+ opt[DTRACEOPT_DYNVARSIZE] = sz;
+
+ if (rval != 0)
+ goto err;
+
+ if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
+ opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
+
+ if (opt[DTRACEOPT_CLEANRATE] == 0)
+ opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
+
+ if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
+ opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
+
+ if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
+ opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
+
+ hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
+ hdlr.cyh_arg = state;
+ hdlr.cyh_level = CY_LOW_LEVEL;
+
+ when.cyt_when = 0;
+ when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
+
+ state->dts_cleaner = cyclic_add(&hdlr, &when);
+
+ hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
+ hdlr.cyh_arg = state;
+ hdlr.cyh_level = CY_LOW_LEVEL;
+
+ when.cyt_when = 0;
+ when.cyt_interval = dtrace_deadman_interval;
+
+ state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
+ state->dts_deadman = cyclic_add(&hdlr, &when);
+
+ state->dts_activity = DTRACE_ACTIVITY_WARMUP;
+
+ /*
+ * Now it's time to actually fire the BEGIN probe. We need to disable
+ * interrupts here both to record the CPU on which we fired the BEGIN
+ * probe (the data from this CPU will be processed first at user
+ * level) and to manually activate the buffer for this CPU.
+ */
+ cookie = dtrace_interrupt_disable();
+ *cpu = CPU->cpu_id;
+ ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
+ state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
+
+ dtrace_probe(dtrace_probeid_begin,
+ (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
+ dtrace_interrupt_enable(cookie);
+ /*
+ * We may have had an exit action from a BEGIN probe; only change our
+ * state to ACTIVE if we're still in WARMUP.
+ */
+ ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
+ state->dts_activity == DTRACE_ACTIVITY_DRAINING);
+
+ if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
+ state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
+
+ /*
+ * Regardless of whether or not now we're in ACTIVE or DRAINING, we
+ * want each CPU to transition its principal buffer out of the
+ * INACTIVE state. Doing this assures that no CPU will suddenly begin
+ * processing an ECB halfway down a probe's ECB chain; all CPUs will
+ * atomically transition from processing none of a state's ECBs to
+ * processing all of them.
+ */
+ dtrace_xcall(DTRACE_CPUALL,
+ (dtrace_xcall_t)dtrace_buffer_activate, state);
+ goto out;
+
+err:
+ dtrace_buffer_free(state->dts_buffer);
+ dtrace_buffer_free(state->dts_aggbuffer);
+
+ if ((nspec = state->dts_nspeculations) == 0) {
+ ASSERT(state->dts_speculations == NULL);
+ goto out;
+ }
+
+ spec = state->dts_speculations;
+ ASSERT(spec != NULL);
+
+ for (i = 0; i < state->dts_nspeculations; i++) {
+ if ((buf = spec[i].dtsp_buffer) == NULL)
+ break;
+
+ dtrace_buffer_free(buf);
+ kmem_free(buf, bufsize);
+ }
+
+ kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
+ state->dts_nspeculations = 0;
+ state->dts_speculations = NULL;
+
+out:
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+
+ return (rval);
+}
+
+static int
+dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
+{
+ dtrace_icookie_t cookie;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
+ state->dts_activity != DTRACE_ACTIVITY_DRAINING)
+ return (EINVAL);
+
+ /*
+ * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
+ * to be sure that every CPU has seen it. See below for the details
+ * on why this is done.
+ */
+ state->dts_activity = DTRACE_ACTIVITY_DRAINING;
+ dtrace_sync();
+
+ /*
+ * By this point, it is impossible for any CPU to be still processing
+ * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
+ * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
+ * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
+ * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
+ * iff we're in the END probe.
+ */
+ state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
+ dtrace_sync();
+ ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
+
+ /*
+ * Finally, we can release the reserve and call the END probe. We
+ * disable interrupts across calling the END probe to allow us to
+ * return the CPU on which we actually called the END probe. This
+ * allows user-land to be sure that this CPU's principal buffer is
+ * processed last.
+ */
+ state->dts_reserve = 0;
+
+ cookie = dtrace_interrupt_disable();
+ *cpu = CPU->cpu_id;
+ dtrace_probe(dtrace_probeid_end,
+ (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
+ dtrace_interrupt_enable(cookie);
+
+ state->dts_activity = DTRACE_ACTIVITY_STOPPED;
+ dtrace_sync();
+
+ return (0);
+}
+
+static int
+dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
+ dtrace_optval_t val)
+{
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
+ return (EBUSY);
+
+ if (option >= DTRACEOPT_MAX)
+ return (EINVAL);
+
+ if (option != DTRACEOPT_CPU && val < 0)
+ return (EINVAL);
+
+ switch (option) {
+ case DTRACEOPT_DESTRUCTIVE:
+ if (dtrace_destructive_disallow)
+ return (EACCES);
+
+ state->dts_cred.dcr_destructive = 1;
+ break;
+
+ case DTRACEOPT_BUFSIZE:
+ case DTRACEOPT_DYNVARSIZE:
+ case DTRACEOPT_AGGSIZE:
+ case DTRACEOPT_SPECSIZE:
+ case DTRACEOPT_STRSIZE:
+ if (val < 0)
+ return (EINVAL);
+
+ if (val >= LONG_MAX) {
+ /*
+ * If this is an otherwise negative value, set it to
+ * the highest multiple of 128m less than LONG_MAX.
+ * Technically, we're adjusting the size without
+ * regard to the buffer resizing policy, but in fact,
+ * this has no effect -- if we set the buffer size to
+ * ~LONG_MAX and the buffer policy is ultimately set to
+ * be "manual", the buffer allocation is guaranteed to
+ * fail, if only because the allocation requires two
+ * buffers. (We set the the size to the highest
+ * multiple of 128m because it ensures that the size
+ * will remain a multiple of a megabyte when
+ * repeatedly halved -- all the way down to 15m.)
+ */
+ val = LONG_MAX - (1 << 27) + 1;
+ }
+ }
+
+ state->dts_options[option] = val;
+
+ return (0);
+}
+
+static void
+dtrace_state_destroy(dtrace_state_t *state)
+{
+ dtrace_ecb_t *ecb;
+ dtrace_vstate_t *vstate = &state->dts_vstate;
+ minor_t minor = getminor(state->dts_dev);
+ int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
+ dtrace_speculation_t *spec = state->dts_speculations;
+ int nspec = state->dts_nspeculations;
+ uint32_t match;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ /*
+ * First, retract any retained enablings for this state.
+ */
+ dtrace_enabling_retract(state);
+ ASSERT(state->dts_nretained == 0);
+
+ if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
+ state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
+ /*
+ * We have managed to come into dtrace_state_destroy() on a
+ * hot enabling -- almost certainly because of a disorderly
+ * shutdown of a consumer. (That is, a consumer that is
+ * exiting without having called dtrace_stop().) In this case,
+ * we're going to set our activity to be KILLED, and then
+ * issue a sync to be sure that everyone is out of probe
+ * context before we start blowing away ECBs.
+ */
+ state->dts_activity = DTRACE_ACTIVITY_KILLED;
+ dtrace_sync();
+ }
+
+ /*
+ * Release the credential hold we took in dtrace_state_create().
+ */
+ if (state->dts_cred.dcr_cred != NULL)
+ crfree(state->dts_cred.dcr_cred);
+
+ /*
+ * Now we can safely disable and destroy any enabled probes. Because
+ * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
+ * (especially if they're all enabled), we take two passes through the
+ * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
+ * in the second we disable whatever is left over.
+ */
+ for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
+ for (i = 0; i < state->dts_necbs; i++) {
+ if ((ecb = state->dts_ecbs[i]) == NULL)
+ continue;
+
+ if (match && ecb->dte_probe != NULL) {
+ dtrace_probe_t *probe = ecb->dte_probe;
+ dtrace_provider_t *prov = probe->dtpr_provider;
+
+ if (!(prov->dtpv_priv.dtpp_flags & match))
+ continue;
+ }
+
+ dtrace_ecb_disable(ecb);
+ dtrace_ecb_destroy(ecb);
+ }
+
+ if (!match)
+ break;
+ }
+
+ /*
+ * Before we free the buffers, perform one more sync to assure that
+ * every CPU is out of probe context.
+ */
+ dtrace_sync();
+
+ dtrace_buffer_free(state->dts_buffer);
+ dtrace_buffer_free(state->dts_aggbuffer);
+
+ for (i = 0; i < nspec; i++)
+ dtrace_buffer_free(spec[i].dtsp_buffer);
+
+ if (state->dts_cleaner != CYCLIC_NONE)
+ cyclic_remove(state->dts_cleaner);
+
+ if (state->dts_deadman != CYCLIC_NONE)
+ cyclic_remove(state->dts_deadman);
+
+ dtrace_dstate_fini(&vstate->dtvs_dynvars);
+ dtrace_vstate_fini(vstate);
+ kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
+
+ if (state->dts_aggregations != NULL) {
+#ifdef DEBUG
+ for (i = 0; i < state->dts_naggregations; i++)
+ ASSERT(state->dts_aggregations[i] == NULL);
+#endif
+ ASSERT(state->dts_naggregations > 0);
+ kmem_free(state->dts_aggregations,
+ state->dts_naggregations * sizeof (dtrace_aggregation_t *));
+ }
+
+ kmem_free(state->dts_buffer, bufsize);
+ kmem_free(state->dts_aggbuffer, bufsize);
+
+ for (i = 0; i < nspec; i++)
+ kmem_free(spec[i].dtsp_buffer, bufsize);
+
+ kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
+
+ dtrace_format_destroy(state);
+
+ vmem_destroy(state->dts_aggid_arena);
+ ddi_soft_state_free(dtrace_softstate, minor);
+ vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
+}
+
+/*
+ * DTrace Anonymous Enabling Functions
+ */
+static dtrace_state_t *
+dtrace_anon_grab(void)
+{
+ dtrace_state_t *state;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if ((state = dtrace_anon.dta_state) == NULL) {
+ ASSERT(dtrace_anon.dta_enabling == NULL);
+ return (NULL);
+ }
+
+ ASSERT(dtrace_anon.dta_enabling != NULL);
+ ASSERT(dtrace_retained != NULL);
+
+ dtrace_enabling_destroy(dtrace_anon.dta_enabling);
+ dtrace_anon.dta_enabling = NULL;
+ dtrace_anon.dta_state = NULL;
+
+ return (state);
+}
+
+static void
+dtrace_anon_property(void)
+{
+ int i, rv;
+ dtrace_state_t *state;
+ dof_hdr_t *dof;
+ char c[32]; /* enough for "dof-data-" + digits */
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ for (i = 0; ; i++) {
+ (void) snprintf(c, sizeof (c), "dof-data-%d", i);
+
+ dtrace_err_verbose = 1;
+
+ if ((dof = dtrace_dof_property(c)) == NULL) {
+ dtrace_err_verbose = 0;
+ break;
+ }
+
+ /*
+ * We want to create anonymous state, so we need to transition
+ * the kernel debugger to indicate that DTrace is active. If
+ * this fails (e.g. because the debugger has modified text in
+ * some way), we won't continue with the processing.
+ */
+ if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
+ cmn_err(CE_NOTE, "kernel debugger active; anonymous "
+ "enabling ignored.");
+ dtrace_dof_destroy(dof);
+ break;
+ }
+
+ /*
+ * If we haven't allocated an anonymous state, we'll do so now.
+ */
+ if ((state = dtrace_anon.dta_state) == NULL) {
+ state = dtrace_state_create(NULL, NULL);
+ dtrace_anon.dta_state = state;
+
+ if (state == NULL) {
+ /*
+ * This basically shouldn't happen: the only
+ * failure mode from dtrace_state_create() is a
+ * failure of ddi_soft_state_zalloc() that
+ * itself should never happen. Still, the
+ * interface allows for a failure mode, and
+ * we want to fail as gracefully as possible:
+ * we'll emit an error message and cease
+ * processing anonymous state in this case.
+ */
+ cmn_err(CE_WARN, "failed to create "
+ "anonymous state");
+ dtrace_dof_destroy(dof);
+ break;
+ }
+ }
+
+ rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
+ &dtrace_anon.dta_enabling, 0, B_TRUE);
+
+ if (rv == 0)
+ rv = dtrace_dof_options(dof, state);
+
+ dtrace_err_verbose = 0;
+ dtrace_dof_destroy(dof);
+
+ if (rv != 0) {
+ /*
+ * This is malformed DOF; chuck any anonymous state
+ * that we created.
+ */
+ ASSERT(dtrace_anon.dta_enabling == NULL);
+ dtrace_state_destroy(state);
+ dtrace_anon.dta_state = NULL;
+ break;
+ }
+
+ ASSERT(dtrace_anon.dta_enabling != NULL);
+ }
+
+ if (dtrace_anon.dta_enabling != NULL) {
+ int rval;
+
+ /*
+ * dtrace_enabling_retain() can only fail because we are
+ * trying to retain more enablings than are allowed -- but
+ * we only have one anonymous enabling, and we are guaranteed
+ * to be allowed at least one retained enabling; we assert
+ * that dtrace_enabling_retain() returns success.
+ */
+ rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
+ ASSERT(rval == 0);
+
+ dtrace_enabling_dump(dtrace_anon.dta_enabling);
+ }
+}
+
+/*
+ * DTrace Helper Functions
+ */
+static void
+dtrace_helper_trace(dtrace_helper_action_t *helper,
+ dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
+{
+ uint32_t size, next, nnext, i;
+ dtrace_helptrace_t *ent;
+ uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+
+ if (!dtrace_helptrace_enabled)
+ return;
+
+ ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
+
+ /*
+ * What would a tracing framework be without its own tracing
+ * framework? (Well, a hell of a lot simpler, for starters...)
+ */
+ size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
+ sizeof (uint64_t) - sizeof (uint64_t);
+
+ /*
+ * Iterate until we can allocate a slot in the trace buffer.
+ */
+ do {
+ next = dtrace_helptrace_next;
+
+ if (next + size < dtrace_helptrace_bufsize) {
+ nnext = next + size;
+ } else {
+ nnext = size;
+ }
+ } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
+
+ /*
+ * We have our slot; fill it in.
+ */
+ if (nnext == size)
+ next = 0;
+
+ ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
+ ent->dtht_helper = helper;
+ ent->dtht_where = where;
+ ent->dtht_nlocals = vstate->dtvs_nlocals;
+
+ ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
+ mstate->dtms_fltoffs : -1;
+ ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
+ ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
+
+ for (i = 0; i < vstate->dtvs_nlocals; i++) {
+ dtrace_statvar_t *svar;
+
+ if ((svar = vstate->dtvs_locals[i]) == NULL)
+ continue;
+
+ ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
+ ent->dtht_locals[i] =
+ ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
+ }
+}
+
+static uint64_t
+dtrace_helper(int which, dtrace_mstate_t *mstate,
+ dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
+{
+ uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+ uint64_t sarg0 = mstate->dtms_arg[0];
+ uint64_t sarg1 = mstate->dtms_arg[1];
+ uint64_t rval;
+ dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
+ dtrace_helper_action_t *helper;
+ dtrace_vstate_t *vstate;
+ dtrace_difo_t *pred;
+ int i, trace = dtrace_helptrace_enabled;
+
+ ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
+
+ if (helpers == NULL)
+ return (0);
+
+ if ((helper = helpers->dthps_actions[which]) == NULL)
+ return (0);
+
+ vstate = &helpers->dthps_vstate;
+ mstate->dtms_arg[0] = arg0;
+ mstate->dtms_arg[1] = arg1;
+
+ /*
+ * Now iterate over each helper. If its predicate evaluates to 'true',
+ * we'll call the corresponding actions. Note that the below calls
+ * to dtrace_dif_emulate() may set faults in machine state. This is
+ * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
+ * the stored DIF offset with its own (which is the desired behavior).
+ * Also, note the calls to dtrace_dif_emulate() may allocate scratch
+ * from machine state; this is okay, too.
+ */
+ for (; helper != NULL; helper = helper->dtha_next) {
+ if ((pred = helper->dtha_predicate) != NULL) {
+ if (trace)
+ dtrace_helper_trace(helper, mstate, vstate, 0);
+
+ if (!dtrace_dif_emulate(pred, mstate, vstate, state))
+ goto next;
+
+ if (*flags & CPU_DTRACE_FAULT)
+ goto err;
+ }
+
+ for (i = 0; i < helper->dtha_nactions; i++) {
+ if (trace)
+ dtrace_helper_trace(helper,
+ mstate, vstate, i + 1);
+
+ rval = dtrace_dif_emulate(helper->dtha_actions[i],
+ mstate, vstate, state);
+
+ if (*flags & CPU_DTRACE_FAULT)
+ goto err;
+ }
+
+next:
+ if (trace)
+ dtrace_helper_trace(helper, mstate, vstate,
+ DTRACE_HELPTRACE_NEXT);
+ }
+
+ if (trace)
+ dtrace_helper_trace(helper, mstate, vstate,
+ DTRACE_HELPTRACE_DONE);
+
+ /*
+ * Restore the arg0 that we saved upon entry.
+ */
+ mstate->dtms_arg[0] = sarg0;
+ mstate->dtms_arg[1] = sarg1;
+
+ return (rval);
+
+err:
+ if (trace)
+ dtrace_helper_trace(helper, mstate, vstate,
+ DTRACE_HELPTRACE_ERR);
+
+ /*
+ * Restore the arg0 that we saved upon entry.
+ */
+ mstate->dtms_arg[0] = sarg0;
+ mstate->dtms_arg[1] = sarg1;
+
+ return (NULL);
+}
+
+static void
+dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
+ dtrace_vstate_t *vstate)
+{
+ int i;
+
+ if (helper->dtha_predicate != NULL)
+ dtrace_difo_release(helper->dtha_predicate, vstate);
+
+ for (i = 0; i < helper->dtha_nactions; i++) {
+ ASSERT(helper->dtha_actions[i] != NULL);
+ dtrace_difo_release(helper->dtha_actions[i], vstate);
+ }
+
+ kmem_free(helper->dtha_actions,
+ helper->dtha_nactions * sizeof (dtrace_difo_t *));
+ kmem_free(helper, sizeof (dtrace_helper_action_t));
+}
+
+static int
+dtrace_helper_destroygen(int gen)
+{
+ proc_t *p = curproc;
+ dtrace_helpers_t *help = p->p_dtrace_helpers;
+ dtrace_vstate_t *vstate;
+ int i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if (help == NULL || gen > help->dthps_generation)
+ return (EINVAL);
+
+ vstate = &help->dthps_vstate;
+
+ for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
+ dtrace_helper_action_t *last = NULL, *h, *next;
+
+ for (h = help->dthps_actions[i]; h != NULL; h = next) {
+ next = h->dtha_next;
+
+ if (h->dtha_generation == gen) {
+ if (last != NULL) {
+ last->dtha_next = next;
+ } else {
+ help->dthps_actions[i] = next;
+ }
+
+ dtrace_helper_action_destroy(h, vstate);
+ } else {
+ last = h;
+ }
+ }
+ }
+
+ /*
+ * Interate until we've cleared out all helper providers with the
+ * given generation number.
+ */
+ for (;;) {
+ dtrace_helper_provider_t *prov;
+
+ /*
+ * Look for a helper provider with the right generation. We
+ * have to start back at the beginning of the list each time
+ * because we drop dtrace_lock. It's unlikely that we'll make
+ * more than two passes.
+ */
+ for (i = 0; i < help->dthps_nprovs; i++) {
+ prov = help->dthps_provs[i];
+
+ if (prov->dthp_generation == gen)
+ break;
+ }
+
+ /*
+ * If there were no matches, we're done.
+ */
+ if (i == help->dthps_nprovs)
+ break;
+
+ /*
+ * Move the last helper provider into this slot.
+ */
+ help->dthps_nprovs--;
+ help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
+ help->dthps_provs[help->dthps_nprovs] = NULL;
+
+ mutex_exit(&dtrace_lock);
+
+ /*
+ * If we have a meta provider, remove this helper provider.
+ */
+ mutex_enter(&dtrace_meta_lock);
+ if (dtrace_meta_pid != NULL) {
+ ASSERT(dtrace_deferred_pid == NULL);
+ dtrace_helper_provider_remove(&prov->dthp_prov,
+ p->p_pid);
+ }
+ mutex_exit(&dtrace_meta_lock);
+
+ dtrace_helper_provider_destroy(prov);
+
+ mutex_enter(&dtrace_lock);
+ }
+
+ return (0);
+}
+
+static int
+dtrace_helper_validate(dtrace_helper_action_t *helper)
+{
+ int err = 0, i;
+ dtrace_difo_t *dp;
+
+ if ((dp = helper->dtha_predicate) != NULL)
+ err += dtrace_difo_validate_helper(dp);
+
+ for (i = 0; i < helper->dtha_nactions; i++)
+ err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
+
+ return (err == 0);
+}
+
+static int
+dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
+{
+ dtrace_helpers_t *help;
+ dtrace_helper_action_t *helper, *last;
+ dtrace_actdesc_t *act;
+ dtrace_vstate_t *vstate;
+ dtrace_predicate_t *pred;
+ int count = 0, nactions = 0, i;
+
+ if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
+ return (EINVAL);
+
+ help = curproc->p_dtrace_helpers;
+ last = help->dthps_actions[which];
+ vstate = &help->dthps_vstate;
+
+ for (count = 0; last != NULL; last = last->dtha_next) {
+ count++;
+ if (last->dtha_next == NULL)
+ break;
+ }
+
+ /*
+ * If we already have dtrace_helper_actions_max helper actions for this
+ * helper action type, we'll refuse to add a new one.
+ */
+ if (count >= dtrace_helper_actions_max)
+ return (ENOSPC);
+
+ helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
+ helper->dtha_generation = help->dthps_generation;
+
+ if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
+ ASSERT(pred->dtp_difo != NULL);
+ dtrace_difo_hold(pred->dtp_difo);
+ helper->dtha_predicate = pred->dtp_difo;
+ }
+
+ for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
+ if (act->dtad_kind != DTRACEACT_DIFEXPR)
+ goto err;
+
+ if (act->dtad_difo == NULL)
+ goto err;
+
+ nactions++;
+ }
+
+ helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
+ (helper->dtha_nactions = nactions), KM_SLEEP);
+
+ for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
+ dtrace_difo_hold(act->dtad_difo);
+ helper->dtha_actions[i++] = act->dtad_difo;
+ }
+
+ if (!dtrace_helper_validate(helper))
+ goto err;
+
+ if (last == NULL) {
+ help->dthps_actions[which] = helper;
+ } else {
+ last->dtha_next = helper;
+ }
+
+ if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
+ dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
+ dtrace_helptrace_next = 0;
+ }
+
+ return (0);
+err:
+ dtrace_helper_action_destroy(helper, vstate);
+ return (EINVAL);
+}
+
+static void
+dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
+ dof_helper_t *dofhp)
+{
+ ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
+
+ mutex_enter(&dtrace_meta_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (!dtrace_attached() || dtrace_meta_pid == NULL) {
+ /*
+ * If the dtrace module is loaded but not attached, or if
+ * there aren't isn't a meta provider registered to deal with
+ * these provider descriptions, we need to postpone creating
+ * the actual providers until later.
+ */
+
+ if (help->dthps_next == NULL && help->dthps_prev == NULL &&
+ dtrace_deferred_pid != help) {
+ help->dthps_deferred = 1;
+ help->dthps_pid = p->p_pid;
+ help->dthps_next = dtrace_deferred_pid;
+ help->dthps_prev = NULL;
+ if (dtrace_deferred_pid != NULL)
+ dtrace_deferred_pid->dthps_prev = help;
+ dtrace_deferred_pid = help;
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ } else if (dofhp != NULL) {
+ /*
+ * If the dtrace module is loaded and we have a particular
+ * helper provider description, pass that off to the
+ * meta provider.
+ */
+
+ mutex_exit(&dtrace_lock);
+
+ dtrace_helper_provide(dofhp, p->p_pid);
+
+ } else {
+ /*
+ * Otherwise, just pass all the helper provider descriptions
+ * off to the meta provider.
+ */
+
+ int i;
+ mutex_exit(&dtrace_lock);
+
+ for (i = 0; i < help->dthps_nprovs; i++) {
+ dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
+ p->p_pid);
+ }
+ }
+
+ mutex_exit(&dtrace_meta_lock);
+}
+
+static int
+dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
+{
+ dtrace_helpers_t *help;
+ dtrace_helper_provider_t *hprov, **tmp_provs;
+ uint_t tmp_maxprovs, i;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ help = curproc->p_dtrace_helpers;
+ ASSERT(help != NULL);
+
+ /*
+ * If we already have dtrace_helper_providers_max helper providers,
+ * we're refuse to add a new one.
+ */
+ if (help->dthps_nprovs >= dtrace_helper_providers_max)
+ return (ENOSPC);
+
+ /*
+ * Check to make sure this isn't a duplicate.
+ */
+ for (i = 0; i < help->dthps_nprovs; i++) {
+ if (dofhp->dofhp_addr ==
+ help->dthps_provs[i]->dthp_prov.dofhp_addr)
+ return (EALREADY);
+ }
+
+ hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
+ hprov->dthp_prov = *dofhp;
+ hprov->dthp_ref = 1;
+ hprov->dthp_generation = gen;
+
+ /*
+ * Allocate a bigger table for helper providers if it's already full.
+ */
+ if (help->dthps_maxprovs == help->dthps_nprovs) {
+ tmp_maxprovs = help->dthps_maxprovs;
+ tmp_provs = help->dthps_provs;
+
+ if (help->dthps_maxprovs == 0)
+ help->dthps_maxprovs = 2;
+ else
+ help->dthps_maxprovs *= 2;
+ if (help->dthps_maxprovs > dtrace_helper_providers_max)
+ help->dthps_maxprovs = dtrace_helper_providers_max;
+
+ ASSERT(tmp_maxprovs < help->dthps_maxprovs);
+
+ help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
+ sizeof (dtrace_helper_provider_t *), KM_SLEEP);
+
+ if (tmp_provs != NULL) {
+ bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
+ sizeof (dtrace_helper_provider_t *));
+ kmem_free(tmp_provs, tmp_maxprovs *
+ sizeof (dtrace_helper_provider_t *));
+ }
+ }
+
+ help->dthps_provs[help->dthps_nprovs] = hprov;
+ help->dthps_nprovs++;
+
+ return (0);
+}
+
+static void
+dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
+{
+ mutex_enter(&dtrace_lock);
+
+ if (--hprov->dthp_ref == 0) {
+ dof_hdr_t *dof;
+ mutex_exit(&dtrace_lock);
+ dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
+ dtrace_dof_destroy(dof);
+ kmem_free(hprov, sizeof (dtrace_helper_provider_t));
+ } else {
+ mutex_exit(&dtrace_lock);
+ }
+}
+
+static int
+dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
+{
+ uintptr_t daddr = (uintptr_t)dof;
+ dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
+ dof_provider_t *provider;
+ dof_probe_t *probe;
+ uint8_t *arg;
+ char *strtab, *typestr;
+ dof_stridx_t typeidx;
+ size_t typesz;
+ uint_t nprobes, j, k;
+
+ ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
+
+ if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
+ dtrace_dof_error(dof, "misaligned section offset");
+ return (-1);
+ }
+
+ /*
+ * The section needs to be large enough to contain the DOF provider
+ * structure appropriate for the given version.
+ */
+ if (sec->dofs_size <
+ ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
+ offsetof(dof_provider_t, dofpv_prenoffs) :
+ sizeof (dof_provider_t))) {
+ dtrace_dof_error(dof, "provider section too small");
+ return (-1);
+ }
+
+ provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
+ str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
+ prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
+ arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
+ off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
+
+ if (str_sec == NULL || prb_sec == NULL ||
+ arg_sec == NULL || off_sec == NULL)
+ return (-1);
+
+ enoff_sec = NULL;
+
+ if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
+ provider->dofpv_prenoffs != DOF_SECT_NONE &&
+ (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
+ provider->dofpv_prenoffs)) == NULL)
+ return (-1);
+
+ strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
+
+ if (provider->dofpv_name >= str_sec->dofs_size ||
+ strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
+ dtrace_dof_error(dof, "invalid provider name");
+ return (-1);
+ }
+
+ if (prb_sec->dofs_entsize == 0 ||
+ prb_sec->dofs_entsize > prb_sec->dofs_size) {
+ dtrace_dof_error(dof, "invalid entry size");
+ return (-1);
+ }
+
+ if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
+ dtrace_dof_error(dof, "misaligned entry size");
+ return (-1);
+ }
+
+ if (off_sec->dofs_entsize != sizeof (uint32_t)) {
+ dtrace_dof_error(dof, "invalid entry size");
+ return (-1);
+ }
+
+ if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
+ dtrace_dof_error(dof, "misaligned section offset");
+ return (-1);
+ }
+
+ if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
+ dtrace_dof_error(dof, "invalid entry size");
+ return (-1);
+ }
+
+ arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
+
+ nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
+
+ /*
+ * Take a pass through the probes to check for errors.
+ */
+ for (j = 0; j < nprobes; j++) {
+ probe = (dof_probe_t *)(uintptr_t)(daddr +
+ prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
+
+ if (probe->dofpr_func >= str_sec->dofs_size) {
+ dtrace_dof_error(dof, "invalid function name");
+ return (-1);
+ }
+
+ if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
+ dtrace_dof_error(dof, "function name too long");
+ return (-1);
+ }
+
+ if (probe->dofpr_name >= str_sec->dofs_size ||
+ strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
+ dtrace_dof_error(dof, "invalid probe name");
+ return (-1);
+ }
+
+ /*
+ * The offset count must not wrap the index, and the offsets
+ * must also not overflow the section's data.
+ */
+ if (probe->dofpr_offidx + probe->dofpr_noffs <
+ probe->dofpr_offidx ||
+ (probe->dofpr_offidx + probe->dofpr_noffs) *
+ off_sec->dofs_entsize > off_sec->dofs_size) {
+ dtrace_dof_error(dof, "invalid probe offset");
+ return (-1);
+ }
+
+ if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
+ /*
+ * If there's no is-enabled offset section, make sure
+ * there aren't any is-enabled offsets. Otherwise
+ * perform the same checks as for probe offsets
+ * (immediately above).
+ */
+ if (enoff_sec == NULL) {
+ if (probe->dofpr_enoffidx != 0 ||
+ probe->dofpr_nenoffs != 0) {
+ dtrace_dof_error(dof, "is-enabled "
+ "offsets with null section");
+ return (-1);
+ }
+ } else if (probe->dofpr_enoffidx +
+ probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
+ (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
+ enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
+ dtrace_dof_error(dof, "invalid is-enabled "
+ "offset");
+ return (-1);
+ }
+
+ if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
+ dtrace_dof_error(dof, "zero probe and "
+ "is-enabled offsets");
+ return (-1);
+ }
+ } else if (probe->dofpr_noffs == 0) {
+ dtrace_dof_error(dof, "zero probe offsets");
+ return (-1);
+ }
+
+ if (probe->dofpr_argidx + probe->dofpr_xargc <
+ probe->dofpr_argidx ||
+ (probe->dofpr_argidx + probe->dofpr_xargc) *
+ arg_sec->dofs_entsize > arg_sec->dofs_size) {
+ dtrace_dof_error(dof, "invalid args");
+ return (-1);
+ }
+
+ typeidx = probe->dofpr_nargv;
+ typestr = strtab + probe->dofpr_nargv;
+ for (k = 0; k < probe->dofpr_nargc; k++) {
+ if (typeidx >= str_sec->dofs_size) {
+ dtrace_dof_error(dof, "bad "
+ "native argument type");
+ return (-1);
+ }
+
+ typesz = strlen(typestr) + 1;
+ if (typesz > DTRACE_ARGTYPELEN) {
+ dtrace_dof_error(dof, "native "
+ "argument type too long");
+ return (-1);
+ }
+ typeidx += typesz;
+ typestr += typesz;
+ }
+
+ typeidx = probe->dofpr_xargv;
+ typestr = strtab + probe->dofpr_xargv;
+ for (k = 0; k < probe->dofpr_xargc; k++) {
+ if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
+ dtrace_dof_error(dof, "bad "
+ "native argument index");
+ return (-1);
+ }
+
+ if (typeidx >= str_sec->dofs_size) {
+ dtrace_dof_error(dof, "bad "
+ "translated argument type");
+ return (-1);
+ }
+
+ typesz = strlen(typestr) + 1;
+ if (typesz > DTRACE_ARGTYPELEN) {
+ dtrace_dof_error(dof, "translated argument "
+ "type too long");
+ return (-1);
+ }
+
+ typeidx += typesz;
+ typestr += typesz;
+ }
+ }
+
+ return (0);
+}
+
+static int
+dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
+{
+ dtrace_helpers_t *help;
+ dtrace_vstate_t *vstate;
+ dtrace_enabling_t *enab = NULL;
+ int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
+ uintptr_t daddr = (uintptr_t)dof;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+
+ if ((help = curproc->p_dtrace_helpers) == NULL)
+ help = dtrace_helpers_create(curproc);
+
+ vstate = &help->dthps_vstate;
+
+ if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
+ dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
+ dtrace_dof_destroy(dof);
+ return (rv);
+ }
+
+ /*
+ * Look for helper providers and validate their descriptions.
+ */
+ if (dhp != NULL) {
+ for (i = 0; i < dof->dofh_secnum; i++) {
+ dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
+ dof->dofh_secoff + i * dof->dofh_secsize);
+
+ if (sec->dofs_type != DOF_SECT_PROVIDER)
+ continue;
+
+ if (dtrace_helper_provider_validate(dof, sec) != 0) {
+ dtrace_enabling_destroy(enab);
+ dtrace_dof_destroy(dof);
+ return (-1);
+ }
+
+ nprovs++;
+ }
+ }
+
+ /*
+ * Now we need to walk through the ECB descriptions in the enabling.
+ */
+ for (i = 0; i < enab->dten_ndesc; i++) {
+ dtrace_ecbdesc_t *ep = enab->dten_desc[i];
+ dtrace_probedesc_t *desc = &ep->dted_probe;
+
+ if (strcmp(desc->dtpd_provider, "dtrace") != 0)
+ continue;
+
+ if (strcmp(desc->dtpd_mod, "helper") != 0)
+ continue;
+
+ if (strcmp(desc->dtpd_func, "ustack") != 0)
+ continue;
+
+ if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
+ ep)) != 0) {
+ /*
+ * Adding this helper action failed -- we are now going
+ * to rip out the entire generation and return failure.
+ */
+ (void) dtrace_helper_destroygen(help->dthps_generation);
+ dtrace_enabling_destroy(enab);
+ dtrace_dof_destroy(dof);
+ return (-1);
+ }
+
+ nhelpers++;
+ }
+
+ if (nhelpers < enab->dten_ndesc)
+ dtrace_dof_error(dof, "unmatched helpers");
+
+ gen = help->dthps_generation++;
+ dtrace_enabling_destroy(enab);
+
+ if (dhp != NULL && nprovs > 0) {
+ dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
+ if (dtrace_helper_provider_add(dhp, gen) == 0) {
+ mutex_exit(&dtrace_lock);
+ dtrace_helper_provider_register(curproc, help, dhp);
+ mutex_enter(&dtrace_lock);
+
+ destroy = 0;
+ }
+ }
+
+ if (destroy)
+ dtrace_dof_destroy(dof);
+
+ return (gen);
+}
+
+static dtrace_helpers_t *
+dtrace_helpers_create(proc_t *p)
+{
+ dtrace_helpers_t *help;
+
+ ASSERT(MUTEX_HELD(&dtrace_lock));
+ ASSERT(p->p_dtrace_helpers == NULL);
+
+ help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
+ help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
+ DTRACE_NHELPER_ACTIONS, KM_SLEEP);
+
+ p->p_dtrace_helpers = help;
+ dtrace_helpers++;
+
+ return (help);
+}
+
+static void
+dtrace_helpers_destroy(void)
+{
+ dtrace_helpers_t *help;
+ dtrace_vstate_t *vstate;
+ proc_t *p = curproc;
+ int i;
+
+ mutex_enter(&dtrace_lock);
+
+ ASSERT(p->p_dtrace_helpers != NULL);
+ ASSERT(dtrace_helpers > 0);
+
+ help = p->p_dtrace_helpers;
+ vstate = &help->dthps_vstate;
+
+ /*
+ * We're now going to lose the help from this process.
+ */
+ p->p_dtrace_helpers = NULL;
+ dtrace_sync();
+
+ /*
+ * Destory the helper actions.
+ */
+ for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
+ dtrace_helper_action_t *h, *next;
+
+ for (h = help->dthps_actions[i]; h != NULL; h = next) {
+ next = h->dtha_next;
+ dtrace_helper_action_destroy(h, vstate);
+ h = next;
+ }
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ /*
+ * Destroy the helper providers.
+ */
+ if (help->dthps_maxprovs > 0) {
+ mutex_enter(&dtrace_meta_lock);
+ if (dtrace_meta_pid != NULL) {
+ ASSERT(dtrace_deferred_pid == NULL);
+
+ for (i = 0; i < help->dthps_nprovs; i++) {
+ dtrace_helper_provider_remove(
+ &help->dthps_provs[i]->dthp_prov, p->p_pid);
+ }
+ } else {
+ mutex_enter(&dtrace_lock);
+ ASSERT(help->dthps_deferred == 0 ||
+ help->dthps_next != NULL ||
+ help->dthps_prev != NULL ||
+ help == dtrace_deferred_pid);
+
+ /*
+ * Remove the helper from the deferred list.
+ */
+ if (help->dthps_next != NULL)
+ help->dthps_next->dthps_prev = help->dthps_prev;
+ if (help->dthps_prev != NULL)
+ help->dthps_prev->dthps_next = help->dthps_next;
+ if (dtrace_deferred_pid == help) {
+ dtrace_deferred_pid = help->dthps_next;
+ ASSERT(help->dthps_prev == NULL);
+ }
+
+ mutex_exit(&dtrace_lock);
+ }
+
+ mutex_exit(&dtrace_meta_lock);
+
+ for (i = 0; i < help->dthps_nprovs; i++) {
+ dtrace_helper_provider_destroy(help->dthps_provs[i]);
+ }
+
+ kmem_free(help->dthps_provs, help->dthps_maxprovs *
+ sizeof (dtrace_helper_provider_t *));
+ }
+
+ mutex_enter(&dtrace_lock);
+
+ dtrace_vstate_fini(&help->dthps_vstate);
+ kmem_free(help->dthps_actions,
+ sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
+ kmem_free(help, sizeof (dtrace_helpers_t));
+
+ --dtrace_helpers;
+ mutex_exit(&dtrace_lock);
+}
+
+static void
+dtrace_helpers_duplicate(proc_t *from, proc_t *to)
+{
+ dtrace_helpers_t *help, *newhelp;
+ dtrace_helper_action_t *helper, *new, *last;
+ dtrace_difo_t *dp;
+ dtrace_vstate_t *vstate;
+ int i, j, sz, hasprovs = 0;
+
+ mutex_enter(&dtrace_lock);
+ ASSERT(from->p_dtrace_helpers != NULL);
+ ASSERT(dtrace_helpers > 0);
+
+ help = from->p_dtrace_helpers;
+ newhelp = dtrace_helpers_create(to);
+ ASSERT(to->p_dtrace_helpers != NULL);
+
+ newhelp->dthps_generation = help->dthps_generation;
+ vstate = &newhelp->dthps_vstate;
+
+ /*
+ * Duplicate the helper actions.
+ */
+ for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
+ if ((helper = help->dthps_actions[i]) == NULL)
+ continue;
+
+ for (last = NULL; helper != NULL; helper = helper->dtha_next) {
+ new = kmem_zalloc(sizeof (dtrace_helper_action_t),
+ KM_SLEEP);
+ new->dtha_generation = helper->dtha_generation;
+
+ if ((dp = helper->dtha_predicate) != NULL) {
+ dp = dtrace_difo_duplicate(dp, vstate);
+ new->dtha_predicate = dp;
+ }
+
+ new->dtha_nactions = helper->dtha_nactions;
+ sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
+ new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
+
+ for (j = 0; j < new->dtha_nactions; j++) {
+ dtrace_difo_t *dp = helper->dtha_actions[j];
+
+ ASSERT(dp != NULL);
+ dp = dtrace_difo_duplicate(dp, vstate);
+ new->dtha_actions[j] = dp;
+ }
+
+ if (last != NULL) {
+ last->dtha_next = new;
+ } else {
+ newhelp->dthps_actions[i] = new;
+ }
+
+ last = new;
+ }
+ }
+
+ /*
+ * Duplicate the helper providers and register them with the
+ * DTrace framework.
+ */
+ if (help->dthps_nprovs > 0) {
+ newhelp->dthps_nprovs = help->dthps_nprovs;
+ newhelp->dthps_maxprovs = help->dthps_nprovs;
+ newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
+ sizeof (dtrace_helper_provider_t *), KM_SLEEP);
+ for (i = 0; i < newhelp->dthps_nprovs; i++) {
+ newhelp->dthps_provs[i] = help->dthps_provs[i];
+ newhelp->dthps_provs[i]->dthp_ref++;
+ }
+
+ hasprovs = 1;
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ if (hasprovs)
+ dtrace_helper_provider_register(to, newhelp, NULL);
+}
+
+/*
+ * DTrace Hook Functions
+ */
+static void
+dtrace_module_loaded(struct modctl *ctl)
+{
+ dtrace_provider_t *prv;
+
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&mod_lock);
+
+ ASSERT(ctl->mod_busy);
+
+ /*
+ * We're going to call each providers per-module provide operation
+ * specifying only this module.
+ */
+ for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
+ prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
+
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ /*
+ * If we have any retained enablings, we need to match against them.
+ * Enabling probes requires that cpu_lock be held, and we cannot hold
+ * cpu_lock here -- it is legal for cpu_lock to be held when loading a
+ * module. (In particular, this happens when loading scheduling
+ * classes.) So if we have any retained enablings, we need to dispatch
+ * our task queue to do the match for us.
+ */
+ mutex_enter(&dtrace_lock);
+
+ if (dtrace_retained == NULL) {
+ mutex_exit(&dtrace_lock);
+ return;
+ }
+
+ (void) taskq_dispatch(dtrace_taskq,
+ (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
+
+ mutex_exit(&dtrace_lock);
+
+ /*
+ * And now, for a little heuristic sleaze: in general, we want to
+ * match modules as soon as they load. However, we cannot guarantee
+ * this, because it would lead us to the lock ordering violation
+ * outlined above. The common case, of course, is that cpu_lock is
+ * _not_ held -- so we delay here for a clock tick, hoping that that's
+ * long enough for the task queue to do its work. If it's not, it's
+ * not a serious problem -- it just means that the module that we
+ * just loaded may not be immediately instrumentable.
+ */
+ delay(1);
+}
+
+static void
+dtrace_module_unloaded(struct modctl *ctl)
+{
+ dtrace_probe_t template, *probe, *first, *next;
+ dtrace_provider_t *prov;
+
+ template.dtpr_mod = ctl->mod_modname;
+
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&mod_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (dtrace_bymod == NULL) {
+ /*
+ * The DTrace module is loaded (obviously) but not attached;
+ * we don't have any work to do.
+ */
+ mutex_exit(&dtrace_provider_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_lock);
+ return;
+ }
+
+ for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
+ probe != NULL; probe = probe->dtpr_nextmod) {
+ if (probe->dtpr_ecb != NULL) {
+ mutex_exit(&dtrace_provider_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_lock);
+
+ /*
+ * This shouldn't _actually_ be possible -- we're
+ * unloading a module that has an enabled probe in it.
+ * (It's normally up to the provider to make sure that
+ * this can't happen.) However, because dtps_enable()
+ * doesn't have a failure mode, there can be an
+ * enable/unload race. Upshot: we don't want to
+ * assert, but we're not going to disable the
+ * probe, either.
+ */
+ if (dtrace_err_verbose) {
+ cmn_err(CE_WARN, "unloaded module '%s' had "
+ "enabled probes", ctl->mod_modname);
+ }
+
+ return;
+ }
+ }
+
+ probe = first;
+
+ for (first = NULL; probe != NULL; probe = next) {
+ ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
+
+ dtrace_probes[probe->dtpr_id - 1] = NULL;
+
+ next = probe->dtpr_nextmod;
+ dtrace_hash_remove(dtrace_bymod, probe);
+ dtrace_hash_remove(dtrace_byfunc, probe);
+ dtrace_hash_remove(dtrace_byname, probe);
+
+ if (first == NULL) {
+ first = probe;
+ probe->dtpr_nextmod = NULL;
+ } else {
+ probe->dtpr_nextmod = first;
+ first = probe;
+ }
+ }
+
+ /*
+ * We've removed all of the module's probes from the hash chains and
+ * from the probe array. Now issue a dtrace_sync() to be sure that
+ * everyone has cleared out from any probe array processing.
+ */
+ dtrace_sync();
+
+ for (probe = first; probe != NULL; probe = first) {
+ first = probe->dtpr_nextmod;
+ prov = probe->dtpr_provider;
+ prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
+ probe->dtpr_arg);
+ kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
+ kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
+ kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
+ vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
+ kmem_free(probe, sizeof (dtrace_probe_t));
+ }
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+}
+
+void
+dtrace_suspend(void)
+{
+ dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
+}
+
+void
+dtrace_resume(void)
+{
+ dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
+}
+
+static int
+dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
+{
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ mutex_enter(&dtrace_lock);
+
+ switch (what) {
+ case CPU_CONFIG: {
+ dtrace_state_t *state;
+ dtrace_optval_t *opt, rs, c;
+
+ /*
+ * For now, we only allocate a new buffer for anonymous state.
+ */
+ if ((state = dtrace_anon.dta_state) == NULL)
+ break;
+
+ if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
+ break;
+
+ opt = state->dts_options;
+ c = opt[DTRACEOPT_CPU];
+
+ if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
+ break;
+
+ /*
+ * Regardless of what the actual policy is, we're going to
+ * temporarily set our resize policy to be manual. We're
+ * also going to temporarily set our CPU option to denote
+ * the newly configured CPU.
+ */
+ rs = opt[DTRACEOPT_BUFRESIZE];
+ opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
+ opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
+
+ (void) dtrace_state_buffers(state);
+
+ opt[DTRACEOPT_BUFRESIZE] = rs;
+ opt[DTRACEOPT_CPU] = c;
+
+ break;
+ }
+
+ case CPU_UNCONFIG:
+ /*
+ * We don't free the buffer in the CPU_UNCONFIG case. (The
+ * buffer will be freed when the consumer exits.)
+ */
+ break;
+
+ default:
+ break;
+ }
+
+ mutex_exit(&dtrace_lock);
+ return (0);
+}
+
+static void
+dtrace_cpu_setup_initial(processorid_t cpu)
+{
+ (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
+}
+
+static void
+dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
+{
+ if (dtrace_toxranges >= dtrace_toxranges_max) {
+ int osize, nsize;
+ dtrace_toxrange_t *range;
+
+ osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
+
+ if (osize == 0) {
+ ASSERT(dtrace_toxrange == NULL);
+ ASSERT(dtrace_toxranges_max == 0);
+ dtrace_toxranges_max = 1;
+ } else {
+ dtrace_toxranges_max <<= 1;
+ }
+
+ nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
+ range = kmem_zalloc(nsize, KM_SLEEP);
+
+ if (dtrace_toxrange != NULL) {
+ ASSERT(osize != 0);
+ bcopy(dtrace_toxrange, range, osize);
+ kmem_free(dtrace_toxrange, osize);
+ }
+
+ dtrace_toxrange = range;
+ }
+
+ ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
+ ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
+
+ dtrace_toxrange[dtrace_toxranges].dtt_base = base;
+ dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
+ dtrace_toxranges++;
+}
+
+/*
+ * DTrace Driver Cookbook Functions
+ */
+/*ARGSUSED*/
+static int
+dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
+{
+ dtrace_provider_id_t id;
+ dtrace_state_t *state = NULL;
+ dtrace_enabling_t *enab;
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (ddi_soft_state_init(&dtrace_softstate,
+ sizeof (dtrace_state_t), 0) != 0) {
+ cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
+ mutex_exit(&cpu_lock);
+ mutex_exit(&dtrace_provider_lock);
+ mutex_exit(&dtrace_lock);
+ return (DDI_FAILURE);
+ }
+
+ if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
+ DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
+ ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
+ DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
+ cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
+ ddi_remove_minor_node(devi, NULL);
+ ddi_soft_state_fini(&dtrace_softstate);
+ mutex_exit(&cpu_lock);
+ mutex_exit(&dtrace_provider_lock);
+ mutex_exit(&dtrace_lock);
+ return (DDI_FAILURE);
+ }
+
+ ddi_report_dev(devi);
+ dtrace_devi = devi;
+
+ dtrace_modload = dtrace_module_loaded;
+ dtrace_modunload = dtrace_module_unloaded;
+ dtrace_cpu_init = dtrace_cpu_setup_initial;
+ dtrace_helpers_cleanup = dtrace_helpers_destroy;
+ dtrace_helpers_fork = dtrace_helpers_duplicate;
+ dtrace_cpustart_init = dtrace_suspend;
+ dtrace_cpustart_fini = dtrace_resume;
+ dtrace_debugger_init = dtrace_suspend;
+ dtrace_debugger_fini = dtrace_resume;
+
+ register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
+ NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
+ dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
+ UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
+ VM_SLEEP | VMC_IDENTIFIER);
+ dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
+ 1, INT_MAX, 0);
+
+ dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
+ sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
+ NULL, NULL, NULL, NULL, NULL, 0);
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
+ offsetof(dtrace_probe_t, dtpr_nextmod),
+ offsetof(dtrace_probe_t, dtpr_prevmod));
+
+ dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
+ offsetof(dtrace_probe_t, dtpr_nextfunc),
+ offsetof(dtrace_probe_t, dtpr_prevfunc));
+
+ dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
+ offsetof(dtrace_probe_t, dtpr_nextname),
+ offsetof(dtrace_probe_t, dtpr_prevname));
+
+ if (dtrace_retain_max < 1) {
+ cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
+ "setting to 1", dtrace_retain_max);
+ dtrace_retain_max = 1;
+ }
+
+ /*
+ * Now discover our toxic ranges.
+ */
+ dtrace_toxic_ranges(dtrace_toxrange_add);
+
+ /*
+ * Before we register ourselves as a provider to our own framework,
+ * we would like to assert that dtrace_provider is NULL -- but that's
+ * not true if we were loaded as a dependency of a DTrace provider.
+ * Once we've registered, we can assert that dtrace_provider is our
+ * pseudo provider.
+ */
+ (void) dtrace_register("dtrace", &dtrace_provider_attr,
+ DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
+
+ ASSERT(dtrace_provider != NULL);
+ ASSERT((dtrace_provider_id_t)dtrace_provider == id);
+
+ dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
+ dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
+ dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
+ dtrace_provider, NULL, NULL, "END", 0, NULL);
+ dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
+ dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
+
+ dtrace_anon_property();
+ mutex_exit(&cpu_lock);
+
+ /*
+ * If DTrace helper tracing is enabled, we need to allocate the
+ * trace buffer and initialize the values.
+ */
+ if (dtrace_helptrace_enabled) {
+ ASSERT(dtrace_helptrace_buffer == NULL);
+ dtrace_helptrace_buffer =
+ kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
+ dtrace_helptrace_next = 0;
+ }
+
+ /*
+ * If there are already providers, we must ask them to provide their
+ * probes, and then match any anonymous enabling against them. Note
+ * that there should be no other retained enablings at this time:
+ * the only retained enablings at this time should be the anonymous
+ * enabling.
+ */
+ if (dtrace_anon.dta_enabling != NULL) {
+ ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
+
+ dtrace_enabling_provide(NULL);
+ state = dtrace_anon.dta_state;
+
+ /*
+ * We couldn't hold cpu_lock across the above call to
+ * dtrace_enabling_provide(), but we must hold it to actually
+ * enable the probes. We have to drop all of our locks, pick
+ * up cpu_lock, and regain our locks before matching the
+ * retained anonymous enabling.
+ */
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&dtrace_lock);
+
+ if ((enab = dtrace_anon.dta_enabling) != NULL)
+ (void) dtrace_enabling_match(enab, NULL);
+
+ mutex_exit(&cpu_lock);
+ }
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ if (state != NULL) {
+ /*
+ * If we created any anonymous state, set it going now.
+ */
+ (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
+ }
+
+ return (DDI_SUCCESS);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
+{
+ dtrace_state_t *state;
+ uint32_t priv;
+ uid_t uid;
+ zoneid_t zoneid;
+
+ if (getminor(*devp) == DTRACEMNRN_HELPER)
+ return (0);
+
+ /*
+ * If this wasn't an open with the "helper" minor, then it must be
+ * the "dtrace" minor.
+ */
+ ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
+
+ /*
+ * If no DTRACE_PRIV_* bits are set in the credential, then the
+ * caller lacks sufficient permission to do anything with DTrace.
+ */
+ dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
+ if (priv == DTRACE_PRIV_NONE)
+ return (EACCES);
+
+ /*
+ * Ask all providers to provide all their probes.
+ */
+ mutex_enter(&dtrace_provider_lock);
+ dtrace_probe_provide(NULL, NULL);
+ mutex_exit(&dtrace_provider_lock);
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_lock);
+ dtrace_opens++;
+ dtrace_membar_producer();
+
+ /*
+ * If the kernel debugger is active (that is, if the kernel debugger
+ * modified text in some way), we won't allow the open.
+ */
+ if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
+ dtrace_opens--;
+ mutex_exit(&cpu_lock);
+ mutex_exit(&dtrace_lock);
+ return (EBUSY);
+ }
+
+ state = dtrace_state_create(devp, cred_p);
+ mutex_exit(&cpu_lock);
+
+ if (state == NULL) {
+ if (--dtrace_opens == 0)
+ (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
+ mutex_exit(&dtrace_lock);
+ return (EAGAIN);
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ return (0);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
+{
+ minor_t minor = getminor(dev);
+ dtrace_state_t *state;
+
+ if (minor == DTRACEMNRN_HELPER)
+ return (0);
+
+ state = ddi_get_soft_state(dtrace_softstate, minor);
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (state->dts_anon) {
+ /*
+ * There is anonymous state. Destroy that first.
+ */
+ ASSERT(dtrace_anon.dta_state == NULL);
+ dtrace_state_destroy(state->dts_anon);
+ }
+
+ dtrace_state_destroy(state);
+ ASSERT(dtrace_opens > 0);
+ if (--dtrace_opens == 0)
+ (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+
+ return (0);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
+{
+ int rval;
+ dof_helper_t help, *dhp = NULL;
+
+ switch (cmd) {
+ case DTRACEHIOC_ADDDOF:
+ if (copyin((void *)arg, &help, sizeof (help)) != 0) {
+ dtrace_dof_error(NULL, "failed to copyin DOF helper");
+ return (EFAULT);
+ }
+
+ dhp = &help;
+ arg = (intptr_t)help.dofhp_dof;
+ /*FALLTHROUGH*/
+
+ case DTRACEHIOC_ADD: {
+ dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
+
+ if (dof == NULL)
+ return (rval);
+
+ mutex_enter(&dtrace_lock);
+
+ /*
+ * dtrace_helper_slurp() takes responsibility for the dof --
+ * it may free it now or it may save it and free it later.
+ */
+ if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
+ *rv = rval;
+ rval = 0;
+ } else {
+ rval = EINVAL;
+ }
+
+ mutex_exit(&dtrace_lock);
+ return (rval);
+ }
+
+ case DTRACEHIOC_REMOVE: {
+ mutex_enter(&dtrace_lock);
+ rval = dtrace_helper_destroygen(arg);
+ mutex_exit(&dtrace_lock);
+
+ return (rval);
+ }
+
+ default:
+ break;
+ }
+
+ return (ENOTTY);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
+{
+ minor_t minor = getminor(dev);
+ dtrace_state_t *state;
+ int rval;
+
+ if (minor == DTRACEMNRN_HELPER)
+ return (dtrace_ioctl_helper(cmd, arg, rv));
+
+ state = ddi_get_soft_state(dtrace_softstate, minor);
+
+ if (state->dts_anon) {
+ ASSERT(dtrace_anon.dta_state == NULL);
+ state = state->dts_anon;
+ }
+
+ switch (cmd) {
+ case DTRACEIOC_PROVIDER: {
+ dtrace_providerdesc_t pvd;
+ dtrace_provider_t *pvp;
+
+ if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
+ return (EFAULT);
+
+ pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
+ mutex_enter(&dtrace_provider_lock);
+
+ for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
+ if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
+ break;
+ }
+
+ mutex_exit(&dtrace_provider_lock);
+
+ if (pvp == NULL)
+ return (ESRCH);
+
+ bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
+ bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
+ if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_EPROBE: {
+ dtrace_eprobedesc_t epdesc;
+ dtrace_ecb_t *ecb;
+ dtrace_action_t *act;
+ void *buf;
+ size_t size;
+ uintptr_t dest;
+ int nrecs;
+
+ if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
+ return (EFAULT);
+
+ mutex_enter(&dtrace_lock);
+
+ if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+
+ if (ecb->dte_probe == NULL) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+
+ epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
+ epdesc.dtepd_uarg = ecb->dte_uarg;
+ epdesc.dtepd_size = ecb->dte_size;
+
+ nrecs = epdesc.dtepd_nrecs;
+ epdesc.dtepd_nrecs = 0;
+ for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
+ if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
+ continue;
+
+ epdesc.dtepd_nrecs++;
+ }
+
+ /*
+ * Now that we have the size, we need to allocate a temporary
+ * buffer in which to store the complete description. We need
+ * the temporary buffer to be able to drop dtrace_lock()
+ * across the copyout(), below.
+ */
+ size = sizeof (dtrace_eprobedesc_t) +
+ (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
+
+ buf = kmem_alloc(size, KM_SLEEP);
+ dest = (uintptr_t)buf;
+
+ bcopy(&epdesc, (void *)dest, sizeof (epdesc));
+ dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
+
+ for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
+ if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
+ continue;
+
+ if (nrecs-- == 0)
+ break;
+
+ bcopy(&act->dta_rec, (void *)dest,
+ sizeof (dtrace_recdesc_t));
+ dest += sizeof (dtrace_recdesc_t);
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
+ kmem_free(buf, size);
+ return (EFAULT);
+ }
+
+ kmem_free(buf, size);
+ return (0);
+ }
+
+ case DTRACEIOC_AGGDESC: {
+ dtrace_aggdesc_t aggdesc;
+ dtrace_action_t *act;
+ dtrace_aggregation_t *agg;
+ int nrecs;
+ uint32_t offs;
+ dtrace_recdesc_t *lrec;
+ void *buf;
+ size_t size;
+ uintptr_t dest;
+
+ if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
+ return (EFAULT);
+
+ mutex_enter(&dtrace_lock);
+
+ if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+
+ aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
+
+ nrecs = aggdesc.dtagd_nrecs;
+ aggdesc.dtagd_nrecs = 0;
+
+ offs = agg->dtag_base;
+ lrec = &agg->dtag_action.dta_rec;
+ aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
+
+ for (act = agg->dtag_first; ; act = act->dta_next) {
+ ASSERT(act->dta_intuple ||
+ DTRACEACT_ISAGG(act->dta_kind));
+
+ /*
+ * If this action has a record size of zero, it
+ * denotes an argument to the aggregating action.
+ * Because the presence of this record doesn't (or
+ * shouldn't) affect the way the data is interpreted,
+ * we don't copy it out to save user-level the
+ * confusion of dealing with a zero-length record.
+ */
+ if (act->dta_rec.dtrd_size == 0) {
+ ASSERT(agg->dtag_hasarg);
+ continue;
+ }
+
+ aggdesc.dtagd_nrecs++;
+
+ if (act == &agg->dtag_action)
+ break;
+ }
+
+ /*
+ * Now that we have the size, we need to allocate a temporary
+ * buffer in which to store the complete description. We need
+ * the temporary buffer to be able to drop dtrace_lock()
+ * across the copyout(), below.
+ */
+ size = sizeof (dtrace_aggdesc_t) +
+ (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
+
+ buf = kmem_alloc(size, KM_SLEEP);
+ dest = (uintptr_t)buf;
+
+ bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
+ dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
+
+ for (act = agg->dtag_first; ; act = act->dta_next) {
+ dtrace_recdesc_t rec = act->dta_rec;
+
+ /*
+ * See the comment in the above loop for why we pass
+ * over zero-length records.
+ */
+ if (rec.dtrd_size == 0) {
+ ASSERT(agg->dtag_hasarg);
+ continue;
+ }
+
+ if (nrecs-- == 0)
+ break;
+
+ rec.dtrd_offset -= offs;
+ bcopy(&rec, (void *)dest, sizeof (rec));
+ dest += sizeof (dtrace_recdesc_t);
+
+ if (act == &agg->dtag_action)
+ break;
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
+ kmem_free(buf, size);
+ return (EFAULT);
+ }
+
+ kmem_free(buf, size);
+ return (0);
+ }
+
+ case DTRACEIOC_ENABLE: {
+ dof_hdr_t *dof;
+ dtrace_enabling_t *enab = NULL;
+ dtrace_vstate_t *vstate;
+ int err = 0;
+
+ *rv = 0;
+
+ /*
+ * If a NULL argument has been passed, we take this as our
+ * cue to reevaluate our enablings.
+ */
+ if (arg == NULL) {
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_lock);
+ err = dtrace_enabling_matchstate(state, rv);
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+
+ return (err);
+ }
+
+ if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
+ return (rval);
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_lock);
+ vstate = &state->dts_vstate;
+
+ if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+ dtrace_dof_destroy(dof);
+ return (EBUSY);
+ }
+
+ if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+ dtrace_dof_destroy(dof);
+ return (EINVAL);
+ }
+
+ if ((rval = dtrace_dof_options(dof, state)) != 0) {
+ dtrace_enabling_destroy(enab);
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+ dtrace_dof_destroy(dof);
+ return (rval);
+ }
+
+ if ((err = dtrace_enabling_match(enab, rv)) == 0) {
+ err = dtrace_enabling_retain(enab);
+ } else {
+ dtrace_enabling_destroy(enab);
+ }
+
+ mutex_exit(&cpu_lock);
+ mutex_exit(&dtrace_lock);
+ dtrace_dof_destroy(dof);
+
+ return (err);
+ }
+
+ case DTRACEIOC_REPLICATE: {
+ dtrace_repldesc_t desc;
+ dtrace_probedesc_t *match = &desc.dtrpd_match;
+ dtrace_probedesc_t *create = &desc.dtrpd_create;
+ int err;
+
+ if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
+ match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
+ match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
+ match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
+
+ create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
+ create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
+ create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
+ create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
+
+ mutex_enter(&dtrace_lock);
+ err = dtrace_enabling_replicate(state, match, create);
+ mutex_exit(&dtrace_lock);
+
+ return (err);
+ }
+
+ case DTRACEIOC_PROBEMATCH:
+ case DTRACEIOC_PROBES: {
+ dtrace_probe_t *probe = NULL;
+ dtrace_probedesc_t desc;
+ dtrace_probekey_t pkey;
+ dtrace_id_t i;
+ int m = 0;
+ uint32_t priv;
+ uid_t uid;
+ zoneid_t zoneid;
+
+ if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
+ desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
+ desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
+ desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
+
+ /*
+ * Before we attempt to match this probe, we want to give
+ * all providers the opportunity to provide it.
+ */
+ if (desc.dtpd_id == DTRACE_IDNONE) {
+ mutex_enter(&dtrace_provider_lock);
+ dtrace_probe_provide(&desc, NULL);
+ mutex_exit(&dtrace_provider_lock);
+ desc.dtpd_id++;
+ }
+
+ if (cmd == DTRACEIOC_PROBEMATCH) {
+ dtrace_probekey(&desc, &pkey);
+ pkey.dtpk_id = DTRACE_IDNONE;
+ }
+
+ dtrace_cred2priv(cr, &priv, &uid, &zoneid);
+
+ mutex_enter(&dtrace_lock);
+
+ if (cmd == DTRACEIOC_PROBEMATCH) {
+ for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i - 1]) != NULL &&
+ (m = dtrace_match_probe(probe, &pkey,
+ priv, uid, zoneid)) != 0)
+ break;
+ }
+
+ if (m < 0) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+
+ } else {
+ for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
+ if ((probe = dtrace_probes[i - 1]) != NULL &&
+ dtrace_match_priv(probe, priv, uid, zoneid))
+ break;
+ }
+ }
+
+ if (probe == NULL) {
+ mutex_exit(&dtrace_lock);
+ return (ESRCH);
+ }
+
+ dtrace_probe_description(probe, &desc);
+ mutex_exit(&dtrace_lock);
+
+ if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_PROBEARG: {
+ dtrace_argdesc_t desc;
+ dtrace_probe_t *probe;
+ dtrace_provider_t *prov;
+
+ if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ if (desc.dtargd_id == DTRACE_IDNONE)
+ return (EINVAL);
+
+ if (desc.dtargd_ndx == DTRACE_ARGNONE)
+ return (EINVAL);
+
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&mod_lock);
+ mutex_enter(&dtrace_lock);
+
+ if (desc.dtargd_id > dtrace_nprobes) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+ return (EINVAL);
+ }
+
+ if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+ return (EINVAL);
+ }
+
+ mutex_exit(&dtrace_lock);
+
+ prov = probe->dtpr_provider;
+
+ if (prov->dtpv_pops.dtps_getargdesc == NULL) {
+ /*
+ * There isn't any typed information for this probe.
+ * Set the argument number to DTRACE_ARGNONE.
+ */
+ desc.dtargd_ndx = DTRACE_ARGNONE;
+ } else {
+ desc.dtargd_native[0] = '\0';
+ desc.dtargd_xlate[0] = '\0';
+ desc.dtargd_mapping = desc.dtargd_ndx;
+
+ prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
+ probe->dtpr_id, probe->dtpr_arg, &desc);
+ }
+
+ mutex_exit(&mod_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_GO: {
+ processorid_t cpuid;
+ rval = dtrace_state_go(state, &cpuid);
+
+ if (rval != 0)
+ return (rval);
+
+ if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_STOP: {
+ processorid_t cpuid;
+
+ mutex_enter(&dtrace_lock);
+ rval = dtrace_state_stop(state, &cpuid);
+ mutex_exit(&dtrace_lock);
+
+ if (rval != 0)
+ return (rval);
+
+ if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_DOFGET: {
+ dof_hdr_t hdr, *dof;
+ uint64_t len;
+
+ if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
+ return (EFAULT);
+
+ mutex_enter(&dtrace_lock);
+ dof = dtrace_dof_create(state);
+ mutex_exit(&dtrace_lock);
+
+ len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
+ rval = copyout(dof, (void *)arg, len);
+ dtrace_dof_destroy(dof);
+
+ return (rval == 0 ? 0 : EFAULT);
+ }
+
+ case DTRACEIOC_AGGSNAP:
+ case DTRACEIOC_BUFSNAP: {
+ dtrace_bufdesc_t desc;
+ caddr_t cached;
+ dtrace_buffer_t *buf;
+
+ if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
+ return (EINVAL);
+
+ mutex_enter(&dtrace_lock);
+
+ if (cmd == DTRACEIOC_BUFSNAP) {
+ buf = &state->dts_buffer[desc.dtbd_cpu];
+ } else {
+ buf = &state->dts_aggbuffer[desc.dtbd_cpu];
+ }
+
+ if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
+ size_t sz = buf->dtb_offset;
+
+ if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
+ mutex_exit(&dtrace_lock);
+ return (EBUSY);
+ }
+
+ /*
+ * If this buffer has already been consumed, we're
+ * going to indicate that there's nothing left here
+ * to consume.
+ */
+ if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
+ mutex_exit(&dtrace_lock);
+
+ desc.dtbd_size = 0;
+ desc.dtbd_drops = 0;
+ desc.dtbd_errors = 0;
+ desc.dtbd_oldest = 0;
+ sz = sizeof (desc);
+
+ if (copyout(&desc, (void *)arg, sz) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ /*
+ * If this is a ring buffer that has wrapped, we want
+ * to copy the whole thing out.
+ */
+ if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
+ dtrace_buffer_polish(buf);
+ sz = buf->dtb_size;
+ }
+
+ if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
+ mutex_exit(&dtrace_lock);
+ return (EFAULT);
+ }
+
+ desc.dtbd_size = sz;
+ desc.dtbd_drops = buf->dtb_drops;
+ desc.dtbd_errors = buf->dtb_errors;
+ desc.dtbd_oldest = buf->dtb_xamot_offset;
+
+ mutex_exit(&dtrace_lock);
+
+ if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ buf->dtb_flags |= DTRACEBUF_CONSUMED;
+
+ return (0);
+ }
+
+ if (buf->dtb_tomax == NULL) {
+ ASSERT(buf->dtb_xamot == NULL);
+ mutex_exit(&dtrace_lock);
+ return (ENOENT);
+ }
+
+ cached = buf->dtb_tomax;
+ ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
+
+ dtrace_xcall(desc.dtbd_cpu,
+ (dtrace_xcall_t)dtrace_buffer_switch, buf);
+
+ state->dts_errors += buf->dtb_xamot_errors;
+
+ /*
+ * If the buffers did not actually switch, then the cross call
+ * did not take place -- presumably because the given CPU is
+ * not in the ready set. If this is the case, we'll return
+ * ENOENT.
+ */
+ if (buf->dtb_tomax == cached) {
+ ASSERT(buf->dtb_xamot != cached);
+ mutex_exit(&dtrace_lock);
+ return (ENOENT);
+ }
+
+ ASSERT(cached == buf->dtb_xamot);
+
+ /*
+ * We have our snapshot; now copy it out.
+ */
+ if (copyout(buf->dtb_xamot, desc.dtbd_data,
+ buf->dtb_xamot_offset) != 0) {
+ mutex_exit(&dtrace_lock);
+ return (EFAULT);
+ }
+
+ desc.dtbd_size = buf->dtb_xamot_offset;
+ desc.dtbd_drops = buf->dtb_xamot_drops;
+ desc.dtbd_errors = buf->dtb_xamot_errors;
+ desc.dtbd_oldest = 0;
+
+ mutex_exit(&dtrace_lock);
+
+ /*
+ * Finally, copy out the buffer description.
+ */
+ if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_CONF: {
+ dtrace_conf_t conf;
+
+ bzero(&conf, sizeof (conf));
+ conf.dtc_difversion = DIF_VERSION;
+ conf.dtc_difintregs = DIF_DIR_NREGS;
+ conf.dtc_diftupregs = DIF_DTR_NREGS;
+ conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
+
+ if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_STATUS: {
+ dtrace_status_t stat;
+ dtrace_dstate_t *dstate;
+ int i, j;
+ uint64_t nerrs;
+
+ /*
+ * See the comment in dtrace_state_deadman() for the reason
+ * for setting dts_laststatus to INT64_MAX before setting
+ * it to the correct value.
+ */
+ state->dts_laststatus = INT64_MAX;
+ dtrace_membar_producer();
+ state->dts_laststatus = dtrace_gethrtime();
+
+ bzero(&stat, sizeof (stat));
+
+ mutex_enter(&dtrace_lock);
+
+ if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
+ mutex_exit(&dtrace_lock);
+ return (ENOENT);
+ }
+
+ if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
+ stat.dtst_exiting = 1;
+
+ nerrs = state->dts_errors;
+ dstate = &state->dts_vstate.dtvs_dynvars;
+
+ for (i = 0; i < NCPU; i++) {
+ dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
+
+ stat.dtst_dyndrops += dcpu->dtdsc_drops;
+ stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
+ stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
+
+ if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
+ stat.dtst_filled++;
+
+ nerrs += state->dts_buffer[i].dtb_errors;
+
+ for (j = 0; j < state->dts_nspeculations; j++) {
+ dtrace_speculation_t *spec;
+ dtrace_buffer_t *buf;
+
+ spec = &state->dts_speculations[j];
+ buf = &spec->dtsp_buffer[i];
+ stat.dtst_specdrops += buf->dtb_xamot_drops;
+ }
+ }
+
+ stat.dtst_specdrops_busy = state->dts_speculations_busy;
+ stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
+ stat.dtst_stkstroverflows = state->dts_stkstroverflows;
+ stat.dtst_dblerrors = state->dts_dblerrors;
+ stat.dtst_killed =
+ (state->dts_activity == DTRACE_ACTIVITY_KILLED);
+ stat.dtst_errors = nerrs;
+
+ mutex_exit(&dtrace_lock);
+
+ if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ case DTRACEIOC_FORMAT: {
+ dtrace_fmtdesc_t fmt;
+ char *str;
+ int len;
+
+ if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
+ return (EFAULT);
+
+ mutex_enter(&dtrace_lock);
+
+ if (fmt.dtfd_format == 0 ||
+ fmt.dtfd_format > state->dts_nformats) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+
+ /*
+ * Format strings are allocated contiguously and they are
+ * never freed; if a format index is less than the number
+ * of formats, we can assert that the format map is non-NULL
+ * and that the format for the specified index is non-NULL.
+ */
+ ASSERT(state->dts_formats != NULL);
+ str = state->dts_formats[fmt.dtfd_format - 1];
+ ASSERT(str != NULL);
+
+ len = strlen(str) + 1;
+
+ if (len > fmt.dtfd_length) {
+ fmt.dtfd_length = len;
+
+ if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+ } else {
+ if (copyout(str, fmt.dtfd_string, len) != 0) {
+ mutex_exit(&dtrace_lock);
+ return (EINVAL);
+ }
+ }
+
+ mutex_exit(&dtrace_lock);
+ return (0);
+ }
+
+ default:
+ break;
+ }
+
+ return (ENOTTY);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
+{
+ dtrace_state_t *state;
+
+ switch (cmd) {
+ case DDI_DETACH:
+ break;
+
+ case DDI_SUSPEND:
+ return (DDI_SUCCESS);
+
+ default:
+ return (DDI_FAILURE);
+ }
+
+ mutex_enter(&cpu_lock);
+ mutex_enter(&dtrace_provider_lock);
+ mutex_enter(&dtrace_lock);
+
+ ASSERT(dtrace_opens == 0);
+
+ if (dtrace_helpers > 0) {
+ mutex_exit(&dtrace_provider_lock);
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+ return (DDI_FAILURE);
+ }
+
+ if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
+ mutex_exit(&dtrace_provider_lock);
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&cpu_lock);
+ return (DDI_FAILURE);
+ }
+
+ dtrace_provider = NULL;
+
+ if ((state = dtrace_anon_grab()) != NULL) {
+ /*
+ * If there were ECBs on this state, the provider should
+ * have not been allowed to detach; assert that there is
+ * none.
+ */
+ ASSERT(state->dts_necbs == 0);
+ dtrace_state_destroy(state);
+
+ /*
+ * If we're being detached with anonymous state, we need to
+ * indicate to the kernel debugger that DTrace is now inactive.
+ */
+ (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
+ }
+
+ bzero(&dtrace_anon, sizeof (dtrace_anon_t));
+ unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
+ dtrace_cpu_init = NULL;
+ dtrace_helpers_cleanup = NULL;
+ dtrace_helpers_fork = NULL;
+ dtrace_cpustart_init = NULL;
+ dtrace_cpustart_fini = NULL;
+ dtrace_debugger_init = NULL;
+ dtrace_debugger_fini = NULL;
+ dtrace_modload = NULL;
+ dtrace_modunload = NULL;
+
+ mutex_exit(&cpu_lock);
+
+ if (dtrace_helptrace_enabled) {
+ kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
+ dtrace_helptrace_buffer = NULL;
+ }
+
+ kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
+ dtrace_probes = NULL;
+ dtrace_nprobes = 0;
+
+ dtrace_hash_destroy(dtrace_bymod);
+ dtrace_hash_destroy(dtrace_byfunc);
+ dtrace_hash_destroy(dtrace_byname);
+ dtrace_bymod = NULL;
+ dtrace_byfunc = NULL;
+ dtrace_byname = NULL;
+
+ kmem_cache_destroy(dtrace_state_cache);
+ vmem_destroy(dtrace_minor);
+ vmem_destroy(dtrace_arena);
+
+ if (dtrace_toxrange != NULL) {
+ kmem_free(dtrace_toxrange,
+ dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
+ dtrace_toxrange = NULL;
+ dtrace_toxranges = 0;
+ dtrace_toxranges_max = 0;
+ }
+
+ ddi_remove_minor_node(dtrace_devi, NULL);
+ dtrace_devi = NULL;
+
+ ddi_soft_state_fini(&dtrace_softstate);
+
+ ASSERT(dtrace_vtime_references == 0);
+ ASSERT(dtrace_opens == 0);
+ ASSERT(dtrace_retained == NULL);
+
+ mutex_exit(&dtrace_lock);
+ mutex_exit(&dtrace_provider_lock);
+
+ /*
+ * We don't destroy the task queue until after we have dropped our
+ * locks (taskq_destroy() may block on running tasks). To prevent
+ * attempting to do work after we have effectively detached but before
+ * the task queue has been destroyed, all tasks dispatched via the
+ * task queue must check that DTrace is still attached before
+ * performing any operation.
+ */
+ taskq_destroy(dtrace_taskq);
+ dtrace_taskq = NULL;
+
+ return (DDI_SUCCESS);
+}
+
+/*ARGSUSED*/
+static int
+dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
+{
+ int error;
+
+ switch (infocmd) {
+ case DDI_INFO_DEVT2DEVINFO:
+ *result = (void *)dtrace_devi;
+ error = DDI_SUCCESS;
+ break;
+ case DDI_INFO_DEVT2INSTANCE:
+ *result = (void *)0;
+ error = DDI_SUCCESS;
+ break;
+ default:
+ error = DDI_FAILURE;
+ }
+ return (error);
+}
+
+static struct cb_ops dtrace_cb_ops = {
+ dtrace_open, /* open */
+ dtrace_close, /* close */
+ nulldev, /* strategy */
+ nulldev, /* print */
+ nodev, /* dump */
+ nodev, /* read */
+ nodev, /* write */
+ dtrace_ioctl, /* ioctl */
+ nodev, /* devmap */
+ nodev, /* mmap */
+ nodev, /* segmap */
+ nochpoll, /* poll */
+ ddi_prop_op, /* cb_prop_op */
+ 0, /* streamtab */
+ D_NEW | D_MP /* Driver compatibility flag */
+};
+
+static struct dev_ops dtrace_ops = {
+ DEVO_REV, /* devo_rev */
+ 0, /* refcnt */
+ dtrace_info, /* get_dev_info */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ dtrace_attach, /* attach */
+ dtrace_detach, /* detach */
+ nodev, /* reset */
+ &dtrace_cb_ops, /* driver operations */
+ NULL, /* bus operations */
+ nodev /* dev power */
+};
+
+static struct modldrv modldrv = {
+ &mod_driverops, /* module type (this is a pseudo driver) */
+ "Dynamic Tracing", /* name of module */
+ &dtrace_ops, /* driver ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1,
+ (void *)&modldrv,
+ NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}
diff --git a/uts/common/dtrace/fasttrap.c b/uts/common/dtrace/fasttrap.c
new file mode 100644
index 000000000000..dd78b483ebe4
--- /dev/null
+++ b/uts/common/dtrace/fasttrap.c
@@ -0,0 +1,2346 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/atomic.h>
+#include <sys/errno.h>
+#include <sys/stat.h>
+#include <sys/modctl.h>
+#include <sys/conf.h>
+#include <sys/systm.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#include <sys/cpuvar.h>
+#include <sys/kmem.h>
+#include <sys/strsubr.h>
+#include <sys/fasttrap.h>
+#include <sys/fasttrap_impl.h>
+#include <sys/fasttrap_isa.h>
+#include <sys/dtrace.h>
+#include <sys/dtrace_impl.h>
+#include <sys/sysmacros.h>
+#include <sys/proc.h>
+#include <sys/priv.h>
+#include <sys/policy.h>
+#include <util/qsort.h>
+
+/*
+ * User-Land Trap-Based Tracing
+ * ----------------------------
+ *
+ * The fasttrap provider allows DTrace consumers to instrument any user-level
+ * instruction to gather data; this includes probes with semantic
+ * signifigance like entry and return as well as simple offsets into the
+ * function. While the specific techniques used are very ISA specific, the
+ * methodology is generalizable to any architecture.
+ *
+ *
+ * The General Methodology
+ * -----------------------
+ *
+ * With the primary goal of tracing every user-land instruction and the
+ * limitation that we can't trust user space so don't want to rely on much
+ * information there, we begin by replacing the instructions we want to trace
+ * with trap instructions. Each instruction we overwrite is saved into a hash
+ * table keyed by process ID and pc address. When we enter the kernel due to
+ * this trap instruction, we need the effects of the replaced instruction to
+ * appear to have occurred before we proceed with the user thread's
+ * execution.
+ *
+ * Each user level thread is represented by a ulwp_t structure which is
+ * always easily accessible through a register. The most basic way to produce
+ * the effects of the instruction we replaced is to copy that instruction out
+ * to a bit of scratch space reserved in the user thread's ulwp_t structure
+ * (a sort of kernel-private thread local storage), set the PC to that
+ * scratch space and single step. When we reenter the kernel after single
+ * stepping the instruction we must then adjust the PC to point to what would
+ * normally be the next instruction. Of course, special care must be taken
+ * for branches and jumps, but these represent such a small fraction of any
+ * instruction set that writing the code to emulate these in the kernel is
+ * not too difficult.
+ *
+ * Return probes may require several tracepoints to trace every return site,
+ * and, conversely, each tracepoint may activate several probes (the entry
+ * and offset 0 probes, for example). To solve this muliplexing problem,
+ * tracepoints contain lists of probes to activate and probes contain lists
+ * of tracepoints to enable. If a probe is activated, it adds its ID to
+ * existing tracepoints or creates new ones as necessary.
+ *
+ * Most probes are activated _before_ the instruction is executed, but return
+ * probes are activated _after_ the effects of the last instruction of the
+ * function are visible. Return probes must be fired _after_ we have
+ * single-stepped the instruction whereas all other probes are fired
+ * beforehand.
+ *
+ *
+ * Lock Ordering
+ * -------------
+ *
+ * The lock ordering below -- both internally and with respect to the DTrace
+ * framework -- is a little tricky and bears some explanation. Each provider
+ * has a lock (ftp_mtx) that protects its members including reference counts
+ * for enabled probes (ftp_rcount), consumers actively creating probes
+ * (ftp_ccount) and USDT consumers (ftp_mcount); all three prevent a provider
+ * from being freed. A provider is looked up by taking the bucket lock for the
+ * provider hash table, and is returned with its lock held. The provider lock
+ * may be taken in functions invoked by the DTrace framework, but may not be
+ * held while calling functions in the DTrace framework.
+ *
+ * To ensure consistency over multiple calls to the DTrace framework, the
+ * creation lock (ftp_cmtx) should be held. Naturally, the creation lock may
+ * not be taken when holding the provider lock as that would create a cyclic
+ * lock ordering. In situations where one would naturally take the provider
+ * lock and then the creation lock, we instead up a reference count to prevent
+ * the provider from disappearing, drop the provider lock, and acquire the
+ * creation lock.
+ *
+ * Briefly:
+ * bucket lock before provider lock
+ * DTrace before provider lock
+ * creation lock before DTrace
+ * never hold the provider lock and creation lock simultaneously
+ */
+
+static dev_info_t *fasttrap_devi;
+static dtrace_meta_provider_id_t fasttrap_meta_id;
+
+static timeout_id_t fasttrap_timeout;
+static kmutex_t fasttrap_cleanup_mtx;
+static uint_t fasttrap_cleanup_work;
+
+/*
+ * Generation count on modifications to the global tracepoint lookup table.
+ */
+static volatile uint64_t fasttrap_mod_gen;
+
+/*
+ * When the fasttrap provider is loaded, fasttrap_max is set to either
+ * FASTTRAP_MAX_DEFAULT or the value for fasttrap-max-probes in the
+ * fasttrap.conf file. Each time a probe is created, fasttrap_total is
+ * incremented by the number of tracepoints that may be associated with that
+ * probe; fasttrap_total is capped at fasttrap_max.
+ */
+#define FASTTRAP_MAX_DEFAULT 250000
+static uint32_t fasttrap_max;
+static uint32_t fasttrap_total;
+
+
+#define FASTTRAP_TPOINTS_DEFAULT_SIZE 0x4000
+#define FASTTRAP_PROVIDERS_DEFAULT_SIZE 0x100
+#define FASTTRAP_PROCS_DEFAULT_SIZE 0x100
+
+#define FASTTRAP_PID_NAME "pid"
+
+fasttrap_hash_t fasttrap_tpoints;
+static fasttrap_hash_t fasttrap_provs;
+static fasttrap_hash_t fasttrap_procs;
+
+static uint64_t fasttrap_pid_count; /* pid ref count */
+static kmutex_t fasttrap_count_mtx; /* lock on ref count */
+
+#define FASTTRAP_ENABLE_FAIL 1
+#define FASTTRAP_ENABLE_PARTIAL 2
+
+static int fasttrap_tracepoint_enable(proc_t *, fasttrap_probe_t *, uint_t);
+static void fasttrap_tracepoint_disable(proc_t *, fasttrap_probe_t *, uint_t);
+
+static fasttrap_provider_t *fasttrap_provider_lookup(pid_t, const char *,
+ const dtrace_pattr_t *);
+static void fasttrap_provider_retire(pid_t, const char *, int);
+static void fasttrap_provider_free(fasttrap_provider_t *);
+
+static fasttrap_proc_t *fasttrap_proc_lookup(pid_t);
+static void fasttrap_proc_release(fasttrap_proc_t *);
+
+#define FASTTRAP_PROVS_INDEX(pid, name) \
+ ((fasttrap_hash_str(name) + (pid)) & fasttrap_provs.fth_mask)
+
+#define FASTTRAP_PROCS_INDEX(pid) ((pid) & fasttrap_procs.fth_mask)
+
+static int
+fasttrap_highbit(ulong_t i)
+{
+ int h = 1;
+
+ if (i == 0)
+ return (0);
+#ifdef _LP64
+ if (i & 0xffffffff00000000ul) {
+ h += 32; i >>= 32;
+ }
+#endif
+ if (i & 0xffff0000) {
+ h += 16; i >>= 16;
+ }
+ if (i & 0xff00) {
+ h += 8; i >>= 8;
+ }
+ if (i & 0xf0) {
+ h += 4; i >>= 4;
+ }
+ if (i & 0xc) {
+ h += 2; i >>= 2;
+ }
+ if (i & 0x2) {
+ h += 1;
+ }
+ return (h);
+}
+
+static uint_t
+fasttrap_hash_str(const char *p)
+{
+ unsigned int g;
+ uint_t hval = 0;
+
+ while (*p) {
+ hval = (hval << 4) + *p++;
+ if ((g = (hval & 0xf0000000)) != 0)
+ hval ^= g >> 24;
+ hval &= ~g;
+ }
+ return (hval);
+}
+
+void
+fasttrap_sigtrap(proc_t *p, kthread_t *t, uintptr_t pc)
+{
+ sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
+
+ sqp->sq_info.si_signo = SIGTRAP;
+ sqp->sq_info.si_code = TRAP_DTRACE;
+ sqp->sq_info.si_addr = (caddr_t)pc;
+
+ mutex_enter(&p->p_lock);
+ sigaddqa(p, t, sqp);
+ mutex_exit(&p->p_lock);
+
+ if (t != NULL)
+ aston(t);
+}
+
+/*
+ * This function ensures that no threads are actively using the memory
+ * associated with probes that were formerly live.
+ */
+static void
+fasttrap_mod_barrier(uint64_t gen)
+{
+ int i;
+
+ if (gen < fasttrap_mod_gen)
+ return;
+
+ fasttrap_mod_gen++;
+
+ for (i = 0; i < NCPU; i++) {
+ mutex_enter(&cpu_core[i].cpuc_pid_lock);
+ mutex_exit(&cpu_core[i].cpuc_pid_lock);
+ }
+}
+
+/*
+ * This is the timeout's callback for cleaning up the providers and their
+ * probes.
+ */
+/*ARGSUSED*/
+static void
+fasttrap_pid_cleanup_cb(void *data)
+{
+ fasttrap_provider_t **fpp, *fp;
+ fasttrap_bucket_t *bucket;
+ dtrace_provider_id_t provid;
+ int i, later;
+
+ static volatile int in = 0;
+ ASSERT(in == 0);
+ in = 1;
+
+ mutex_enter(&fasttrap_cleanup_mtx);
+ while (fasttrap_cleanup_work) {
+ fasttrap_cleanup_work = 0;
+ mutex_exit(&fasttrap_cleanup_mtx);
+
+ later = 0;
+
+ /*
+ * Iterate over all the providers trying to remove the marked
+ * ones. If a provider is marked but not retired, we just
+ * have to take a crack at removing it -- it's no big deal if
+ * we can't.
+ */
+ for (i = 0; i < fasttrap_provs.fth_nent; i++) {
+ bucket = &fasttrap_provs.fth_table[i];
+ mutex_enter(&bucket->ftb_mtx);
+ fpp = (fasttrap_provider_t **)&bucket->ftb_data;
+
+ while ((fp = *fpp) != NULL) {
+ if (!fp->ftp_marked) {
+ fpp = &fp->ftp_next;
+ continue;
+ }
+
+ mutex_enter(&fp->ftp_mtx);
+
+ /*
+ * If this provider has consumers actively
+ * creating probes (ftp_ccount) or is a USDT
+ * provider (ftp_mcount), we can't unregister
+ * or even condense.
+ */
+ if (fp->ftp_ccount != 0 ||
+ fp->ftp_mcount != 0) {
+ mutex_exit(&fp->ftp_mtx);
+ fp->ftp_marked = 0;
+ continue;
+ }
+
+ if (!fp->ftp_retired || fp->ftp_rcount != 0)
+ fp->ftp_marked = 0;
+
+ mutex_exit(&fp->ftp_mtx);
+
+ /*
+ * If we successfully unregister this
+ * provider we can remove it from the hash
+ * chain and free the memory. If our attempt
+ * to unregister fails and this is a retired
+ * provider, increment our flag to try again
+ * pretty soon. If we've consumed more than
+ * half of our total permitted number of
+ * probes call dtrace_condense() to try to
+ * clean out the unenabled probes.
+ */
+ provid = fp->ftp_provid;
+ if (dtrace_unregister(provid) != 0) {
+ if (fasttrap_total > fasttrap_max / 2)
+ (void) dtrace_condense(provid);
+ later += fp->ftp_marked;
+ fpp = &fp->ftp_next;
+ } else {
+ *fpp = fp->ftp_next;
+ fasttrap_provider_free(fp);
+ }
+ }
+ mutex_exit(&bucket->ftb_mtx);
+ }
+
+ mutex_enter(&fasttrap_cleanup_mtx);
+ }
+
+ ASSERT(fasttrap_timeout != 0);
+
+ /*
+ * If we were unable to remove a retired provider, try again after
+ * a second. This situation can occur in certain circumstances where
+ * providers cannot be unregistered even though they have no probes
+ * enabled because of an execution of dtrace -l or something similar.
+ * If the timeout has been disabled (set to 1 because we're trying
+ * to detach), we set fasttrap_cleanup_work to ensure that we'll
+ * get a chance to do that work if and when the timeout is reenabled
+ * (if detach fails).
+ */
+ if (later > 0 && fasttrap_timeout != (timeout_id_t)1)
+ fasttrap_timeout = timeout(&fasttrap_pid_cleanup_cb, NULL, hz);
+ else if (later > 0)
+ fasttrap_cleanup_work = 1;
+ else
+ fasttrap_timeout = 0;
+
+ mutex_exit(&fasttrap_cleanup_mtx);
+ in = 0;
+}
+
+/*
+ * Activates the asynchronous cleanup mechanism.
+ */
+static void
+fasttrap_pid_cleanup(void)
+{
+ mutex_enter(&fasttrap_cleanup_mtx);
+ fasttrap_cleanup_work = 1;
+ if (fasttrap_timeout == 0)
+ fasttrap_timeout = timeout(&fasttrap_pid_cleanup_cb, NULL, 1);
+ mutex_exit(&fasttrap_cleanup_mtx);
+}
+
+/*
+ * This is called from cfork() via dtrace_fasttrap_fork(). The child
+ * process's address space is a (roughly) a copy of the parent process's so
+ * we have to remove all the instrumentation we had previously enabled in the
+ * parent.
+ */
+static void
+fasttrap_fork(proc_t *p, proc_t *cp)
+{
+ pid_t ppid = p->p_pid;
+ int i;
+
+ ASSERT(curproc == p);
+ ASSERT(p->p_proc_flag & P_PR_LOCK);
+ ASSERT(p->p_dtrace_count > 0);
+ ASSERT(cp->p_dtrace_count == 0);
+
+ /*
+ * This would be simpler and faster if we maintained per-process
+ * hash tables of enabled tracepoints. It could, however, potentially
+ * slow down execution of a tracepoint since we'd need to go
+ * through two levels of indirection. In the future, we should
+ * consider either maintaining per-process ancillary lists of
+ * enabled tracepoints or hanging a pointer to a per-process hash
+ * table of enabled tracepoints off the proc structure.
+ */
+
+ /*
+ * We don't have to worry about the child process disappearing
+ * because we're in fork().
+ */
+ mutex_enter(&cp->p_lock);
+ sprlock_proc(cp);
+ mutex_exit(&cp->p_lock);
+
+ /*
+ * Iterate over every tracepoint looking for ones that belong to the
+ * parent process, and remove each from the child process.
+ */
+ for (i = 0; i < fasttrap_tpoints.fth_nent; i++) {
+ fasttrap_tracepoint_t *tp;
+ fasttrap_bucket_t *bucket = &fasttrap_tpoints.fth_table[i];
+
+ mutex_enter(&bucket->ftb_mtx);
+ for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
+ if (tp->ftt_pid == ppid &&
+ tp->ftt_proc->ftpc_acount != 0) {
+ int ret = fasttrap_tracepoint_remove(cp, tp);
+ ASSERT(ret == 0);
+ }
+ }
+ mutex_exit(&bucket->ftb_mtx);
+ }
+
+ mutex_enter(&cp->p_lock);
+ sprunlock(cp);
+}
+
+/*
+ * This is called from proc_exit() or from exec_common() if p_dtrace_probes
+ * is set on the proc structure to indicate that there is a pid provider
+ * associated with this process.
+ */
+static void
+fasttrap_exec_exit(proc_t *p)
+{
+ ASSERT(p == curproc);
+ ASSERT(MUTEX_HELD(&p->p_lock));
+
+ mutex_exit(&p->p_lock);
+
+ /*
+ * We clean up the pid provider for this process here; user-land
+ * static probes are handled by the meta-provider remove entry point.
+ */
+ fasttrap_provider_retire(p->p_pid, FASTTRAP_PID_NAME, 0);
+
+ mutex_enter(&p->p_lock);
+}
+
+
+/*ARGSUSED*/
+static void
+fasttrap_pid_provide(void *arg, const dtrace_probedesc_t *desc)
+{
+ /*
+ * There are no "default" pid probes.
+ */
+}
+
+static int
+fasttrap_tracepoint_enable(proc_t *p, fasttrap_probe_t *probe, uint_t index)
+{
+ fasttrap_tracepoint_t *tp, *new_tp = NULL;
+ fasttrap_bucket_t *bucket;
+ fasttrap_id_t *id;
+ pid_t pid;
+ uintptr_t pc;
+
+ ASSERT(index < probe->ftp_ntps);
+
+ pid = probe->ftp_pid;
+ pc = probe->ftp_tps[index].fit_tp->ftt_pc;
+ id = &probe->ftp_tps[index].fit_id;
+
+ ASSERT(probe->ftp_tps[index].fit_tp->ftt_pid == pid);
+
+ ASSERT(!(p->p_flag & SVFORK));
+
+ /*
+ * Before we make any modifications, make sure we've imposed a barrier
+ * on the generation in which this probe was last modified.
+ */
+ fasttrap_mod_barrier(probe->ftp_gen);
+
+ bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
+
+ /*
+ * If the tracepoint has already been enabled, just add our id to the
+ * list of interested probes. This may be our second time through
+ * this path in which case we'll have constructed the tracepoint we'd
+ * like to install. If we can't find a match, and have an allocated
+ * tracepoint ready to go, enable that one now.
+ *
+ * A tracepoint whose process is defunct is also considered defunct.
+ */
+again:
+ mutex_enter(&bucket->ftb_mtx);
+ for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
+ if (tp->ftt_pid != pid || tp->ftt_pc != pc ||
+ tp->ftt_proc->ftpc_acount == 0)
+ continue;
+
+ /*
+ * Now that we've found a matching tracepoint, it would be
+ * a decent idea to confirm that the tracepoint is still
+ * enabled and the trap instruction hasn't been overwritten.
+ * Since this is a little hairy, we'll punt for now.
+ */
+
+ /*
+ * This can't be the first interested probe. We don't have
+ * to worry about another thread being in the midst of
+ * deleting this tracepoint (which would be the only valid
+ * reason for a tracepoint to have no interested probes)
+ * since we're holding P_PR_LOCK for this process.
+ */
+ ASSERT(tp->ftt_ids != NULL || tp->ftt_retids != NULL);
+
+ switch (id->fti_ptype) {
+ case DTFTP_ENTRY:
+ case DTFTP_OFFSETS:
+ case DTFTP_IS_ENABLED:
+ id->fti_next = tp->ftt_ids;
+ membar_producer();
+ tp->ftt_ids = id;
+ membar_producer();
+ break;
+
+ case DTFTP_RETURN:
+ case DTFTP_POST_OFFSETS:
+ id->fti_next = tp->ftt_retids;
+ membar_producer();
+ tp->ftt_retids = id;
+ membar_producer();
+ break;
+
+ default:
+ ASSERT(0);
+ }
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ if (new_tp != NULL) {
+ new_tp->ftt_ids = NULL;
+ new_tp->ftt_retids = NULL;
+ }
+
+ return (0);
+ }
+
+ /*
+ * If we have a good tracepoint ready to go, install it now while
+ * we have the lock held and no one can screw with us.
+ */
+ if (new_tp != NULL) {
+ int rc = 0;
+
+ new_tp->ftt_next = bucket->ftb_data;
+ membar_producer();
+ bucket->ftb_data = new_tp;
+ membar_producer();
+ mutex_exit(&bucket->ftb_mtx);
+
+ /*
+ * Activate the tracepoint in the ISA-specific manner.
+ * If this fails, we need to report the failure, but
+ * indicate that this tracepoint must still be disabled
+ * by calling fasttrap_tracepoint_disable().
+ */
+ if (fasttrap_tracepoint_install(p, new_tp) != 0)
+ rc = FASTTRAP_ENABLE_PARTIAL;
+
+ /*
+ * Increment the count of the number of tracepoints active in
+ * the victim process.
+ */
+ ASSERT(p->p_proc_flag & P_PR_LOCK);
+ p->p_dtrace_count++;
+
+ return (rc);
+ }
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ /*
+ * Initialize the tracepoint that's been preallocated with the probe.
+ */
+ new_tp = probe->ftp_tps[index].fit_tp;
+
+ ASSERT(new_tp->ftt_pid == pid);
+ ASSERT(new_tp->ftt_pc == pc);
+ ASSERT(new_tp->ftt_proc == probe->ftp_prov->ftp_proc);
+ ASSERT(new_tp->ftt_ids == NULL);
+ ASSERT(new_tp->ftt_retids == NULL);
+
+ switch (id->fti_ptype) {
+ case DTFTP_ENTRY:
+ case DTFTP_OFFSETS:
+ case DTFTP_IS_ENABLED:
+ id->fti_next = NULL;
+ new_tp->ftt_ids = id;
+ break;
+
+ case DTFTP_RETURN:
+ case DTFTP_POST_OFFSETS:
+ id->fti_next = NULL;
+ new_tp->ftt_retids = id;
+ break;
+
+ default:
+ ASSERT(0);
+ }
+
+ /*
+ * If the ISA-dependent initialization goes to plan, go back to the
+ * beginning and try to install this freshly made tracepoint.
+ */
+ if (fasttrap_tracepoint_init(p, new_tp, pc, id->fti_ptype) == 0)
+ goto again;
+
+ new_tp->ftt_ids = NULL;
+ new_tp->ftt_retids = NULL;
+
+ return (FASTTRAP_ENABLE_FAIL);
+}
+
+static void
+fasttrap_tracepoint_disable(proc_t *p, fasttrap_probe_t *probe, uint_t index)
+{
+ fasttrap_bucket_t *bucket;
+ fasttrap_provider_t *provider = probe->ftp_prov;
+ fasttrap_tracepoint_t **pp, *tp;
+ fasttrap_id_t *id, **idp;
+ pid_t pid;
+ uintptr_t pc;
+
+ ASSERT(index < probe->ftp_ntps);
+
+ pid = probe->ftp_pid;
+ pc = probe->ftp_tps[index].fit_tp->ftt_pc;
+ id = &probe->ftp_tps[index].fit_id;
+
+ ASSERT(probe->ftp_tps[index].fit_tp->ftt_pid == pid);
+
+ /*
+ * Find the tracepoint and make sure that our id is one of the
+ * ones registered with it.
+ */
+ bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
+ mutex_enter(&bucket->ftb_mtx);
+ for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
+ if (tp->ftt_pid == pid && tp->ftt_pc == pc &&
+ tp->ftt_proc == provider->ftp_proc)
+ break;
+ }
+
+ /*
+ * If we somehow lost this tracepoint, we're in a world of hurt.
+ */
+ ASSERT(tp != NULL);
+
+ switch (id->fti_ptype) {
+ case DTFTP_ENTRY:
+ case DTFTP_OFFSETS:
+ case DTFTP_IS_ENABLED:
+ ASSERT(tp->ftt_ids != NULL);
+ idp = &tp->ftt_ids;
+ break;
+
+ case DTFTP_RETURN:
+ case DTFTP_POST_OFFSETS:
+ ASSERT(tp->ftt_retids != NULL);
+ idp = &tp->ftt_retids;
+ break;
+
+ default:
+ ASSERT(0);
+ }
+
+ while ((*idp)->fti_probe != probe) {
+ idp = &(*idp)->fti_next;
+ ASSERT(*idp != NULL);
+ }
+
+ id = *idp;
+ *idp = id->fti_next;
+ membar_producer();
+
+ ASSERT(id->fti_probe == probe);
+
+ /*
+ * If there are other registered enablings of this tracepoint, we're
+ * all done, but if this was the last probe assocated with this
+ * this tracepoint, we need to remove and free it.
+ */
+ if (tp->ftt_ids != NULL || tp->ftt_retids != NULL) {
+
+ /*
+ * If the current probe's tracepoint is in use, swap it
+ * for an unused tracepoint.
+ */
+ if (tp == probe->ftp_tps[index].fit_tp) {
+ fasttrap_probe_t *tmp_probe;
+ fasttrap_tracepoint_t **tmp_tp;
+ uint_t tmp_index;
+
+ if (tp->ftt_ids != NULL) {
+ tmp_probe = tp->ftt_ids->fti_probe;
+ /* LINTED - alignment */
+ tmp_index = FASTTRAP_ID_INDEX(tp->ftt_ids);
+ tmp_tp = &tmp_probe->ftp_tps[tmp_index].fit_tp;
+ } else {
+ tmp_probe = tp->ftt_retids->fti_probe;
+ /* LINTED - alignment */
+ tmp_index = FASTTRAP_ID_INDEX(tp->ftt_retids);
+ tmp_tp = &tmp_probe->ftp_tps[tmp_index].fit_tp;
+ }
+
+ ASSERT(*tmp_tp != NULL);
+ ASSERT(*tmp_tp != probe->ftp_tps[index].fit_tp);
+ ASSERT((*tmp_tp)->ftt_ids == NULL);
+ ASSERT((*tmp_tp)->ftt_retids == NULL);
+
+ probe->ftp_tps[index].fit_tp = *tmp_tp;
+ *tmp_tp = tp;
+ }
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ /*
+ * Tag the modified probe with the generation in which it was
+ * changed.
+ */
+ probe->ftp_gen = fasttrap_mod_gen;
+ return;
+ }
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ /*
+ * We can't safely remove the tracepoint from the set of active
+ * tracepoints until we've actually removed the fasttrap instruction
+ * from the process's text. We can, however, operate on this
+ * tracepoint secure in the knowledge that no other thread is going to
+ * be looking at it since we hold P_PR_LOCK on the process if it's
+ * live or we hold the provider lock on the process if it's dead and
+ * gone.
+ */
+
+ /*
+ * We only need to remove the actual instruction if we're looking
+ * at an existing process
+ */
+ if (p != NULL) {
+ /*
+ * If we fail to restore the instruction we need to kill
+ * this process since it's in a completely unrecoverable
+ * state.
+ */
+ if (fasttrap_tracepoint_remove(p, tp) != 0)
+ fasttrap_sigtrap(p, NULL, pc);
+
+ /*
+ * Decrement the count of the number of tracepoints active
+ * in the victim process.
+ */
+ ASSERT(p->p_proc_flag & P_PR_LOCK);
+ p->p_dtrace_count--;
+ }
+
+ /*
+ * Remove the probe from the hash table of active tracepoints.
+ */
+ mutex_enter(&bucket->ftb_mtx);
+ pp = (fasttrap_tracepoint_t **)&bucket->ftb_data;
+ ASSERT(*pp != NULL);
+ while (*pp != tp) {
+ pp = &(*pp)->ftt_next;
+ ASSERT(*pp != NULL);
+ }
+
+ *pp = tp->ftt_next;
+ membar_producer();
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ /*
+ * Tag the modified probe with the generation in which it was changed.
+ */
+ probe->ftp_gen = fasttrap_mod_gen;
+}
+
+static void
+fasttrap_enable_callbacks(void)
+{
+ /*
+ * We don't have to play the rw lock game here because we're
+ * providing something rather than taking something away --
+ * we can be sure that no threads have tried to follow this
+ * function pointer yet.
+ */
+ mutex_enter(&fasttrap_count_mtx);
+ if (fasttrap_pid_count == 0) {
+ ASSERT(dtrace_pid_probe_ptr == NULL);
+ ASSERT(dtrace_return_probe_ptr == NULL);
+ dtrace_pid_probe_ptr = &fasttrap_pid_probe;
+ dtrace_return_probe_ptr = &fasttrap_return_probe;
+ }
+ ASSERT(dtrace_pid_probe_ptr == &fasttrap_pid_probe);
+ ASSERT(dtrace_return_probe_ptr == &fasttrap_return_probe);
+ fasttrap_pid_count++;
+ mutex_exit(&fasttrap_count_mtx);
+}
+
+static void
+fasttrap_disable_callbacks(void)
+{
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ mutex_enter(&fasttrap_count_mtx);
+ ASSERT(fasttrap_pid_count > 0);
+ fasttrap_pid_count--;
+ if (fasttrap_pid_count == 0) {
+ cpu_t *cur, *cpu = CPU;
+
+ for (cur = cpu->cpu_next_onln; cur != cpu;
+ cur = cur->cpu_next_onln) {
+ rw_enter(&cur->cpu_ft_lock, RW_WRITER);
+ }
+
+ dtrace_pid_probe_ptr = NULL;
+ dtrace_return_probe_ptr = NULL;
+
+ for (cur = cpu->cpu_next_onln; cur != cpu;
+ cur = cur->cpu_next_onln) {
+ rw_exit(&cur->cpu_ft_lock);
+ }
+ }
+ mutex_exit(&fasttrap_count_mtx);
+}
+
+/*ARGSUSED*/
+static void
+fasttrap_pid_enable(void *arg, dtrace_id_t id, void *parg)
+{
+ fasttrap_probe_t *probe = parg;
+ proc_t *p;
+ int i, rc;
+
+ ASSERT(probe != NULL);
+ ASSERT(!probe->ftp_enabled);
+ ASSERT(id == probe->ftp_id);
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ /*
+ * Increment the count of enabled probes on this probe's provider;
+ * the provider can't go away while the probe still exists. We
+ * must increment this even if we aren't able to properly enable
+ * this probe.
+ */
+ mutex_enter(&probe->ftp_prov->ftp_mtx);
+ probe->ftp_prov->ftp_rcount++;
+ mutex_exit(&probe->ftp_prov->ftp_mtx);
+
+ /*
+ * If this probe's provider is retired (meaning it was valid in a
+ * previously exec'ed incarnation of this address space), bail out. The
+ * provider can't go away while we're in this code path.
+ */
+ if (probe->ftp_prov->ftp_retired)
+ return;
+
+ /*
+ * If we can't find the process, it may be that we're in the context of
+ * a fork in which the traced process is being born and we're copying
+ * USDT probes. Otherwise, the process is gone so bail.
+ */
+ if ((p = sprlock(probe->ftp_pid)) == NULL) {
+ if ((curproc->p_flag & SFORKING) == 0)
+ return;
+
+ mutex_enter(&pidlock);
+ p = prfind(probe->ftp_pid);
+
+ /*
+ * Confirm that curproc is indeed forking the process in which
+ * we're trying to enable probes.
+ */
+ ASSERT(p != NULL);
+ ASSERT(p->p_parent == curproc);
+ ASSERT(p->p_stat == SIDL);
+
+ mutex_enter(&p->p_lock);
+ mutex_exit(&pidlock);
+
+ sprlock_proc(p);
+ }
+
+ ASSERT(!(p->p_flag & SVFORK));
+ mutex_exit(&p->p_lock);
+
+ /*
+ * We have to enable the trap entry point before any user threads have
+ * the chance to execute the trap instruction we're about to place
+ * in their process's text.
+ */
+ fasttrap_enable_callbacks();
+
+ /*
+ * Enable all the tracepoints and add this probe's id to each
+ * tracepoint's list of active probes.
+ */
+ for (i = 0; i < probe->ftp_ntps; i++) {
+ if ((rc = fasttrap_tracepoint_enable(p, probe, i)) != 0) {
+ /*
+ * If enabling the tracepoint failed completely,
+ * we don't have to disable it; if the failure
+ * was only partial we must disable it.
+ */
+ if (rc == FASTTRAP_ENABLE_FAIL)
+ i--;
+ else
+ ASSERT(rc == FASTTRAP_ENABLE_PARTIAL);
+
+ /*
+ * Back up and pull out all the tracepoints we've
+ * created so far for this probe.
+ */
+ while (i >= 0) {
+ fasttrap_tracepoint_disable(p, probe, i);
+ i--;
+ }
+
+ mutex_enter(&p->p_lock);
+ sprunlock(p);
+
+ /*
+ * Since we're not actually enabling this probe,
+ * drop our reference on the trap table entry.
+ */
+ fasttrap_disable_callbacks();
+ return;
+ }
+ }
+
+ mutex_enter(&p->p_lock);
+ sprunlock(p);
+
+ probe->ftp_enabled = 1;
+}
+
+/*ARGSUSED*/
+static void
+fasttrap_pid_disable(void *arg, dtrace_id_t id, void *parg)
+{
+ fasttrap_probe_t *probe = parg;
+ fasttrap_provider_t *provider = probe->ftp_prov;
+ proc_t *p;
+ int i, whack = 0;
+
+ ASSERT(id == probe->ftp_id);
+
+ /*
+ * We won't be able to acquire a /proc-esque lock on the process
+ * iff the process is dead and gone. In this case, we rely on the
+ * provider lock as a point of mutual exclusion to prevent other
+ * DTrace consumers from disabling this probe.
+ */
+ if ((p = sprlock(probe->ftp_pid)) != NULL) {
+ ASSERT(!(p->p_flag & SVFORK));
+ mutex_exit(&p->p_lock);
+ }
+
+ mutex_enter(&provider->ftp_mtx);
+
+ /*
+ * Disable all the associated tracepoints (for fully enabled probes).
+ */
+ if (probe->ftp_enabled) {
+ for (i = 0; i < probe->ftp_ntps; i++) {
+ fasttrap_tracepoint_disable(p, probe, i);
+ }
+ }
+
+ ASSERT(provider->ftp_rcount > 0);
+ provider->ftp_rcount--;
+
+ if (p != NULL) {
+ /*
+ * Even though we may not be able to remove it entirely, we
+ * mark this retired provider to get a chance to remove some
+ * of the associated probes.
+ */
+ if (provider->ftp_retired && !provider->ftp_marked)
+ whack = provider->ftp_marked = 1;
+ mutex_exit(&provider->ftp_mtx);
+
+ mutex_enter(&p->p_lock);
+ sprunlock(p);
+ } else {
+ /*
+ * If the process is dead, we're just waiting for the
+ * last probe to be disabled to be able to free it.
+ */
+ if (provider->ftp_rcount == 0 && !provider->ftp_marked)
+ whack = provider->ftp_marked = 1;
+ mutex_exit(&provider->ftp_mtx);
+ }
+
+ if (whack)
+ fasttrap_pid_cleanup();
+
+ if (!probe->ftp_enabled)
+ return;
+
+ probe->ftp_enabled = 0;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+ fasttrap_disable_callbacks();
+}
+
+/*ARGSUSED*/
+static void
+fasttrap_pid_getargdesc(void *arg, dtrace_id_t id, void *parg,
+ dtrace_argdesc_t *desc)
+{
+ fasttrap_probe_t *probe = parg;
+ char *str;
+ int i, ndx;
+
+ desc->dtargd_native[0] = '\0';
+ desc->dtargd_xlate[0] = '\0';
+
+ if (probe->ftp_prov->ftp_retired != 0 ||
+ desc->dtargd_ndx >= probe->ftp_nargs) {
+ desc->dtargd_ndx = DTRACE_ARGNONE;
+ return;
+ }
+
+ ndx = (probe->ftp_argmap != NULL) ?
+ probe->ftp_argmap[desc->dtargd_ndx] : desc->dtargd_ndx;
+
+ str = probe->ftp_ntypes;
+ for (i = 0; i < ndx; i++) {
+ str += strlen(str) + 1;
+ }
+
+ ASSERT(strlen(str + 1) < sizeof (desc->dtargd_native));
+ (void) strcpy(desc->dtargd_native, str);
+
+ if (probe->ftp_xtypes == NULL)
+ return;
+
+ str = probe->ftp_xtypes;
+ for (i = 0; i < desc->dtargd_ndx; i++) {
+ str += strlen(str) + 1;
+ }
+
+ ASSERT(strlen(str + 1) < sizeof (desc->dtargd_xlate));
+ (void) strcpy(desc->dtargd_xlate, str);
+}
+
+/*ARGSUSED*/
+static void
+fasttrap_pid_destroy(void *arg, dtrace_id_t id, void *parg)
+{
+ fasttrap_probe_t *probe = parg;
+ int i;
+ size_t size;
+
+ ASSERT(probe != NULL);
+ ASSERT(!probe->ftp_enabled);
+ ASSERT(fasttrap_total >= probe->ftp_ntps);
+
+ atomic_add_32(&fasttrap_total, -probe->ftp_ntps);
+ size = offsetof(fasttrap_probe_t, ftp_tps[probe->ftp_ntps]);
+
+ if (probe->ftp_gen + 1 >= fasttrap_mod_gen)
+ fasttrap_mod_barrier(probe->ftp_gen);
+
+ for (i = 0; i < probe->ftp_ntps; i++) {
+ kmem_free(probe->ftp_tps[i].fit_tp,
+ sizeof (fasttrap_tracepoint_t));
+ }
+
+ kmem_free(probe, size);
+}
+
+
+static const dtrace_pattr_t pid_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+};
+
+static dtrace_pops_t pid_pops = {
+ fasttrap_pid_provide,
+ NULL,
+ fasttrap_pid_enable,
+ fasttrap_pid_disable,
+ NULL,
+ NULL,
+ fasttrap_pid_getargdesc,
+ fasttrap_pid_getarg,
+ NULL,
+ fasttrap_pid_destroy
+};
+
+static dtrace_pops_t usdt_pops = {
+ fasttrap_pid_provide,
+ NULL,
+ fasttrap_pid_enable,
+ fasttrap_pid_disable,
+ NULL,
+ NULL,
+ fasttrap_pid_getargdesc,
+ fasttrap_usdt_getarg,
+ NULL,
+ fasttrap_pid_destroy
+};
+
+static fasttrap_proc_t *
+fasttrap_proc_lookup(pid_t pid)
+{
+ fasttrap_bucket_t *bucket;
+ fasttrap_proc_t *fprc, *new_fprc;
+
+ bucket = &fasttrap_procs.fth_table[FASTTRAP_PROCS_INDEX(pid)];
+ mutex_enter(&bucket->ftb_mtx);
+
+ for (fprc = bucket->ftb_data; fprc != NULL; fprc = fprc->ftpc_next) {
+ if (fprc->ftpc_pid == pid && fprc->ftpc_acount != 0) {
+ mutex_enter(&fprc->ftpc_mtx);
+ mutex_exit(&bucket->ftb_mtx);
+ fprc->ftpc_rcount++;
+ atomic_add_64(&fprc->ftpc_acount, 1);
+ mutex_exit(&fprc->ftpc_mtx);
+
+ return (fprc);
+ }
+ }
+
+ /*
+ * Drop the bucket lock so we don't try to perform a sleeping
+ * allocation under it.
+ */
+ mutex_exit(&bucket->ftb_mtx);
+
+ new_fprc = kmem_zalloc(sizeof (fasttrap_proc_t), KM_SLEEP);
+ new_fprc->ftpc_pid = pid;
+ new_fprc->ftpc_rcount = 1;
+ new_fprc->ftpc_acount = 1;
+
+ mutex_enter(&bucket->ftb_mtx);
+
+ /*
+ * Take another lap through the list to make sure a proc hasn't
+ * been created for this pid while we weren't under the bucket lock.
+ */
+ for (fprc = bucket->ftb_data; fprc != NULL; fprc = fprc->ftpc_next) {
+ if (fprc->ftpc_pid == pid && fprc->ftpc_acount != 0) {
+ mutex_enter(&fprc->ftpc_mtx);
+ mutex_exit(&bucket->ftb_mtx);
+ fprc->ftpc_rcount++;
+ atomic_add_64(&fprc->ftpc_acount, 1);
+ mutex_exit(&fprc->ftpc_mtx);
+
+ kmem_free(new_fprc, sizeof (fasttrap_proc_t));
+
+ return (fprc);
+ }
+ }
+
+ new_fprc->ftpc_next = bucket->ftb_data;
+ bucket->ftb_data = new_fprc;
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ return (new_fprc);
+}
+
+static void
+fasttrap_proc_release(fasttrap_proc_t *proc)
+{
+ fasttrap_bucket_t *bucket;
+ fasttrap_proc_t *fprc, **fprcp;
+ pid_t pid = proc->ftpc_pid;
+
+ mutex_enter(&proc->ftpc_mtx);
+
+ ASSERT(proc->ftpc_rcount != 0);
+
+ if (--proc->ftpc_rcount != 0) {
+ mutex_exit(&proc->ftpc_mtx);
+ return;
+ }
+
+ mutex_exit(&proc->ftpc_mtx);
+
+ /*
+ * There should definitely be no live providers associated with this
+ * process at this point.
+ */
+ ASSERT(proc->ftpc_acount == 0);
+
+ bucket = &fasttrap_procs.fth_table[FASTTRAP_PROCS_INDEX(pid)];
+ mutex_enter(&bucket->ftb_mtx);
+
+ fprcp = (fasttrap_proc_t **)&bucket->ftb_data;
+ while ((fprc = *fprcp) != NULL) {
+ if (fprc == proc)
+ break;
+
+ fprcp = &fprc->ftpc_next;
+ }
+
+ /*
+ * Something strange has happened if we can't find the proc.
+ */
+ ASSERT(fprc != NULL);
+
+ *fprcp = fprc->ftpc_next;
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ kmem_free(fprc, sizeof (fasttrap_proc_t));
+}
+
+/*
+ * Lookup a fasttrap-managed provider based on its name and associated pid.
+ * If the pattr argument is non-NULL, this function instantiates the provider
+ * if it doesn't exist otherwise it returns NULL. The provider is returned
+ * with its lock held.
+ */
+static fasttrap_provider_t *
+fasttrap_provider_lookup(pid_t pid, const char *name,
+ const dtrace_pattr_t *pattr)
+{
+ fasttrap_provider_t *fp, *new_fp = NULL;
+ fasttrap_bucket_t *bucket;
+ char provname[DTRACE_PROVNAMELEN];
+ proc_t *p;
+ cred_t *cred;
+
+ ASSERT(strlen(name) < sizeof (fp->ftp_name));
+ ASSERT(pattr != NULL);
+
+ bucket = &fasttrap_provs.fth_table[FASTTRAP_PROVS_INDEX(pid, name)];
+ mutex_enter(&bucket->ftb_mtx);
+
+ /*
+ * Take a lap through the list and return the match if we find it.
+ */
+ for (fp = bucket->ftb_data; fp != NULL; fp = fp->ftp_next) {
+ if (fp->ftp_pid == pid && strcmp(fp->ftp_name, name) == 0 &&
+ !fp->ftp_retired) {
+ mutex_enter(&fp->ftp_mtx);
+ mutex_exit(&bucket->ftb_mtx);
+ return (fp);
+ }
+ }
+
+ /*
+ * Drop the bucket lock so we don't try to perform a sleeping
+ * allocation under it.
+ */
+ mutex_exit(&bucket->ftb_mtx);
+
+ /*
+ * Make sure the process exists, isn't a child created as the result
+ * of a vfork(2), and isn't a zombie (but may be in fork).
+ */
+ mutex_enter(&pidlock);
+ if ((p = prfind(pid)) == NULL) {
+ mutex_exit(&pidlock);
+ return (NULL);
+ }
+ mutex_enter(&p->p_lock);
+ mutex_exit(&pidlock);
+ if (p->p_flag & (SVFORK | SEXITING)) {
+ mutex_exit(&p->p_lock);
+ return (NULL);
+ }
+
+ /*
+ * Increment p_dtrace_probes so that the process knows to inform us
+ * when it exits or execs. fasttrap_provider_free() decrements this
+ * when we're done with this provider.
+ */
+ p->p_dtrace_probes++;
+
+ /*
+ * Grab the credentials for this process so we have
+ * something to pass to dtrace_register().
+ */
+ mutex_enter(&p->p_crlock);
+ crhold(p->p_cred);
+ cred = p->p_cred;
+ mutex_exit(&p->p_crlock);
+ mutex_exit(&p->p_lock);
+
+ new_fp = kmem_zalloc(sizeof (fasttrap_provider_t), KM_SLEEP);
+ new_fp->ftp_pid = pid;
+ new_fp->ftp_proc = fasttrap_proc_lookup(pid);
+
+ ASSERT(new_fp->ftp_proc != NULL);
+
+ mutex_enter(&bucket->ftb_mtx);
+
+ /*
+ * Take another lap through the list to make sure a provider hasn't
+ * been created for this pid while we weren't under the bucket lock.
+ */
+ for (fp = bucket->ftb_data; fp != NULL; fp = fp->ftp_next) {
+ if (fp->ftp_pid == pid && strcmp(fp->ftp_name, name) == 0 &&
+ !fp->ftp_retired) {
+ mutex_enter(&fp->ftp_mtx);
+ mutex_exit(&bucket->ftb_mtx);
+ fasttrap_provider_free(new_fp);
+ crfree(cred);
+ return (fp);
+ }
+ }
+
+ (void) strcpy(new_fp->ftp_name, name);
+
+ /*
+ * Fail and return NULL if either the provider name is too long
+ * or we fail to register this new provider with the DTrace
+ * framework. Note that this is the only place we ever construct
+ * the full provider name -- we keep it in pieces in the provider
+ * structure.
+ */
+ if (snprintf(provname, sizeof (provname), "%s%u", name, (uint_t)pid) >=
+ sizeof (provname) ||
+ dtrace_register(provname, pattr,
+ DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER, cred,
+ pattr == &pid_attr ? &pid_pops : &usdt_pops, new_fp,
+ &new_fp->ftp_provid) != 0) {
+ mutex_exit(&bucket->ftb_mtx);
+ fasttrap_provider_free(new_fp);
+ crfree(cred);
+ return (NULL);
+ }
+
+ new_fp->ftp_next = bucket->ftb_data;
+ bucket->ftb_data = new_fp;
+
+ mutex_enter(&new_fp->ftp_mtx);
+ mutex_exit(&bucket->ftb_mtx);
+
+ crfree(cred);
+ return (new_fp);
+}
+
+static void
+fasttrap_provider_free(fasttrap_provider_t *provider)
+{
+ pid_t pid = provider->ftp_pid;
+ proc_t *p;
+
+ /*
+ * There need to be no associated enabled probes, no consumers
+ * creating probes, and no meta providers referencing this provider.
+ */
+ ASSERT(provider->ftp_rcount == 0);
+ ASSERT(provider->ftp_ccount == 0);
+ ASSERT(provider->ftp_mcount == 0);
+
+ fasttrap_proc_release(provider->ftp_proc);
+
+ kmem_free(provider, sizeof (fasttrap_provider_t));
+
+ /*
+ * Decrement p_dtrace_probes on the process whose provider we're
+ * freeing. We don't have to worry about clobbering somone else's
+ * modifications to it because we have locked the bucket that
+ * corresponds to this process's hash chain in the provider hash
+ * table. Don't sweat it if we can't find the process.
+ */
+ mutex_enter(&pidlock);
+ if ((p = prfind(pid)) == NULL) {
+ mutex_exit(&pidlock);
+ return;
+ }
+
+ mutex_enter(&p->p_lock);
+ mutex_exit(&pidlock);
+
+ p->p_dtrace_probes--;
+ mutex_exit(&p->p_lock);
+}
+
+static void
+fasttrap_provider_retire(pid_t pid, const char *name, int mprov)
+{
+ fasttrap_provider_t *fp;
+ fasttrap_bucket_t *bucket;
+ dtrace_provider_id_t provid;
+
+ ASSERT(strlen(name) < sizeof (fp->ftp_name));
+
+ bucket = &fasttrap_provs.fth_table[FASTTRAP_PROVS_INDEX(pid, name)];
+ mutex_enter(&bucket->ftb_mtx);
+
+ for (fp = bucket->ftb_data; fp != NULL; fp = fp->ftp_next) {
+ if (fp->ftp_pid == pid && strcmp(fp->ftp_name, name) == 0 &&
+ !fp->ftp_retired)
+ break;
+ }
+
+ if (fp == NULL) {
+ mutex_exit(&bucket->ftb_mtx);
+ return;
+ }
+
+ mutex_enter(&fp->ftp_mtx);
+ ASSERT(!mprov || fp->ftp_mcount > 0);
+ if (mprov && --fp->ftp_mcount != 0) {
+ mutex_exit(&fp->ftp_mtx);
+ mutex_exit(&bucket->ftb_mtx);
+ return;
+ }
+
+ /*
+ * Mark the provider to be removed in our post-processing step, mark it
+ * retired, and drop the active count on its proc. Marking it indicates
+ * that we should try to remove it; setting the retired flag indicates
+ * that we're done with this provider; dropping the active the proc
+ * releases our hold, and when this reaches zero (as it will during
+ * exit or exec) the proc and associated providers become defunct.
+ *
+ * We obviously need to take the bucket lock before the provider lock
+ * to perform the lookup, but we need to drop the provider lock
+ * before calling into the DTrace framework since we acquire the
+ * provider lock in callbacks invoked from the DTrace framework. The
+ * bucket lock therefore protects the integrity of the provider hash
+ * table.
+ */
+ atomic_add_64(&fp->ftp_proc->ftpc_acount, -1);
+ fp->ftp_retired = 1;
+ fp->ftp_marked = 1;
+ provid = fp->ftp_provid;
+ mutex_exit(&fp->ftp_mtx);
+
+ /*
+ * We don't have to worry about invalidating the same provider twice
+ * since fasttrap_provider_lookup() will ignore provider that have
+ * been marked as retired.
+ */
+ dtrace_invalidate(provid);
+
+ mutex_exit(&bucket->ftb_mtx);
+
+ fasttrap_pid_cleanup();
+}
+
+static int
+fasttrap_uint32_cmp(const void *ap, const void *bp)
+{
+ return (*(const uint32_t *)ap - *(const uint32_t *)bp);
+}
+
+static int
+fasttrap_uint64_cmp(const void *ap, const void *bp)
+{
+ return (*(const uint64_t *)ap - *(const uint64_t *)bp);
+}
+
+static int
+fasttrap_add_probe(fasttrap_probe_spec_t *pdata)
+{
+ fasttrap_provider_t *provider;
+ fasttrap_probe_t *pp;
+ fasttrap_tracepoint_t *tp;
+ char *name;
+ int i, aframes, whack;
+
+ /*
+ * There needs to be at least one desired trace point.
+ */
+ if (pdata->ftps_noffs == 0)
+ return (EINVAL);
+
+ switch (pdata->ftps_type) {
+ case DTFTP_ENTRY:
+ name = "entry";
+ aframes = FASTTRAP_ENTRY_AFRAMES;
+ break;
+ case DTFTP_RETURN:
+ name = "return";
+ aframes = FASTTRAP_RETURN_AFRAMES;
+ break;
+ case DTFTP_OFFSETS:
+ name = NULL;
+ break;
+ default:
+ return (EINVAL);
+ }
+
+ if ((provider = fasttrap_provider_lookup(pdata->ftps_pid,
+ FASTTRAP_PID_NAME, &pid_attr)) == NULL)
+ return (ESRCH);
+
+ /*
+ * Increment this reference count to indicate that a consumer is
+ * actively adding a new probe associated with this provider. This
+ * prevents the provider from being deleted -- we'll need to check
+ * for pending deletions when we drop this reference count.
+ */
+ provider->ftp_ccount++;
+ mutex_exit(&provider->ftp_mtx);
+
+ /*
+ * Grab the creation lock to ensure consistency between calls to
+ * dtrace_probe_lookup() and dtrace_probe_create() in the face of
+ * other threads creating probes. We must drop the provider lock
+ * before taking this lock to avoid a three-way deadlock with the
+ * DTrace framework.
+ */
+ mutex_enter(&provider->ftp_cmtx);
+
+ if (name == NULL) {
+ for (i = 0; i < pdata->ftps_noffs; i++) {
+ char name_str[17];
+
+ (void) sprintf(name_str, "%llx",
+ (unsigned long long)pdata->ftps_offs[i]);
+
+ if (dtrace_probe_lookup(provider->ftp_provid,
+ pdata->ftps_mod, pdata->ftps_func, name_str) != 0)
+ continue;
+
+ atomic_add_32(&fasttrap_total, 1);
+
+ if (fasttrap_total > fasttrap_max) {
+ atomic_add_32(&fasttrap_total, -1);
+ goto no_mem;
+ }
+
+ pp = kmem_zalloc(sizeof (fasttrap_probe_t), KM_SLEEP);
+
+ pp->ftp_prov = provider;
+ pp->ftp_faddr = pdata->ftps_pc;
+ pp->ftp_fsize = pdata->ftps_size;
+ pp->ftp_pid = pdata->ftps_pid;
+ pp->ftp_ntps = 1;
+
+ tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t),
+ KM_SLEEP);
+
+ tp->ftt_proc = provider->ftp_proc;
+ tp->ftt_pc = pdata->ftps_offs[i] + pdata->ftps_pc;
+ tp->ftt_pid = pdata->ftps_pid;
+
+ pp->ftp_tps[0].fit_tp = tp;
+ pp->ftp_tps[0].fit_id.fti_probe = pp;
+ pp->ftp_tps[0].fit_id.fti_ptype = pdata->ftps_type;
+
+ pp->ftp_id = dtrace_probe_create(provider->ftp_provid,
+ pdata->ftps_mod, pdata->ftps_func, name_str,
+ FASTTRAP_OFFSET_AFRAMES, pp);
+ }
+
+ } else if (dtrace_probe_lookup(provider->ftp_provid, pdata->ftps_mod,
+ pdata->ftps_func, name) == 0) {
+ atomic_add_32(&fasttrap_total, pdata->ftps_noffs);
+
+ if (fasttrap_total > fasttrap_max) {
+ atomic_add_32(&fasttrap_total, -pdata->ftps_noffs);
+ goto no_mem;
+ }
+
+ /*
+ * Make sure all tracepoint program counter values are unique.
+ * We later assume that each probe has exactly one tracepoint
+ * for a given pc.
+ */
+ qsort(pdata->ftps_offs, pdata->ftps_noffs,
+ sizeof (uint64_t), fasttrap_uint64_cmp);
+ for (i = 1; i < pdata->ftps_noffs; i++) {
+ if (pdata->ftps_offs[i] > pdata->ftps_offs[i - 1])
+ continue;
+
+ atomic_add_32(&fasttrap_total, -pdata->ftps_noffs);
+ goto no_mem;
+ }
+
+ ASSERT(pdata->ftps_noffs > 0);
+ pp = kmem_zalloc(offsetof(fasttrap_probe_t,
+ ftp_tps[pdata->ftps_noffs]), KM_SLEEP);
+
+ pp->ftp_prov = provider;
+ pp->ftp_faddr = pdata->ftps_pc;
+ pp->ftp_fsize = pdata->ftps_size;
+ pp->ftp_pid = pdata->ftps_pid;
+ pp->ftp_ntps = pdata->ftps_noffs;
+
+ for (i = 0; i < pdata->ftps_noffs; i++) {
+ tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t),
+ KM_SLEEP);
+
+ tp->ftt_proc = provider->ftp_proc;
+ tp->ftt_pc = pdata->ftps_offs[i] + pdata->ftps_pc;
+ tp->ftt_pid = pdata->ftps_pid;
+
+ pp->ftp_tps[i].fit_tp = tp;
+ pp->ftp_tps[i].fit_id.fti_probe = pp;
+ pp->ftp_tps[i].fit_id.fti_ptype = pdata->ftps_type;
+ }
+
+ pp->ftp_id = dtrace_probe_create(provider->ftp_provid,
+ pdata->ftps_mod, pdata->ftps_func, name, aframes, pp);
+ }
+
+ mutex_exit(&provider->ftp_cmtx);
+
+ /*
+ * We know that the provider is still valid since we incremented the
+ * creation reference count. If someone tried to clean up this provider
+ * while we were using it (e.g. because the process called exec(2) or
+ * exit(2)), take note of that and try to clean it up now.
+ */
+ mutex_enter(&provider->ftp_mtx);
+ provider->ftp_ccount--;
+ whack = provider->ftp_retired;
+ mutex_exit(&provider->ftp_mtx);
+
+ if (whack)
+ fasttrap_pid_cleanup();
+
+ return (0);
+
+no_mem:
+ /*
+ * If we've exhausted the allowable resources, we'll try to remove
+ * this provider to free some up. This is to cover the case where
+ * the user has accidentally created many more probes than was
+ * intended (e.g. pid123:::).
+ */
+ mutex_exit(&provider->ftp_cmtx);
+ mutex_enter(&provider->ftp_mtx);
+ provider->ftp_ccount--;
+ provider->ftp_marked = 1;
+ mutex_exit(&provider->ftp_mtx);
+
+ fasttrap_pid_cleanup();
+
+ return (ENOMEM);
+}
+
+/*ARGSUSED*/
+static void *
+fasttrap_meta_provide(void *arg, dtrace_helper_provdesc_t *dhpv, pid_t pid)
+{
+ fasttrap_provider_t *provider;
+
+ /*
+ * A 32-bit unsigned integer (like a pid for example) can be
+ * expressed in 10 or fewer decimal digits. Make sure that we'll
+ * have enough space for the provider name.
+ */
+ if (strlen(dhpv->dthpv_provname) + 10 >=
+ sizeof (provider->ftp_name)) {
+ cmn_err(CE_WARN, "failed to instantiate provider %s: "
+ "name too long to accomodate pid", dhpv->dthpv_provname);
+ return (NULL);
+ }
+
+ /*
+ * Don't let folks spoof the true pid provider.
+ */
+ if (strcmp(dhpv->dthpv_provname, FASTTRAP_PID_NAME) == 0) {
+ cmn_err(CE_WARN, "failed to instantiate provider %s: "
+ "%s is an invalid name", dhpv->dthpv_provname,
+ FASTTRAP_PID_NAME);
+ return (NULL);
+ }
+
+ /*
+ * The highest stability class that fasttrap supports is ISA; cap
+ * the stability of the new provider accordingly.
+ */
+ if (dhpv->dthpv_pattr.dtpa_provider.dtat_class > DTRACE_CLASS_ISA)
+ dhpv->dthpv_pattr.dtpa_provider.dtat_class = DTRACE_CLASS_ISA;
+ if (dhpv->dthpv_pattr.dtpa_mod.dtat_class > DTRACE_CLASS_ISA)
+ dhpv->dthpv_pattr.dtpa_mod.dtat_class = DTRACE_CLASS_ISA;
+ if (dhpv->dthpv_pattr.dtpa_func.dtat_class > DTRACE_CLASS_ISA)
+ dhpv->dthpv_pattr.dtpa_func.dtat_class = DTRACE_CLASS_ISA;
+ if (dhpv->dthpv_pattr.dtpa_name.dtat_class > DTRACE_CLASS_ISA)
+ dhpv->dthpv_pattr.dtpa_name.dtat_class = DTRACE_CLASS_ISA;
+ if (dhpv->dthpv_pattr.dtpa_args.dtat_class > DTRACE_CLASS_ISA)
+ dhpv->dthpv_pattr.dtpa_args.dtat_class = DTRACE_CLASS_ISA;
+
+ if ((provider = fasttrap_provider_lookup(pid, dhpv->dthpv_provname,
+ &dhpv->dthpv_pattr)) == NULL) {
+ cmn_err(CE_WARN, "failed to instantiate provider %s for "
+ "process %u", dhpv->dthpv_provname, (uint_t)pid);
+ return (NULL);
+ }
+
+ /*
+ * Up the meta provider count so this provider isn't removed until
+ * the meta provider has been told to remove it.
+ */
+ provider->ftp_mcount++;
+
+ mutex_exit(&provider->ftp_mtx);
+
+ return (provider);
+}
+
+/*ARGSUSED*/
+static void
+fasttrap_meta_create_probe(void *arg, void *parg,
+ dtrace_helper_probedesc_t *dhpb)
+{
+ fasttrap_provider_t *provider = parg;
+ fasttrap_probe_t *pp;
+ fasttrap_tracepoint_t *tp;
+ int i, j;
+ uint32_t ntps;
+
+ /*
+ * Since the meta provider count is non-zero we don't have to worry
+ * about this provider disappearing.
+ */
+ ASSERT(provider->ftp_mcount > 0);
+
+ /*
+ * The offsets must be unique.
+ */
+ qsort(dhpb->dthpb_offs, dhpb->dthpb_noffs, sizeof (uint32_t),
+ fasttrap_uint32_cmp);
+ for (i = 1; i < dhpb->dthpb_noffs; i++) {
+ if (dhpb->dthpb_base + dhpb->dthpb_offs[i] <=
+ dhpb->dthpb_base + dhpb->dthpb_offs[i - 1])
+ return;
+ }
+
+ qsort(dhpb->dthpb_enoffs, dhpb->dthpb_nenoffs, sizeof (uint32_t),
+ fasttrap_uint32_cmp);
+ for (i = 1; i < dhpb->dthpb_nenoffs; i++) {
+ if (dhpb->dthpb_base + dhpb->dthpb_enoffs[i] <=
+ dhpb->dthpb_base + dhpb->dthpb_enoffs[i - 1])
+ return;
+ }
+
+ /*
+ * Grab the creation lock to ensure consistency between calls to
+ * dtrace_probe_lookup() and dtrace_probe_create() in the face of
+ * other threads creating probes.
+ */
+ mutex_enter(&provider->ftp_cmtx);
+
+ if (dtrace_probe_lookup(provider->ftp_provid, dhpb->dthpb_mod,
+ dhpb->dthpb_func, dhpb->dthpb_name) != 0) {
+ mutex_exit(&provider->ftp_cmtx);
+ return;
+ }
+
+ ntps = dhpb->dthpb_noffs + dhpb->dthpb_nenoffs;
+ ASSERT(ntps > 0);
+
+ atomic_add_32(&fasttrap_total, ntps);
+
+ if (fasttrap_total > fasttrap_max) {
+ atomic_add_32(&fasttrap_total, -ntps);
+ mutex_exit(&provider->ftp_cmtx);
+ return;
+ }
+
+ pp = kmem_zalloc(offsetof(fasttrap_probe_t, ftp_tps[ntps]), KM_SLEEP);
+
+ pp->ftp_prov = provider;
+ pp->ftp_pid = provider->ftp_pid;
+ pp->ftp_ntps = ntps;
+ pp->ftp_nargs = dhpb->dthpb_xargc;
+ pp->ftp_xtypes = dhpb->dthpb_xtypes;
+ pp->ftp_ntypes = dhpb->dthpb_ntypes;
+
+ /*
+ * First create a tracepoint for each actual point of interest.
+ */
+ for (i = 0; i < dhpb->dthpb_noffs; i++) {
+ tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t), KM_SLEEP);
+
+ tp->ftt_proc = provider->ftp_proc;
+ tp->ftt_pc = dhpb->dthpb_base + dhpb->dthpb_offs[i];
+ tp->ftt_pid = provider->ftp_pid;
+
+ pp->ftp_tps[i].fit_tp = tp;
+ pp->ftp_tps[i].fit_id.fti_probe = pp;
+#ifdef __sparc
+ pp->ftp_tps[i].fit_id.fti_ptype = DTFTP_POST_OFFSETS;
+#else
+ pp->ftp_tps[i].fit_id.fti_ptype = DTFTP_OFFSETS;
+#endif
+ }
+
+ /*
+ * Then create a tracepoint for each is-enabled point.
+ */
+ for (j = 0; i < ntps; i++, j++) {
+ tp = kmem_zalloc(sizeof (fasttrap_tracepoint_t), KM_SLEEP);
+
+ tp->ftt_proc = provider->ftp_proc;
+ tp->ftt_pc = dhpb->dthpb_base + dhpb->dthpb_enoffs[j];
+ tp->ftt_pid = provider->ftp_pid;
+
+ pp->ftp_tps[i].fit_tp = tp;
+ pp->ftp_tps[i].fit_id.fti_probe = pp;
+ pp->ftp_tps[i].fit_id.fti_ptype = DTFTP_IS_ENABLED;
+ }
+
+ /*
+ * If the arguments are shuffled around we set the argument remapping
+ * table. Later, when the probe fires, we only remap the arguments
+ * if the table is non-NULL.
+ */
+ for (i = 0; i < dhpb->dthpb_xargc; i++) {
+ if (dhpb->dthpb_args[i] != i) {
+ pp->ftp_argmap = dhpb->dthpb_args;
+ break;
+ }
+ }
+
+ /*
+ * The probe is fully constructed -- register it with DTrace.
+ */
+ pp->ftp_id = dtrace_probe_create(provider->ftp_provid, dhpb->dthpb_mod,
+ dhpb->dthpb_func, dhpb->dthpb_name, FASTTRAP_OFFSET_AFRAMES, pp);
+
+ mutex_exit(&provider->ftp_cmtx);
+}
+
+/*ARGSUSED*/
+static void
+fasttrap_meta_remove(void *arg, dtrace_helper_provdesc_t *dhpv, pid_t pid)
+{
+ /*
+ * Clean up the USDT provider. There may be active consumers of the
+ * provider busy adding probes, no damage will actually befall the
+ * provider until that count has dropped to zero. This just puts
+ * the provider on death row.
+ */
+ fasttrap_provider_retire(pid, dhpv->dthpv_provname, 1);
+}
+
+static dtrace_mops_t fasttrap_mops = {
+ fasttrap_meta_create_probe,
+ fasttrap_meta_provide,
+ fasttrap_meta_remove
+};
+
+/*ARGSUSED*/
+static int
+fasttrap_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
+{
+ return (0);
+}
+
+/*ARGSUSED*/
+static int
+fasttrap_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
+{
+ if (!dtrace_attached())
+ return (EAGAIN);
+
+ if (cmd == FASTTRAPIOC_MAKEPROBE) {
+ fasttrap_probe_spec_t *uprobe = (void *)arg;
+ fasttrap_probe_spec_t *probe;
+ uint64_t noffs;
+ size_t size;
+ int ret;
+ char *c;
+
+ if (copyin(&uprobe->ftps_noffs, &noffs,
+ sizeof (uprobe->ftps_noffs)))
+ return (EFAULT);
+
+ /*
+ * Probes must have at least one tracepoint.
+ */
+ if (noffs == 0)
+ return (EINVAL);
+
+ size = sizeof (fasttrap_probe_spec_t) +
+ sizeof (probe->ftps_offs[0]) * (noffs - 1);
+
+ if (size > 1024 * 1024)
+ return (ENOMEM);
+
+ probe = kmem_alloc(size, KM_SLEEP);
+
+ if (copyin(uprobe, probe, size) != 0) {
+ kmem_free(probe, size);
+ return (EFAULT);
+ }
+
+ /*
+ * Verify that the function and module strings contain no
+ * funny characters.
+ */
+ for (c = &probe->ftps_func[0]; *c != '\0'; c++) {
+ if (*c < 0x20 || 0x7f <= *c) {
+ ret = EINVAL;
+ goto err;
+ }
+ }
+
+ for (c = &probe->ftps_mod[0]; *c != '\0'; c++) {
+ if (*c < 0x20 || 0x7f <= *c) {
+ ret = EINVAL;
+ goto err;
+ }
+ }
+
+ if (!PRIV_POLICY_CHOICE(cr, PRIV_ALL, B_FALSE)) {
+ proc_t *p;
+ pid_t pid = probe->ftps_pid;
+
+ mutex_enter(&pidlock);
+ /*
+ * Report an error if the process doesn't exist
+ * or is actively being birthed.
+ */
+ if ((p = prfind(pid)) == NULL || p->p_stat == SIDL) {
+ mutex_exit(&pidlock);
+ return (ESRCH);
+ }
+ mutex_enter(&p->p_lock);
+ mutex_exit(&pidlock);
+
+ if ((ret = priv_proc_cred_perm(cr, p, NULL,
+ VREAD | VWRITE)) != 0) {
+ mutex_exit(&p->p_lock);
+ return (ret);
+ }
+
+ mutex_exit(&p->p_lock);
+ }
+
+ ret = fasttrap_add_probe(probe);
+err:
+ kmem_free(probe, size);
+
+ return (ret);
+
+ } else if (cmd == FASTTRAPIOC_GETINSTR) {
+ fasttrap_instr_query_t instr;
+ fasttrap_tracepoint_t *tp;
+ uint_t index;
+ int ret;
+
+ if (copyin((void *)arg, &instr, sizeof (instr)) != 0)
+ return (EFAULT);
+
+ if (!PRIV_POLICY_CHOICE(cr, PRIV_ALL, B_FALSE)) {
+ proc_t *p;
+ pid_t pid = instr.ftiq_pid;
+
+ mutex_enter(&pidlock);
+ /*
+ * Report an error if the process doesn't exist
+ * or is actively being birthed.
+ */
+ if ((p = prfind(pid)) == NULL || p->p_stat == SIDL) {
+ mutex_exit(&pidlock);
+ return (ESRCH);
+ }
+ mutex_enter(&p->p_lock);
+ mutex_exit(&pidlock);
+
+ if ((ret = priv_proc_cred_perm(cr, p, NULL,
+ VREAD)) != 0) {
+ mutex_exit(&p->p_lock);
+ return (ret);
+ }
+
+ mutex_exit(&p->p_lock);
+ }
+
+ index = FASTTRAP_TPOINTS_INDEX(instr.ftiq_pid, instr.ftiq_pc);
+
+ mutex_enter(&fasttrap_tpoints.fth_table[index].ftb_mtx);
+ tp = fasttrap_tpoints.fth_table[index].ftb_data;
+ while (tp != NULL) {
+ if (instr.ftiq_pid == tp->ftt_pid &&
+ instr.ftiq_pc == tp->ftt_pc &&
+ tp->ftt_proc->ftpc_acount != 0)
+ break;
+
+ tp = tp->ftt_next;
+ }
+
+ if (tp == NULL) {
+ mutex_exit(&fasttrap_tpoints.fth_table[index].ftb_mtx);
+ return (ENOENT);
+ }
+
+ bcopy(&tp->ftt_instr, &instr.ftiq_instr,
+ sizeof (instr.ftiq_instr));
+ mutex_exit(&fasttrap_tpoints.fth_table[index].ftb_mtx);
+
+ if (copyout(&instr, (void *)arg, sizeof (instr)) != 0)
+ return (EFAULT);
+
+ return (0);
+ }
+
+ return (EINVAL);
+}
+
+static struct cb_ops fasttrap_cb_ops = {
+ fasttrap_open, /* open */
+ nodev, /* close */
+ nulldev, /* strategy */
+ nulldev, /* print */
+ nodev, /* dump */
+ nodev, /* read */
+ nodev, /* write */
+ fasttrap_ioctl, /* ioctl */
+ nodev, /* devmap */
+ nodev, /* mmap */
+ nodev, /* segmap */
+ nochpoll, /* poll */
+ ddi_prop_op, /* cb_prop_op */
+ 0, /* streamtab */
+ D_NEW | D_MP /* Driver compatibility flag */
+};
+
+/*ARGSUSED*/
+static int
+fasttrap_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
+{
+ int error;
+
+ switch (infocmd) {
+ case DDI_INFO_DEVT2DEVINFO:
+ *result = (void *)fasttrap_devi;
+ error = DDI_SUCCESS;
+ break;
+ case DDI_INFO_DEVT2INSTANCE:
+ *result = (void *)0;
+ error = DDI_SUCCESS;
+ break;
+ default:
+ error = DDI_FAILURE;
+ }
+ return (error);
+}
+
+static int
+fasttrap_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
+{
+ ulong_t nent;
+
+ switch (cmd) {
+ case DDI_ATTACH:
+ break;
+ case DDI_RESUME:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (ddi_create_minor_node(devi, "fasttrap", S_IFCHR, 0,
+ DDI_PSEUDO, NULL) == DDI_FAILURE) {
+ ddi_remove_minor_node(devi, NULL);
+ return (DDI_FAILURE);
+ }
+
+ ddi_report_dev(devi);
+ fasttrap_devi = devi;
+
+ /*
+ * Install our hooks into fork(2), exec(2), and exit(2).
+ */
+ dtrace_fasttrap_fork_ptr = &fasttrap_fork;
+ dtrace_fasttrap_exit_ptr = &fasttrap_exec_exit;
+ dtrace_fasttrap_exec_ptr = &fasttrap_exec_exit;
+
+ fasttrap_max = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
+ "fasttrap-max-probes", FASTTRAP_MAX_DEFAULT);
+ fasttrap_total = 0;
+
+ /*
+ * Conjure up the tracepoints hashtable...
+ */
+ nent = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
+ "fasttrap-hash-size", FASTTRAP_TPOINTS_DEFAULT_SIZE);
+
+ if (nent == 0 || nent > 0x1000000)
+ nent = FASTTRAP_TPOINTS_DEFAULT_SIZE;
+
+ if ((nent & (nent - 1)) == 0)
+ fasttrap_tpoints.fth_nent = nent;
+ else
+ fasttrap_tpoints.fth_nent = 1 << fasttrap_highbit(nent);
+ ASSERT(fasttrap_tpoints.fth_nent > 0);
+ fasttrap_tpoints.fth_mask = fasttrap_tpoints.fth_nent - 1;
+ fasttrap_tpoints.fth_table = kmem_zalloc(fasttrap_tpoints.fth_nent *
+ sizeof (fasttrap_bucket_t), KM_SLEEP);
+
+ /*
+ * ... and the providers hash table...
+ */
+ nent = FASTTRAP_PROVIDERS_DEFAULT_SIZE;
+ if ((nent & (nent - 1)) == 0)
+ fasttrap_provs.fth_nent = nent;
+ else
+ fasttrap_provs.fth_nent = 1 << fasttrap_highbit(nent);
+ ASSERT(fasttrap_provs.fth_nent > 0);
+ fasttrap_provs.fth_mask = fasttrap_provs.fth_nent - 1;
+ fasttrap_provs.fth_table = kmem_zalloc(fasttrap_provs.fth_nent *
+ sizeof (fasttrap_bucket_t), KM_SLEEP);
+
+ /*
+ * ... and the procs hash table.
+ */
+ nent = FASTTRAP_PROCS_DEFAULT_SIZE;
+ if ((nent & (nent - 1)) == 0)
+ fasttrap_procs.fth_nent = nent;
+ else
+ fasttrap_procs.fth_nent = 1 << fasttrap_highbit(nent);
+ ASSERT(fasttrap_procs.fth_nent > 0);
+ fasttrap_procs.fth_mask = fasttrap_procs.fth_nent - 1;
+ fasttrap_procs.fth_table = kmem_zalloc(fasttrap_procs.fth_nent *
+ sizeof (fasttrap_bucket_t), KM_SLEEP);
+
+ (void) dtrace_meta_register("fasttrap", &fasttrap_mops, NULL,
+ &fasttrap_meta_id);
+
+ return (DDI_SUCCESS);
+}
+
+static int
+fasttrap_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
+{
+ int i, fail = 0;
+ timeout_id_t tmp;
+
+ switch (cmd) {
+ case DDI_DETACH:
+ break;
+ case DDI_SUSPEND:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Unregister the meta-provider to make sure no new fasttrap-
+ * managed providers come along while we're trying to close up
+ * shop. If we fail to detach, we'll need to re-register as a
+ * meta-provider. We can fail to unregister as a meta-provider
+ * if providers we manage still exist.
+ */
+ if (fasttrap_meta_id != DTRACE_METAPROVNONE &&
+ dtrace_meta_unregister(fasttrap_meta_id) != 0)
+ return (DDI_FAILURE);
+
+ /*
+ * Prevent any new timeouts from running by setting fasttrap_timeout
+ * to a non-zero value, and wait for the current timeout to complete.
+ */
+ mutex_enter(&fasttrap_cleanup_mtx);
+ fasttrap_cleanup_work = 0;
+
+ while (fasttrap_timeout != (timeout_id_t)1) {
+ tmp = fasttrap_timeout;
+ fasttrap_timeout = (timeout_id_t)1;
+
+ if (tmp != 0) {
+ mutex_exit(&fasttrap_cleanup_mtx);
+ (void) untimeout(tmp);
+ mutex_enter(&fasttrap_cleanup_mtx);
+ }
+ }
+
+ fasttrap_cleanup_work = 0;
+ mutex_exit(&fasttrap_cleanup_mtx);
+
+ /*
+ * Iterate over all of our providers. If there's still a process
+ * that corresponds to that pid, fail to detach.
+ */
+ for (i = 0; i < fasttrap_provs.fth_nent; i++) {
+ fasttrap_provider_t **fpp, *fp;
+ fasttrap_bucket_t *bucket = &fasttrap_provs.fth_table[i];
+
+ mutex_enter(&bucket->ftb_mtx);
+ fpp = (fasttrap_provider_t **)&bucket->ftb_data;
+ while ((fp = *fpp) != NULL) {
+ /*
+ * Acquire and release the lock as a simple way of
+ * waiting for any other consumer to finish with
+ * this provider. A thread must first acquire the
+ * bucket lock so there's no chance of another thread
+ * blocking on the provider's lock.
+ */
+ mutex_enter(&fp->ftp_mtx);
+ mutex_exit(&fp->ftp_mtx);
+
+ if (dtrace_unregister(fp->ftp_provid) != 0) {
+ fail = 1;
+ fpp = &fp->ftp_next;
+ } else {
+ *fpp = fp->ftp_next;
+ fasttrap_provider_free(fp);
+ }
+ }
+
+ mutex_exit(&bucket->ftb_mtx);
+ }
+
+ if (fail) {
+ uint_t work;
+ /*
+ * If we're failing to detach, we need to unblock timeouts
+ * and start a new timeout if any work has accumulated while
+ * we've been unsuccessfully trying to detach.
+ */
+ mutex_enter(&fasttrap_cleanup_mtx);
+ fasttrap_timeout = 0;
+ work = fasttrap_cleanup_work;
+ mutex_exit(&fasttrap_cleanup_mtx);
+
+ if (work)
+ fasttrap_pid_cleanup();
+
+ (void) dtrace_meta_register("fasttrap", &fasttrap_mops, NULL,
+ &fasttrap_meta_id);
+
+ return (DDI_FAILURE);
+ }
+
+#ifdef DEBUG
+ mutex_enter(&fasttrap_count_mtx);
+ ASSERT(fasttrap_pid_count == 0);
+ mutex_exit(&fasttrap_count_mtx);
+#endif
+
+ kmem_free(fasttrap_tpoints.fth_table,
+ fasttrap_tpoints.fth_nent * sizeof (fasttrap_bucket_t));
+ fasttrap_tpoints.fth_nent = 0;
+
+ kmem_free(fasttrap_provs.fth_table,
+ fasttrap_provs.fth_nent * sizeof (fasttrap_bucket_t));
+ fasttrap_provs.fth_nent = 0;
+
+ kmem_free(fasttrap_procs.fth_table,
+ fasttrap_procs.fth_nent * sizeof (fasttrap_bucket_t));
+ fasttrap_procs.fth_nent = 0;
+
+ /*
+ * We know there are no tracepoints in any process anywhere in
+ * the system so there is no process which has its p_dtrace_count
+ * greater than zero, therefore we know that no thread can actively
+ * be executing code in fasttrap_fork(). Similarly for p_dtrace_probes
+ * and fasttrap_exec() and fasttrap_exit().
+ */
+ ASSERT(dtrace_fasttrap_fork_ptr == &fasttrap_fork);
+ dtrace_fasttrap_fork_ptr = NULL;
+
+ ASSERT(dtrace_fasttrap_exec_ptr == &fasttrap_exec_exit);
+ dtrace_fasttrap_exec_ptr = NULL;
+
+ ASSERT(dtrace_fasttrap_exit_ptr == &fasttrap_exec_exit);
+ dtrace_fasttrap_exit_ptr = NULL;
+
+ ddi_remove_minor_node(devi, NULL);
+
+ return (DDI_SUCCESS);
+}
+
+static struct dev_ops fasttrap_ops = {
+ DEVO_REV, /* devo_rev */
+ 0, /* refcnt */
+ fasttrap_info, /* get_dev_info */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ fasttrap_attach, /* attach */
+ fasttrap_detach, /* detach */
+ nodev, /* reset */
+ &fasttrap_cb_ops, /* driver operations */
+ NULL, /* bus operations */
+ nodev /* dev power */
+};
+
+/*
+ * Module linkage information for the kernel.
+ */
+static struct modldrv modldrv = {
+ &mod_driverops, /* module type (this is a pseudo driver) */
+ "Fasttrap Tracing", /* name of module */
+ &fasttrap_ops, /* driver ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1,
+ (void *)&modldrv,
+ NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}
diff --git a/uts/common/dtrace/lockstat.c b/uts/common/dtrace/lockstat.c
new file mode 100644
index 000000000000..3eb76a061d32
--- /dev/null
+++ b/uts/common/dtrace/lockstat.c
@@ -0,0 +1,341 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/stat.h>
+#include <sys/open.h>
+#include <sys/file.h>
+#include <sys/conf.h>
+#include <sys/modctl.h>
+#include <sys/cmn_err.h>
+#include <sys/bitmap.h>
+#include <sys/debug.h>
+#include <sys/kmem.h>
+#include <sys/errno.h>
+#include <sys/sysmacros.h>
+#include <sys/lockstat.h>
+#include <sys/atomic.h>
+#include <sys/dtrace.h>
+
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+
+typedef struct lockstat_probe {
+ const char *lsp_func;
+ const char *lsp_name;
+ int lsp_probe;
+ dtrace_id_t lsp_id;
+} lockstat_probe_t;
+
+lockstat_probe_t lockstat_probes[] =
+{
+ { LS_MUTEX_ENTER, LSA_ACQUIRE, LS_MUTEX_ENTER_ACQUIRE },
+ { LS_MUTEX_ENTER, LSA_BLOCK, LS_MUTEX_ENTER_BLOCK },
+ { LS_MUTEX_ENTER, LSA_SPIN, LS_MUTEX_ENTER_SPIN },
+ { LS_MUTEX_EXIT, LSA_RELEASE, LS_MUTEX_EXIT_RELEASE },
+ { LS_MUTEX_DESTROY, LSA_RELEASE, LS_MUTEX_DESTROY_RELEASE },
+ { LS_MUTEX_TRYENTER, LSA_ACQUIRE, LS_MUTEX_TRYENTER_ACQUIRE },
+ { LS_LOCK_SET, LSS_ACQUIRE, LS_LOCK_SET_ACQUIRE },
+ { LS_LOCK_SET, LSS_SPIN, LS_LOCK_SET_SPIN },
+ { LS_LOCK_SET_SPL, LSS_ACQUIRE, LS_LOCK_SET_SPL_ACQUIRE },
+ { LS_LOCK_SET_SPL, LSS_SPIN, LS_LOCK_SET_SPL_SPIN },
+ { LS_LOCK_TRY, LSS_ACQUIRE, LS_LOCK_TRY_ACQUIRE },
+ { LS_LOCK_CLEAR, LSS_RELEASE, LS_LOCK_CLEAR_RELEASE },
+ { LS_LOCK_CLEAR_SPLX, LSS_RELEASE, LS_LOCK_CLEAR_SPLX_RELEASE },
+ { LS_CLOCK_UNLOCK, LSS_RELEASE, LS_CLOCK_UNLOCK_RELEASE },
+ { LS_RW_ENTER, LSR_ACQUIRE, LS_RW_ENTER_ACQUIRE },
+ { LS_RW_ENTER, LSR_BLOCK, LS_RW_ENTER_BLOCK },
+ { LS_RW_EXIT, LSR_RELEASE, LS_RW_EXIT_RELEASE },
+ { LS_RW_TRYENTER, LSR_ACQUIRE, LS_RW_TRYENTER_ACQUIRE },
+ { LS_RW_TRYUPGRADE, LSR_UPGRADE, LS_RW_TRYUPGRADE_UPGRADE },
+ { LS_RW_DOWNGRADE, LSR_DOWNGRADE, LS_RW_DOWNGRADE_DOWNGRADE },
+ { LS_THREAD_LOCK, LST_SPIN, LS_THREAD_LOCK_SPIN },
+ { LS_THREAD_LOCK_HIGH, LST_SPIN, LS_THREAD_LOCK_HIGH_SPIN },
+ { NULL }
+};
+
+static dev_info_t *lockstat_devi; /* saved in xxattach() for xxinfo() */
+static kmutex_t lockstat_test; /* for testing purposes only */
+static dtrace_provider_id_t lockstat_id;
+
+/*ARGSUSED*/
+static void
+lockstat_enable(void *arg, dtrace_id_t id, void *parg)
+{
+ lockstat_probe_t *probe = parg;
+
+ ASSERT(!lockstat_probemap[probe->lsp_probe]);
+
+ lockstat_probemap[probe->lsp_probe] = id;
+ membar_producer();
+
+ lockstat_hot_patch();
+ membar_producer();
+
+ /*
+ * Immediately generate a record for the lockstat_test mutex
+ * to verify that the mutex hot-patch code worked as expected.
+ */
+ mutex_enter(&lockstat_test);
+ mutex_exit(&lockstat_test);
+}
+
+/*ARGSUSED*/
+static void
+lockstat_disable(void *arg, dtrace_id_t id, void *parg)
+{
+ lockstat_probe_t *probe = parg;
+ int i;
+
+ ASSERT(lockstat_probemap[probe->lsp_probe]);
+
+ lockstat_probemap[probe->lsp_probe] = 0;
+ lockstat_hot_patch();
+ membar_producer();
+
+ /*
+ * See if we have any probes left enabled.
+ */
+ for (i = 0; i < LS_NPROBES; i++) {
+ if (lockstat_probemap[i]) {
+ /*
+ * This probe is still enabled. We don't need to deal
+ * with waiting for all threads to be out of the
+ * lockstat critical sections; just return.
+ */
+ return;
+ }
+ }
+
+ /*
+ * The delay() here isn't as cheesy as you might think. We don't
+ * want to busy-loop in the kernel, so we have to give up the
+ * CPU between calls to lockstat_active_threads(); that much is
+ * obvious. But the reason it's a do..while loop rather than a
+ * while loop is subtle. The memory barrier above guarantees that
+ * no threads will enter the lockstat code from this point forward.
+ * However, another thread could already be executing lockstat code
+ * without our knowledge if the update to its t_lockstat field hasn't
+ * cleared its CPU's store buffer. Delaying for one clock tick
+ * guarantees that either (1) the thread will have *ample* time to
+ * complete its work, or (2) the thread will be preempted, in which
+ * case it will have to grab and release a dispatcher lock, which
+ * will flush that CPU's store buffer. Either way we're covered.
+ */
+ do {
+ delay(1);
+ } while (lockstat_active_threads());
+}
+
+/*ARGSUSED*/
+static int
+lockstat_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
+{
+ return (0);
+}
+
+/* ARGSUSED */
+static int
+lockstat_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
+{
+ int error;
+
+ switch (infocmd) {
+ case DDI_INFO_DEVT2DEVINFO:
+ *result = (void *) lockstat_devi;
+ error = DDI_SUCCESS;
+ break;
+ case DDI_INFO_DEVT2INSTANCE:
+ *result = (void *)0;
+ error = DDI_SUCCESS;
+ break;
+ default:
+ error = DDI_FAILURE;
+ }
+ return (error);
+}
+
+/*ARGSUSED*/
+static void
+lockstat_provide(void *arg, const dtrace_probedesc_t *desc)
+{
+ int i = 0;
+
+ for (i = 0; lockstat_probes[i].lsp_func != NULL; i++) {
+ lockstat_probe_t *probe = &lockstat_probes[i];
+
+ if (dtrace_probe_lookup(lockstat_id, "genunix",
+ probe->lsp_func, probe->lsp_name) != 0)
+ continue;
+
+ ASSERT(!probe->lsp_id);
+ probe->lsp_id = dtrace_probe_create(lockstat_id,
+ "genunix", probe->lsp_func, probe->lsp_name,
+ 1, probe);
+ }
+}
+
+/*ARGSUSED*/
+static void
+lockstat_destroy(void *arg, dtrace_id_t id, void *parg)
+{
+ lockstat_probe_t *probe = parg;
+
+ ASSERT(!lockstat_probemap[probe->lsp_probe]);
+ probe->lsp_id = 0;
+}
+
+static dtrace_pattr_t lockstat_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+};
+
+static dtrace_pops_t lockstat_pops = {
+ lockstat_provide,
+ NULL,
+ lockstat_enable,
+ lockstat_disable,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ lockstat_destroy
+};
+
+static int
+lockstat_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
+{
+ switch (cmd) {
+ case DDI_ATTACH:
+ break;
+ case DDI_RESUME:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (ddi_create_minor_node(devi, "lockstat", S_IFCHR, 0,
+ DDI_PSEUDO, 0) == DDI_FAILURE ||
+ dtrace_register("lockstat", &lockstat_attr, DTRACE_PRIV_KERNEL,
+ NULL, &lockstat_pops, NULL, &lockstat_id) != 0) {
+ ddi_remove_minor_node(devi, NULL);
+ return (DDI_FAILURE);
+ }
+
+ lockstat_probe = dtrace_probe;
+ membar_producer();
+
+ ddi_report_dev(devi);
+ lockstat_devi = devi;
+ return (DDI_SUCCESS);
+}
+
+static int
+lockstat_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
+{
+ switch (cmd) {
+ case DDI_DETACH:
+ break;
+ case DDI_SUSPEND:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (dtrace_unregister(lockstat_id) != 0)
+ return (DDI_FAILURE);
+
+ ddi_remove_minor_node(devi, NULL);
+ return (DDI_SUCCESS);
+}
+
+/*
+ * Configuration data structures
+ */
+static struct cb_ops lockstat_cb_ops = {
+ lockstat_open, /* open */
+ nodev, /* close */
+ nulldev, /* strategy */
+ nulldev, /* print */
+ nodev, /* dump */
+ nodev, /* read */
+ nodev, /* write */
+ nodev, /* ioctl */
+ nodev, /* devmap */
+ nodev, /* mmap */
+ nodev, /* segmap */
+ nochpoll, /* poll */
+ ddi_prop_op, /* cb_prop_op */
+ 0, /* streamtab */
+ D_MP | D_NEW /* Driver compatibility flag */
+};
+
+static struct dev_ops lockstat_ops = {
+ DEVO_REV, /* devo_rev, */
+ 0, /* refcnt */
+ lockstat_info, /* getinfo */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ lockstat_attach, /* attach */
+ lockstat_detach, /* detach */
+ nulldev, /* reset */
+ &lockstat_cb_ops, /* cb_ops */
+ NULL, /* bus_ops */
+};
+
+static struct modldrv modldrv = {
+ &mod_driverops, /* Type of module. This one is a driver */
+ "Lock Statistics %I%", /* name of module */
+ &lockstat_ops, /* driver ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1, (void *)&modldrv, NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
diff --git a/uts/common/dtrace/profile.c b/uts/common/dtrace/profile.c
new file mode 100644
index 000000000000..8de919a851a2
--- /dev/null
+++ b/uts/common/dtrace/profile.c
@@ -0,0 +1,576 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/errno.h>
+#include <sys/stat.h>
+#include <sys/modctl.h>
+#include <sys/conf.h>
+#include <sys/systm.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#include <sys/cpuvar.h>
+#include <sys/kmem.h>
+#include <sys/strsubr.h>
+#include <sys/dtrace.h>
+#include <sys/cyclic.h>
+#include <sys/atomic.h>
+
+static dev_info_t *profile_devi;
+static dtrace_provider_id_t profile_id;
+
+/*
+ * Regardless of platform, the stack frames look like this in the case of the
+ * profile provider:
+ *
+ * profile_fire
+ * cyclic_expire
+ * cyclic_fire
+ * [ cbe ]
+ * [ interrupt code ]
+ *
+ * On x86, there are five frames from the generic interrupt code; further, the
+ * interrupted instruction appears as its own stack frame, giving us a total of
+ * 10.
+ *
+ * On SPARC, the picture is further complicated because the compiler
+ * optimizes away tail-calls -- so the following frames are optimized away:
+ *
+ * profile_fire
+ * cyclic_expire
+ *
+ * This gives three frames. However, on DEBUG kernels, the cyclic_expire
+ * frame cannot be tail-call eliminated, yielding four frames in this case.
+ *
+ * All of the above constraints lead to the mess below. Yes, the profile
+ * provider should ideally figure this out on-the-fly by hitting one of its own
+ * probes and then walking its own stack trace. This is complicated, however,
+ * and the static definition doesn't seem to be overly brittle. Still, we
+ * allow for a manual override in case we get it completely wrong.
+ */
+#ifdef __x86
+#define PROF_ARTIFICIAL_FRAMES 10
+#else
+#ifdef __sparc
+#ifdef DEBUG
+#define PROF_ARTIFICIAL_FRAMES 4
+#else
+#define PROF_ARTIFICIAL_FRAMES 3
+#endif
+#endif
+#endif
+
+#define PROF_NAMELEN 15
+
+#define PROF_PROFILE 0
+#define PROF_TICK 1
+#define PROF_PREFIX_PROFILE "profile-"
+#define PROF_PREFIX_TICK "tick-"
+
+typedef struct profile_probe {
+ char prof_name[PROF_NAMELEN];
+ dtrace_id_t prof_id;
+ int prof_kind;
+ hrtime_t prof_interval;
+ cyclic_id_t prof_cyclic;
+} profile_probe_t;
+
+typedef struct profile_probe_percpu {
+ hrtime_t profc_expected;
+ hrtime_t profc_interval;
+ profile_probe_t *profc_probe;
+} profile_probe_percpu_t;
+
+hrtime_t profile_interval_min = NANOSEC / 5000; /* 5000 hz */
+int profile_aframes = 0; /* override */
+
+static int profile_rates[] = {
+ 97, 199, 499, 997, 1999,
+ 4001, 4999, 0, 0, 0,
+ 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0
+};
+
+static int profile_ticks[] = {
+ 1, 10, 100, 500, 1000,
+ 5000, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0
+};
+
+/*
+ * profile_max defines the upper bound on the number of profile probes that
+ * can exist (this is to prevent malicious or clumsy users from exhausing
+ * system resources by creating a slew of profile probes). At mod load time,
+ * this gets its value from PROFILE_MAX_DEFAULT or profile-max-probes if it's
+ * present in the profile.conf file.
+ */
+#define PROFILE_MAX_DEFAULT 1000 /* default max. number of probes */
+static uint32_t profile_max; /* maximum number of profile probes */
+static uint32_t profile_total; /* current number of profile probes */
+
+static void
+profile_fire(void *arg)
+{
+ profile_probe_percpu_t *pcpu = arg;
+ profile_probe_t *prof = pcpu->profc_probe;
+ hrtime_t late;
+
+ late = dtrace_gethrtime() - pcpu->profc_expected;
+ pcpu->profc_expected += pcpu->profc_interval;
+
+ dtrace_probe(prof->prof_id, CPU->cpu_profile_pc,
+ CPU->cpu_profile_upc, late, 0, 0);
+}
+
+static void
+profile_tick(void *arg)
+{
+ profile_probe_t *prof = arg;
+
+ dtrace_probe(prof->prof_id, CPU->cpu_profile_pc,
+ CPU->cpu_profile_upc, 0, 0, 0);
+}
+
+static void
+profile_create(hrtime_t interval, const char *name, int kind)
+{
+ profile_probe_t *prof;
+ int nr_frames = PROF_ARTIFICIAL_FRAMES + dtrace_mach_aframes();
+
+ if (profile_aframes)
+ nr_frames = profile_aframes;
+
+ if (interval < profile_interval_min)
+ return;
+
+ if (dtrace_probe_lookup(profile_id, NULL, NULL, name) != 0)
+ return;
+
+ atomic_add_32(&profile_total, 1);
+ if (profile_total > profile_max) {
+ atomic_add_32(&profile_total, -1);
+ return;
+ }
+
+ prof = kmem_zalloc(sizeof (profile_probe_t), KM_SLEEP);
+ (void) strcpy(prof->prof_name, name);
+ prof->prof_interval = interval;
+ prof->prof_cyclic = CYCLIC_NONE;
+ prof->prof_kind = kind;
+ prof->prof_id = dtrace_probe_create(profile_id,
+ NULL, NULL, name, nr_frames, prof);
+}
+
+/*ARGSUSED*/
+static void
+profile_provide(void *arg, const dtrace_probedesc_t *desc)
+{
+ int i, j, rate, kind;
+ hrtime_t val = 0, mult = 1, len;
+ const char *name, *suffix = NULL;
+
+ const struct {
+ char *prefix;
+ int kind;
+ } types[] = {
+ { PROF_PREFIX_PROFILE, PROF_PROFILE },
+ { PROF_PREFIX_TICK, PROF_TICK },
+ { NULL, NULL }
+ };
+
+ const struct {
+ char *name;
+ hrtime_t mult;
+ } suffixes[] = {
+ { "ns", NANOSEC / NANOSEC },
+ { "nsec", NANOSEC / NANOSEC },
+ { "us", NANOSEC / MICROSEC },
+ { "usec", NANOSEC / MICROSEC },
+ { "ms", NANOSEC / MILLISEC },
+ { "msec", NANOSEC / MILLISEC },
+ { "s", NANOSEC / SEC },
+ { "sec", NANOSEC / SEC },
+ { "m", NANOSEC * (hrtime_t)60 },
+ { "min", NANOSEC * (hrtime_t)60 },
+ { "h", NANOSEC * (hrtime_t)(60 * 60) },
+ { "hour", NANOSEC * (hrtime_t)(60 * 60) },
+ { "d", NANOSEC * (hrtime_t)(24 * 60 * 60) },
+ { "day", NANOSEC * (hrtime_t)(24 * 60 * 60) },
+ { "hz", 0 },
+ { NULL }
+ };
+
+ if (desc == NULL) {
+ char n[PROF_NAMELEN];
+
+ /*
+ * If no description was provided, provide all of our probes.
+ */
+ for (i = 0; i < sizeof (profile_rates) / sizeof (int); i++) {
+ if ((rate = profile_rates[i]) == 0)
+ continue;
+
+ (void) snprintf(n, PROF_NAMELEN, "%s%d",
+ PROF_PREFIX_PROFILE, rate);
+ profile_create(NANOSEC / rate, n, PROF_PROFILE);
+ }
+
+ for (i = 0; i < sizeof (profile_ticks) / sizeof (int); i++) {
+ if ((rate = profile_ticks[i]) == 0)
+ continue;
+
+ (void) snprintf(n, PROF_NAMELEN, "%s%d",
+ PROF_PREFIX_TICK, rate);
+ profile_create(NANOSEC / rate, n, PROF_TICK);
+ }
+
+ return;
+ }
+
+ name = desc->dtpd_name;
+
+ for (i = 0; types[i].prefix != NULL; i++) {
+ len = strlen(types[i].prefix);
+
+ if (strncmp(name, types[i].prefix, len) != 0)
+ continue;
+ break;
+ }
+
+ if (types[i].prefix == NULL)
+ return;
+
+ kind = types[i].kind;
+ j = strlen(name) - len;
+
+ /*
+ * We need to start before any time suffix.
+ */
+ for (j = strlen(name); j >= len; j--) {
+ if (name[j] >= '0' && name[j] <= '9')
+ break;
+ suffix = &name[j];
+ }
+
+ ASSERT(suffix != NULL);
+
+ /*
+ * Now determine the numerical value present in the probe name.
+ */
+ for (; j >= len; j--) {
+ if (name[j] < '0' || name[j] > '9')
+ return;
+
+ val += (name[j] - '0') * mult;
+ mult *= (hrtime_t)10;
+ }
+
+ if (val == 0)
+ return;
+
+ /*
+ * Look-up the suffix to determine the multiplier.
+ */
+ for (i = 0, mult = 0; suffixes[i].name != NULL; i++) {
+ if (strcasecmp(suffixes[i].name, suffix) == 0) {
+ mult = suffixes[i].mult;
+ break;
+ }
+ }
+
+ if (suffixes[i].name == NULL && *suffix != '\0')
+ return;
+
+ if (mult == 0) {
+ /*
+ * The default is frequency-per-second.
+ */
+ val = NANOSEC / val;
+ } else {
+ val *= mult;
+ }
+
+ profile_create(val, name, kind);
+}
+
+/*ARGSUSED*/
+static void
+profile_destroy(void *arg, dtrace_id_t id, void *parg)
+{
+ profile_probe_t *prof = parg;
+
+ ASSERT(prof->prof_cyclic == CYCLIC_NONE);
+ kmem_free(prof, sizeof (profile_probe_t));
+
+ ASSERT(profile_total >= 1);
+ atomic_add_32(&profile_total, -1);
+}
+
+/*ARGSUSED*/
+static void
+profile_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
+{
+ profile_probe_t *prof = arg;
+ profile_probe_percpu_t *pcpu;
+
+ pcpu = kmem_zalloc(sizeof (profile_probe_percpu_t), KM_SLEEP);
+ pcpu->profc_probe = prof;
+
+ hdlr->cyh_func = profile_fire;
+ hdlr->cyh_arg = pcpu;
+ hdlr->cyh_level = CY_HIGH_LEVEL;
+
+ when->cyt_interval = prof->prof_interval;
+ when->cyt_when = dtrace_gethrtime() + when->cyt_interval;
+
+ pcpu->profc_expected = when->cyt_when;
+ pcpu->profc_interval = when->cyt_interval;
+}
+
+/*ARGSUSED*/
+static void
+profile_offline(void *arg, cpu_t *cpu, void *oarg)
+{
+ profile_probe_percpu_t *pcpu = oarg;
+
+ ASSERT(pcpu->profc_probe == arg);
+ kmem_free(pcpu, sizeof (profile_probe_percpu_t));
+}
+
+/*ARGSUSED*/
+static void
+profile_enable(void *arg, dtrace_id_t id, void *parg)
+{
+ profile_probe_t *prof = parg;
+ cyc_omni_handler_t omni;
+ cyc_handler_t hdlr;
+ cyc_time_t when;
+
+ ASSERT(prof->prof_interval != 0);
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ if (prof->prof_kind == PROF_TICK) {
+ hdlr.cyh_func = profile_tick;
+ hdlr.cyh_arg = prof;
+ hdlr.cyh_level = CY_HIGH_LEVEL;
+
+ when.cyt_interval = prof->prof_interval;
+ when.cyt_when = dtrace_gethrtime() + when.cyt_interval;
+ } else {
+ ASSERT(prof->prof_kind == PROF_PROFILE);
+ omni.cyo_online = profile_online;
+ omni.cyo_offline = profile_offline;
+ omni.cyo_arg = prof;
+ }
+
+ if (prof->prof_kind == PROF_TICK) {
+ prof->prof_cyclic = cyclic_add(&hdlr, &when);
+ } else {
+ prof->prof_cyclic = cyclic_add_omni(&omni);
+ }
+}
+
+/*ARGSUSED*/
+static void
+profile_disable(void *arg, dtrace_id_t id, void *parg)
+{
+ profile_probe_t *prof = parg;
+
+ ASSERT(prof->prof_cyclic != CYCLIC_NONE);
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ cyclic_remove(prof->prof_cyclic);
+ prof->prof_cyclic = CYCLIC_NONE;
+}
+
+/*ARGSUSED*/
+static int
+profile_usermode(void *arg, dtrace_id_t id, void *parg)
+{
+ return (CPU->cpu_profile_pc == 0);
+}
+
+static dtrace_pattr_t profile_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+};
+
+static dtrace_pops_t profile_pops = {
+ profile_provide,
+ NULL,
+ profile_enable,
+ profile_disable,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ profile_usermode,
+ profile_destroy
+};
+
+static int
+profile_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
+{
+ switch (cmd) {
+ case DDI_ATTACH:
+ break;
+ case DDI_RESUME:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (ddi_create_minor_node(devi, "profile", S_IFCHR, 0,
+ DDI_PSEUDO, NULL) == DDI_FAILURE ||
+ dtrace_register("profile", &profile_attr,
+ DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER, NULL,
+ &profile_pops, NULL, &profile_id) != 0) {
+ ddi_remove_minor_node(devi, NULL);
+ return (DDI_FAILURE);
+ }
+
+ profile_max = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
+ "profile-max-probes", PROFILE_MAX_DEFAULT);
+
+ ddi_report_dev(devi);
+ profile_devi = devi;
+ return (DDI_SUCCESS);
+}
+
+static int
+profile_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
+{
+ switch (cmd) {
+ case DDI_DETACH:
+ break;
+ case DDI_SUSPEND:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (dtrace_unregister(profile_id) != 0)
+ return (DDI_FAILURE);
+
+ ddi_remove_minor_node(devi, NULL);
+ return (DDI_SUCCESS);
+}
+
+/*ARGSUSED*/
+static int
+profile_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
+{
+ int error;
+
+ switch (infocmd) {
+ case DDI_INFO_DEVT2DEVINFO:
+ *result = (void *)profile_devi;
+ error = DDI_SUCCESS;
+ break;
+ case DDI_INFO_DEVT2INSTANCE:
+ *result = (void *)0;
+ error = DDI_SUCCESS;
+ break;
+ default:
+ error = DDI_FAILURE;
+ }
+ return (error);
+}
+
+/*ARGSUSED*/
+static int
+profile_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
+{
+ return (0);
+}
+
+static struct cb_ops profile_cb_ops = {
+ profile_open, /* open */
+ nodev, /* close */
+ nulldev, /* strategy */
+ nulldev, /* print */
+ nodev, /* dump */
+ nodev, /* read */
+ nodev, /* write */
+ nodev, /* ioctl */
+ nodev, /* devmap */
+ nodev, /* mmap */
+ nodev, /* segmap */
+ nochpoll, /* poll */
+ ddi_prop_op, /* cb_prop_op */
+ 0, /* streamtab */
+ D_NEW | D_MP /* Driver compatibility flag */
+};
+
+static struct dev_ops profile_ops = {
+ DEVO_REV, /* devo_rev, */
+ 0, /* refcnt */
+ profile_info, /* get_dev_info */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ profile_attach, /* attach */
+ profile_detach, /* detach */
+ nodev, /* reset */
+ &profile_cb_ops, /* driver operations */
+ NULL, /* bus operations */
+ nodev /* dev power */
+};
+
+/*
+ * Module linkage information for the kernel.
+ */
+static struct modldrv modldrv = {
+ &mod_driverops, /* module type (this is a pseudo driver) */
+ "Profile Interrupt Tracing", /* name of module */
+ &profile_ops, /* driver ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1,
+ (void *)&modldrv,
+ NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}
diff --git a/uts/common/dtrace/sdt_subr.c b/uts/common/dtrace/sdt_subr.c
new file mode 100644
index 000000000000..66ff8a92a01b
--- /dev/null
+++ b/uts/common/dtrace/sdt_subr.c
@@ -0,0 +1,888 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/sdt_impl.h>
+
+static dtrace_pattr_t vtrace_attr = {
+{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_ISA },
+};
+
+static dtrace_pattr_t info_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
+};
+
+static dtrace_pattr_t fpu_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
+};
+
+static dtrace_pattr_t fsinfo_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+};
+
+static dtrace_pattr_t stab_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+};
+
+static dtrace_pattr_t sdt_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
+};
+
+static dtrace_pattr_t xpv_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_PLATFORM },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_PLATFORM },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_PLATFORM },
+};
+
+sdt_provider_t sdt_providers[] = {
+ { "vtrace", "__vtrace_", &vtrace_attr, 0 },
+ { "sysinfo", "__cpu_sysinfo_", &info_attr, 0 },
+ { "vminfo", "__cpu_vminfo_", &info_attr, 0 },
+ { "fpuinfo", "__fpuinfo_", &fpu_attr, 0 },
+ { "sched", "__sched_", &stab_attr, 0 },
+ { "proc", "__proc_", &stab_attr, 0 },
+ { "io", "__io_", &stab_attr, 0 },
+ { "mib", "__mib_", &stab_attr, 0 },
+ { "fsinfo", "__fsinfo_", &fsinfo_attr, 0 },
+ { "nfsv3", "__nfsv3_", &stab_attr, 0 },
+ { "nfsv4", "__nfsv4_", &stab_attr, 0 },
+ { "xpv", "__xpv_", &xpv_attr, 0 },
+ { "sysevent", "__sysevent_", &stab_attr, 0 },
+ { "sdt", NULL, &sdt_attr, 0 },
+ { NULL }
+};
+
+sdt_argdesc_t sdt_args[] = {
+ { "sched", "wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "wakeup", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "dequeue", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "dequeue", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "dequeue", 2, 1, "disp_t *", "cpuinfo_t *" },
+ { "sched", "enqueue", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "enqueue", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "enqueue", 2, 1, "disp_t *", "cpuinfo_t *" },
+ { "sched", "enqueue", 3, 2, "int" },
+ { "sched", "off-cpu", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "off-cpu", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "tick", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "tick", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "change-pri", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "change-pri", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "change-pri", 2, 1, "pri_t" },
+ { "sched", "schedctl-nopreempt", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "schedctl-nopreempt", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "schedctl-nopreempt", 2, 1, "int" },
+ { "sched", "schedctl-preempt", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "schedctl-preempt", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "schedctl-yield", 0, 0, "int" },
+ { "sched", "surrender", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "surrender", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "cpucaps-sleep", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "cpucaps-sleep", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "sched", "cpucaps-wakeup", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "sched", "cpucaps-wakeup", 1, 0, "kthread_t *", "psinfo_t *" },
+
+ { "proc", "create", 0, 0, "proc_t *", "psinfo_t *" },
+ { "proc", "exec", 0, 0, "string" },
+ { "proc", "exec-failure", 0, 0, "int" },
+ { "proc", "exit", 0, 0, "int" },
+ { "proc", "fault", 0, 0, "int" },
+ { "proc", "fault", 1, 1, "siginfo_t *" },
+ { "proc", "lwp-create", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "proc", "lwp-create", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "proc", "signal-clear", 0, 0, "int" },
+ { "proc", "signal-clear", 1, 1, "siginfo_t *" },
+ { "proc", "signal-discard", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "proc", "signal-discard", 1, 1, "proc_t *", "psinfo_t *" },
+ { "proc", "signal-discard", 2, 2, "int" },
+ { "proc", "signal-handle", 0, 0, "int" },
+ { "proc", "signal-handle", 1, 1, "siginfo_t *" },
+ { "proc", "signal-handle", 2, 2, "void (*)(void)" },
+ { "proc", "signal-send", 0, 0, "kthread_t *", "lwpsinfo_t *" },
+ { "proc", "signal-send", 1, 0, "kthread_t *", "psinfo_t *" },
+ { "proc", "signal-send", 2, 1, "int" },
+
+ { "io", "start", 0, 0, "buf_t *", "bufinfo_t *" },
+ { "io", "start", 1, 0, "buf_t *", "devinfo_t *" },
+ { "io", "start", 2, 0, "buf_t *", "fileinfo_t *" },
+ { "io", "done", 0, 0, "buf_t *", "bufinfo_t *" },
+ { "io", "done", 1, 0, "buf_t *", "devinfo_t *" },
+ { "io", "done", 2, 0, "buf_t *", "fileinfo_t *" },
+ { "io", "wait-start", 0, 0, "buf_t *", "bufinfo_t *" },
+ { "io", "wait-start", 1, 0, "buf_t *", "devinfo_t *" },
+ { "io", "wait-start", 2, 0, "buf_t *", "fileinfo_t *" },
+ { "io", "wait-done", 0, 0, "buf_t *", "bufinfo_t *" },
+ { "io", "wait-done", 1, 0, "buf_t *", "devinfo_t *" },
+ { "io", "wait-done", 2, 0, "buf_t *", "fileinfo_t *" },
+
+ { "mib", NULL, 0, 0, "int" },
+
+ { "fsinfo", NULL, 0, 0, "vnode_t *", "fileinfo_t *" },
+ { "fsinfo", NULL, 1, 1, "int", "int" },
+
+ { "nfsv3", "op-getattr-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-getattr-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-getattr-start", 2, 3, "GETATTR3args *" },
+ { "nfsv3", "op-getattr-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-getattr-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-getattr-done", 2, 3, "GETATTR3res *" },
+ { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" },
+ { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" },
+ { "nfsv3", "op-lookup-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-lookup-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-lookup-start", 2, 3, "LOOKUP3args *" },
+ { "nfsv3", "op-lookup-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-lookup-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-lookup-done", 2, 3, "LOOKUP3res *" },
+ { "nfsv3", "op-access-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-access-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-access-start", 2, 3, "ACCESS3args *" },
+ { "nfsv3", "op-access-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-access-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-access-done", 2, 3, "ACCESS3res *" },
+ { "nfsv3", "op-commit-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-commit-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-commit-start", 2, 3, "COMMIT3args *" },
+ { "nfsv3", "op-commit-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-commit-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-commit-done", 2, 3, "COMMIT3res *" },
+ { "nfsv3", "op-create-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-create-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-create-start", 2, 3, "CREATE3args *" },
+ { "nfsv3", "op-create-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-create-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-create-done", 2, 3, "CREATE3res *" },
+ { "nfsv3", "op-fsinfo-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-fsinfo-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-fsinfo-start", 2, 3, "FSINFO3args *" },
+ { "nfsv3", "op-fsinfo-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-fsinfo-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-fsinfo-done", 2, 3, "FSINFO3res *" },
+ { "nfsv3", "op-fsstat-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-fsstat-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-fsstat-start", 2, 3, "FSSTAT3args *" },
+ { "nfsv3", "op-fsstat-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-fsstat-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-fsstat-done", 2, 3, "FSSTAT3res *" },
+ { "nfsv3", "op-link-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-link-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-link-start", 2, 3, "LINK3args *" },
+ { "nfsv3", "op-link-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-link-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-link-done", 2, 3, "LINK3res *" },
+ { "nfsv3", "op-mkdir-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-mkdir-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-mkdir-start", 2, 3, "MKDIR3args *" },
+ { "nfsv3", "op-mkdir-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-mkdir-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-mkdir-done", 2, 3, "MKDIR3res *" },
+ { "nfsv3", "op-mknod-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-mknod-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-mknod-start", 2, 3, "MKNOD3args *" },
+ { "nfsv3", "op-mknod-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-mknod-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-mknod-done", 2, 3, "MKNOD3res *" },
+ { "nfsv3", "op-null-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-null-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-null-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-null-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-pathconf-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-pathconf-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-pathconf-start", 2, 3, "PATHCONF3args *" },
+ { "nfsv3", "op-pathconf-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-pathconf-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-pathconf-done", 2, 3, "PATHCONF3res *" },
+ { "nfsv3", "op-read-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-read-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-read-start", 2, 3, "READ3args *" },
+ { "nfsv3", "op-read-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-read-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-read-done", 2, 3, "READ3res *" },
+ { "nfsv3", "op-readdir-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-readdir-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-readdir-start", 2, 3, "READDIR3args *" },
+ { "nfsv3", "op-readdir-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-readdir-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-readdir-done", 2, 3, "READDIR3res *" },
+ { "nfsv3", "op-readdirplus-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-readdirplus-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-readdirplus-start", 2, 3, "READDIRPLUS3args *" },
+ { "nfsv3", "op-readdirplus-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-readdirplus-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-readdirplus-done", 2, 3, "READDIRPLUS3res *" },
+ { "nfsv3", "op-readlink-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-readlink-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-readlink-start", 2, 3, "READLINK3args *" },
+ { "nfsv3", "op-readlink-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-readlink-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-readlink-done", 2, 3, "READLINK3res *" },
+ { "nfsv3", "op-remove-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-remove-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-remove-start", 2, 3, "REMOVE3args *" },
+ { "nfsv3", "op-remove-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-remove-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-remove-done", 2, 3, "REMOVE3res *" },
+ { "nfsv3", "op-rename-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-rename-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-rename-start", 2, 3, "RENAME3args *" },
+ { "nfsv3", "op-rename-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-rename-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-rename-done", 2, 3, "RENAME3res *" },
+ { "nfsv3", "op-rmdir-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-rmdir-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-rmdir-start", 2, 3, "RMDIR3args *" },
+ { "nfsv3", "op-rmdir-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-rmdir-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-rmdir-done", 2, 3, "RMDIR3res *" },
+ { "nfsv3", "op-setattr-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-setattr-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-setattr-start", 2, 3, "SETATTR3args *" },
+ { "nfsv3", "op-setattr-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-setattr-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-setattr-done", 2, 3, "SETATTR3res *" },
+ { "nfsv3", "op-symlink-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-symlink-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-symlink-start", 2, 3, "SYMLINK3args *" },
+ { "nfsv3", "op-symlink-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-symlink-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-symlink-done", 2, 3, "SYMLINK3res *" },
+ { "nfsv3", "op-write-start", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-write-start", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-write-start", 2, 3, "WRITE3args *" },
+ { "nfsv3", "op-write-done", 0, 0, "struct svc_req *",
+ "conninfo_t *" },
+ { "nfsv3", "op-write-done", 1, 1, "nfsv3oparg_t *",
+ "nfsv3opinfo_t *" },
+ { "nfsv3", "op-write-done", 2, 3, "WRITE3res *" },
+
+ { "nfsv4", "null-start", 0, 0, "struct svc_req *", "conninfo_t *" },
+ { "nfsv4", "null-done", 0, 0, "struct svc_req *", "conninfo_t *" },
+ { "nfsv4", "compound-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "compound-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "compound-start", 2, 1, "COMPOUND4args *" },
+ { "nfsv4", "compound-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "compound-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "compound-done", 2, 1, "COMPOUND4res *" },
+ { "nfsv4", "op-access-start", 0, 0, "struct compound_state *",
+ "conninfo_t *"},
+ { "nfsv4", "op-access-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-access-start", 2, 1, "ACCESS4args *" },
+ { "nfsv4", "op-access-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-access-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-access-done", 2, 1, "ACCESS4res *" },
+ { "nfsv4", "op-close-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-close-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-close-start", 2, 1, "CLOSE4args *" },
+ { "nfsv4", "op-close-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-close-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-close-done", 2, 1, "CLOSE4res *" },
+ { "nfsv4", "op-commit-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-commit-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-commit-start", 2, 1, "COMMIT4args *" },
+ { "nfsv4", "op-commit-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-commit-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-commit-done", 2, 1, "COMMIT4res *" },
+ { "nfsv4", "op-create-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-create-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-create-start", 2, 1, "CREATE4args *" },
+ { "nfsv4", "op-create-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-create-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-create-done", 2, 1, "CREATE4res *" },
+ { "nfsv4", "op-delegpurge-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-delegpurge-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-delegpurge-start", 2, 1, "DELEGPURGE4args *" },
+ { "nfsv4", "op-delegpurge-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-delegpurge-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-delegpurge-done", 2, 1, "DELEGPURGE4res *" },
+ { "nfsv4", "op-delegreturn-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-delegreturn-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-delegreturn-start", 2, 1, "DELEGRETURN4args *" },
+ { "nfsv4", "op-delegreturn-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-delegreturn-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-delegreturn-done", 2, 1, "DELEGRETURN4res *" },
+ { "nfsv4", "op-getattr-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-getattr-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-getattr-start", 2, 1, "GETATTR4args *" },
+ { "nfsv4", "op-getattr-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-getattr-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-getattr-done", 2, 1, "GETATTR4res *" },
+ { "nfsv4", "op-getfh-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-getfh-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-getfh-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-getfh-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-getfh-done", 2, 1, "GETFH4res *" },
+ { "nfsv4", "op-link-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-link-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-link-start", 2, 1, "LINK4args *" },
+ { "nfsv4", "op-link-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-link-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-link-done", 2, 1, "LINK4res *" },
+ { "nfsv4", "op-lock-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lock-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lock-start", 2, 1, "LOCK4args *" },
+ { "nfsv4", "op-lock-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lock-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lock-done", 2, 1, "LOCK4res *" },
+ { "nfsv4", "op-lockt-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lockt-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lockt-start", 2, 1, "LOCKT4args *" },
+ { "nfsv4", "op-lockt-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lockt-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lockt-done", 2, 1, "LOCKT4res *" },
+ { "nfsv4", "op-locku-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-locku-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-locku-start", 2, 1, "LOCKU4args *" },
+ { "nfsv4", "op-locku-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-locku-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-locku-done", 2, 1, "LOCKU4res *" },
+ { "nfsv4", "op-lookup-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lookup-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lookup-start", 2, 1, "LOOKUP4args *" },
+ { "nfsv4", "op-lookup-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lookup-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lookup-done", 2, 1, "LOOKUP4res *" },
+ { "nfsv4", "op-lookupp-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lookupp-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lookupp-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-lookupp-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-lookupp-done", 2, 1, "LOOKUPP4res *" },
+ { "nfsv4", "op-nverify-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-nverify-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-nverify-start", 2, 1, "NVERIFY4args *" },
+ { "nfsv4", "op-nverify-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-nverify-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-nverify-done", 2, 1, "NVERIFY4res *" },
+ { "nfsv4", "op-open-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-open-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-open-start", 2, 1, "OPEN4args *" },
+ { "nfsv4", "op-open-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-open-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-open-done", 2, 1, "OPEN4res *" },
+ { "nfsv4", "op-open-confirm-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-open-confirm-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-open-confirm-start", 2, 1, "OPEN_CONFIRM4args *" },
+ { "nfsv4", "op-open-confirm-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-open-confirm-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-open-confirm-done", 2, 1, "OPEN_CONFIRM4res *" },
+ { "nfsv4", "op-open-downgrade-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-open-downgrade-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-open-downgrade-start", 2, 1, "OPEN_DOWNGRADE4args *" },
+ { "nfsv4", "op-open-downgrade-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-open-downgrade-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-open-downgrade-done", 2, 1, "OPEN_DOWNGRADE4res *" },
+ { "nfsv4", "op-openattr-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-openattr-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-openattr-start", 2, 1, "OPENATTR4args *" },
+ { "nfsv4", "op-openattr-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-openattr-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-openattr-done", 2, 1, "OPENATTR4res *" },
+ { "nfsv4", "op-putfh-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-putfh-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-putfh-start", 2, 1, "PUTFH4args *" },
+ { "nfsv4", "op-putfh-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-putfh-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-putfh-done", 2, 1, "PUTFH4res *" },
+ { "nfsv4", "op-putpubfh-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-putpubfh-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-putpubfh-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-putpubfh-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-putpubfh-done", 2, 1, "PUTPUBFH4res *" },
+ { "nfsv4", "op-putrootfh-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-putrootfh-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-putrootfh-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-putrootfh-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-putrootfh-done", 2, 1, "PUTROOTFH4res *" },
+ { "nfsv4", "op-read-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-read-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-read-start", 2, 1, "READ4args *" },
+ { "nfsv4", "op-read-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-read-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-read-done", 2, 1, "READ4res *" },
+ { "nfsv4", "op-readdir-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-readdir-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-readdir-start", 2, 1, "READDIR4args *" },
+ { "nfsv4", "op-readdir-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-readdir-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-readdir-done", 2, 1, "READDIR4res *" },
+ { "nfsv4", "op-readlink-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-readlink-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-readlink-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-readlink-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-readlink-done", 2, 1, "READLINK4res *" },
+ { "nfsv4", "op-release-lockowner-start", 0, 0,
+ "struct compound_state *", "conninfo_t *" },
+ { "nfsv4", "op-release-lockowner-start", 1, 0,
+ "struct compound_state *", "nfsv4opinfo_t *" },
+ { "nfsv4", "op-release-lockowner-start", 2, 1,
+ "RELEASE_LOCKOWNER4args *" },
+ { "nfsv4", "op-release-lockowner-done", 0, 0,
+ "struct compound_state *", "conninfo_t *" },
+ { "nfsv4", "op-release-lockowner-done", 1, 0,
+ "struct compound_state *", "nfsv4opinfo_t *" },
+ { "nfsv4", "op-release-lockowner-done", 2, 1,
+ "RELEASE_LOCKOWNER4res *" },
+ { "nfsv4", "op-remove-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-remove-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-remove-start", 2, 1, "REMOVE4args *" },
+ { "nfsv4", "op-remove-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-remove-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-remove-done", 2, 1, "REMOVE4res *" },
+ { "nfsv4", "op-rename-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-rename-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-rename-start", 2, 1, "RENAME4args *" },
+ { "nfsv4", "op-rename-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-rename-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-rename-done", 2, 1, "RENAME4res *" },
+ { "nfsv4", "op-renew-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-renew-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-renew-start", 2, 1, "RENEW4args *" },
+ { "nfsv4", "op-renew-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-renew-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-renew-done", 2, 1, "RENEW4res *" },
+ { "nfsv4", "op-restorefh-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-restorefh-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-restorefh-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-restorefh-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-restorefh-done", 2, 1, "RESTOREFH4res *" },
+ { "nfsv4", "op-savefh-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-savefh-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-savefh-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-savefh-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-savefh-done", 2, 1, "SAVEFH4res *" },
+ { "nfsv4", "op-secinfo-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-secinfo-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-secinfo-start", 2, 1, "SECINFO4args *" },
+ { "nfsv4", "op-secinfo-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-secinfo-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-secinfo-done", 2, 1, "SECINFO4res *" },
+ { "nfsv4", "op-setattr-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-setattr-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-setattr-start", 2, 1, "SETATTR4args *" },
+ { "nfsv4", "op-setattr-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-setattr-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-setattr-done", 2, 1, "SETATTR4res *" },
+ { "nfsv4", "op-setclientid-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-setclientid-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-setclientid-start", 2, 1, "SETCLIENTID4args *" },
+ { "nfsv4", "op-setclientid-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-setclientid-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-setclientid-done", 2, 1, "SETCLIENTID4res *" },
+ { "nfsv4", "op-setclientid-confirm-start", 0, 0,
+ "struct compound_state *", "conninfo_t *" },
+ { "nfsv4", "op-setclientid-confirm-start", 1, 0,
+ "struct compound_state *", "nfsv4opinfo_t *" },
+ { "nfsv4", "op-setclientid-confirm-start", 2, 1,
+ "SETCLIENTID_CONFIRM4args *" },
+ { "nfsv4", "op-setclientid-confirm-done", 0, 0,
+ "struct compound_state *", "conninfo_t *" },
+ { "nfsv4", "op-setclientid-confirm-done", 1, 0,
+ "struct compound_state *", "nfsv4opinfo_t *" },
+ { "nfsv4", "op-setclientid-confirm-done", 2, 1,
+ "SETCLIENTID_CONFIRM4res *" },
+ { "nfsv4", "op-verify-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-verify-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-verify-start", 2, 1, "VERIFY4args *" },
+ { "nfsv4", "op-verify-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-verify-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-verify-done", 2, 1, "VERIFY4res *" },
+ { "nfsv4", "op-write-start", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-write-start", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-write-start", 2, 1, "WRITE4args *" },
+ { "nfsv4", "op-write-done", 0, 0, "struct compound_state *",
+ "conninfo_t *" },
+ { "nfsv4", "op-write-done", 1, 0, "struct compound_state *",
+ "nfsv4opinfo_t *" },
+ { "nfsv4", "op-write-done", 2, 1, "WRITE4res *" },
+ { "nfsv4", "cb-recall-start", 0, 0, "rfs4_client_t *",
+ "conninfo_t *" },
+ { "nfsv4", "cb-recall-start", 1, 1, "rfs4_deleg_state_t *",
+ "nfsv4cbinfo_t *" },
+ { "nfsv4", "cb-recall-start", 2, 2, "CB_RECALL4args *" },
+ { "nfsv4", "cb-recall-done", 0, 0, "rfs4_client_t *",
+ "conninfo_t *" },
+ { "nfsv4", "cb-recall-done", 1, 1, "rfs4_deleg_state_t *",
+ "nfsv4cbinfo_t *" },
+ { "nfsv4", "cb-recall-done", 2, 2, "CB_RECALL4res *" },
+
+ { "sysevent", "post", 0, 0, "evch_bind_t *", "syseventchaninfo_t *" },
+ { "sysevent", "post", 1, 1, "sysevent_impl_t *", "syseventinfo_t *" },
+
+ { "xpv", "add-to-physmap-end", 0, 0, "int" },
+ { "xpv", "add-to-physmap-start", 0, 0, "domid_t" },
+ { "xpv", "add-to-physmap-start", 1, 1, "uint_t" },
+ { "xpv", "add-to-physmap-start", 2, 2, "ulong_t" },
+ { "xpv", "add-to-physmap-start", 3, 3, "ulong_t" },
+ { "xpv", "decrease-reservation-end", 0, 0, "int" },
+ { "xpv", "decrease-reservation-start", 0, 0, "domid_t" },
+ { "xpv", "decrease-reservation-start", 1, 1, "ulong_t" },
+ { "xpv", "decrease-reservation-start", 2, 2, "uint_t" },
+ { "xpv", "decrease-reservation-start", 3, 3, "ulong_t *" },
+ { "xpv", "dom-create-start", 0, 0, "xen_domctl_t *" },
+ { "xpv", "dom-destroy-start", 0, 0, "domid_t" },
+ { "xpv", "dom-pause-start", 0, 0, "domid_t" },
+ { "xpv", "dom-unpause-start", 0, 0, "domid_t" },
+ { "xpv", "dom-create-end", 0, 0, "int" },
+ { "xpv", "dom-destroy-end", 0, 0, "int" },
+ { "xpv", "dom-pause-end", 0, 0, "int" },
+ { "xpv", "dom-unpause-end", 0, 0, "int" },
+ { "xpv", "evtchn-op-end", 0, 0, "int" },
+ { "xpv", "evtchn-op-start", 0, 0, "int" },
+ { "xpv", "evtchn-op-start", 1, 1, "void *" },
+ { "xpv", "increase-reservation-end", 0, 0, "int" },
+ { "xpv", "increase-reservation-start", 0, 0, "domid_t" },
+ { "xpv", "increase-reservation-start", 1, 1, "ulong_t" },
+ { "xpv", "increase-reservation-start", 2, 2, "uint_t" },
+ { "xpv", "increase-reservation-start", 3, 3, "ulong_t *" },
+ { "xpv", "mmap-end", 0, 0, "int" },
+ { "xpv", "mmap-entry", 0, 0, "ulong_t" },
+ { "xpv", "mmap-entry", 1, 1, "ulong_t" },
+ { "xpv", "mmap-entry", 2, 2, "ulong_t" },
+ { "xpv", "mmap-start", 0, 0, "domid_t" },
+ { "xpv", "mmap-start", 1, 1, "int" },
+ { "xpv", "mmap-start", 2, 2, "privcmd_mmap_entry_t *" },
+ { "xpv", "mmapbatch-end", 0, 0, "int" },
+ { "xpv", "mmapbatch-end", 1, 1, "struct seg *" },
+ { "xpv", "mmapbatch-end", 2, 2, "caddr_t" },
+ { "xpv", "mmapbatch-start", 0, 0, "domid_t" },
+ { "xpv", "mmapbatch-start", 1, 1, "int" },
+ { "xpv", "mmapbatch-start", 2, 2, "caddr_t" },
+ { "xpv", "mmu-ext-op-end", 0, 0, "int" },
+ { "xpv", "mmu-ext-op-start", 0, 0, "int" },
+ { "xpv", "mmu-ext-op-start", 1, 1, "struct mmuext_op *" },
+ { "xpv", "mmu-update-start", 0, 0, "int" },
+ { "xpv", "mmu-update-start", 1, 1, "int" },
+ { "xpv", "mmu-update-start", 2, 2, "mmu_update_t *" },
+ { "xpv", "mmu-update-end", 0, 0, "int" },
+ { "xpv", "populate-physmap-end", 0, 0, "int" },
+ { "xpv", "populate-physmap-start", 0, 0, "domid_t" },
+ { "xpv", "populate-physmap-start", 1, 1, "ulong_t" },
+ { "xpv", "populate-physmap-start", 2, 2, "ulong_t *" },
+ { "xpv", "set-memory-map-end", 0, 0, "int" },
+ { "xpv", "set-memory-map-start", 0, 0, "domid_t" },
+ { "xpv", "set-memory-map-start", 1, 1, "int" },
+ { "xpv", "set-memory-map-start", 2, 2, "struct xen_memory_map *" },
+ { "xpv", "setvcpucontext-end", 0, 0, "int" },
+ { "xpv", "setvcpucontext-start", 0, 0, "domid_t" },
+ { "xpv", "setvcpucontext-start", 1, 1, "vcpu_guest_context_t *" },
+ { NULL }
+};
+
+/*ARGSUSED*/
+void
+sdt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc)
+{
+ sdt_probe_t *sdp = parg;
+ int i;
+
+ desc->dtargd_native[0] = '\0';
+ desc->dtargd_xlate[0] = '\0';
+
+ for (i = 0; sdt_args[i].sda_provider != NULL; i++) {
+ sdt_argdesc_t *a = &sdt_args[i];
+
+ if (strcmp(sdp->sdp_provider->sdtp_name, a->sda_provider) != 0)
+ continue;
+
+ if (a->sda_name != NULL &&
+ strcmp(sdp->sdp_name, a->sda_name) != 0)
+ continue;
+
+ if (desc->dtargd_ndx != a->sda_ndx)
+ continue;
+
+ if (a->sda_native != NULL)
+ (void) strcpy(desc->dtargd_native, a->sda_native);
+
+ if (a->sda_xlate != NULL)
+ (void) strcpy(desc->dtargd_xlate, a->sda_xlate);
+
+ desc->dtargd_mapping = a->sda_mapping;
+ return;
+ }
+
+ desc->dtargd_ndx = DTRACE_ARGNONE;
+}
diff --git a/uts/common/dtrace/systrace.c b/uts/common/dtrace/systrace.c
new file mode 100644
index 000000000000..be14660b04c0
--- /dev/null
+++ b/uts/common/dtrace/systrace.c
@@ -0,0 +1,373 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/dtrace.h>
+#include <sys/systrace.h>
+#include <sys/stat.h>
+#include <sys/systm.h>
+#include <sys/conf.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#include <sys/atomic.h>
+
+#define SYSTRACE_ARTIFICIAL_FRAMES 1
+
+#define SYSTRACE_SHIFT 16
+#define SYSTRACE_ISENTRY(x) ((int)(x) >> SYSTRACE_SHIFT)
+#define SYSTRACE_SYSNUM(x) ((int)(x) & ((1 << SYSTRACE_SHIFT) - 1))
+#define SYSTRACE_ENTRY(id) ((1 << SYSTRACE_SHIFT) | (id))
+#define SYSTRACE_RETURN(id) (id)
+
+#if ((1 << SYSTRACE_SHIFT) <= NSYSCALL)
+#error 1 << SYSTRACE_SHIFT must exceed number of system calls
+#endif
+
+static dev_info_t *systrace_devi;
+static dtrace_provider_id_t systrace_id;
+
+static void
+systrace_init(struct sysent *actual, systrace_sysent_t **interposed)
+{
+ systrace_sysent_t *sysent = *interposed;
+ int i;
+
+ if (sysent == NULL) {
+ *interposed = sysent = kmem_zalloc(sizeof (systrace_sysent_t) *
+ NSYSCALL, KM_SLEEP);
+ }
+
+ for (i = 0; i < NSYSCALL; i++) {
+ struct sysent *a = &actual[i];
+ systrace_sysent_t *s = &sysent[i];
+
+ if (LOADABLE_SYSCALL(a) && !LOADED_SYSCALL(a))
+ continue;
+
+ if (a->sy_callc == dtrace_systrace_syscall)
+ continue;
+
+#ifdef _SYSCALL32_IMPL
+ if (a->sy_callc == dtrace_systrace_syscall32)
+ continue;
+#endif
+
+ s->stsy_underlying = a->sy_callc;
+ }
+}
+
+/*ARGSUSED*/
+static void
+systrace_provide(void *arg, const dtrace_probedesc_t *desc)
+{
+ int i;
+
+ if (desc != NULL)
+ return;
+
+ systrace_init(sysent, &systrace_sysent);
+#ifdef _SYSCALL32_IMPL
+ systrace_init(sysent32, &systrace_sysent32);
+#endif
+
+ for (i = 0; i < NSYSCALL; i++) {
+ if (systrace_sysent[i].stsy_underlying == NULL)
+ continue;
+
+ if (dtrace_probe_lookup(systrace_id, NULL,
+ syscallnames[i], "entry") != 0)
+ continue;
+
+ (void) dtrace_probe_create(systrace_id, NULL, syscallnames[i],
+ "entry", SYSTRACE_ARTIFICIAL_FRAMES,
+ (void *)((uintptr_t)SYSTRACE_ENTRY(i)));
+ (void) dtrace_probe_create(systrace_id, NULL, syscallnames[i],
+ "return", SYSTRACE_ARTIFICIAL_FRAMES,
+ (void *)((uintptr_t)SYSTRACE_RETURN(i)));
+
+ systrace_sysent[i].stsy_entry = DTRACE_IDNONE;
+ systrace_sysent[i].stsy_return = DTRACE_IDNONE;
+#ifdef _SYSCALL32_IMPL
+ systrace_sysent32[i].stsy_entry = DTRACE_IDNONE;
+ systrace_sysent32[i].stsy_return = DTRACE_IDNONE;
+#endif
+ }
+}
+
+/*ARGSUSED*/
+static void
+systrace_destroy(void *arg, dtrace_id_t id, void *parg)
+{
+ int sysnum = SYSTRACE_SYSNUM((uintptr_t)parg);
+
+ /*
+ * There's nothing to do here but assert that we have actually been
+ * disabled.
+ */
+ if (SYSTRACE_ISENTRY((uintptr_t)parg)) {
+ ASSERT(systrace_sysent[sysnum].stsy_entry == DTRACE_IDNONE);
+#ifdef _SYSCALL32_IMPL
+ ASSERT(systrace_sysent32[sysnum].stsy_entry == DTRACE_IDNONE);
+#endif
+ } else {
+ ASSERT(systrace_sysent[sysnum].stsy_return == DTRACE_IDNONE);
+#ifdef _SYSCALL32_IMPL
+ ASSERT(systrace_sysent32[sysnum].stsy_return == DTRACE_IDNONE);
+#endif
+ }
+}
+
+/*ARGSUSED*/
+static void
+systrace_enable(void *arg, dtrace_id_t id, void *parg)
+{
+ int sysnum = SYSTRACE_SYSNUM((uintptr_t)parg);
+ int enabled = (systrace_sysent[sysnum].stsy_entry != DTRACE_IDNONE ||
+ systrace_sysent[sysnum].stsy_return != DTRACE_IDNONE);
+
+ if (SYSTRACE_ISENTRY((uintptr_t)parg)) {
+ systrace_sysent[sysnum].stsy_entry = id;
+#ifdef _SYSCALL32_IMPL
+ systrace_sysent32[sysnum].stsy_entry = id;
+#endif
+ } else {
+ systrace_sysent[sysnum].stsy_return = id;
+#ifdef _SYSCALL32_IMPL
+ systrace_sysent32[sysnum].stsy_return = id;
+#endif
+ }
+
+ if (enabled) {
+ ASSERT(sysent[sysnum].sy_callc == dtrace_systrace_syscall);
+ return;
+ }
+
+ (void) casptr(&sysent[sysnum].sy_callc,
+ (void *)systrace_sysent[sysnum].stsy_underlying,
+ (void *)dtrace_systrace_syscall);
+#ifdef _SYSCALL32_IMPL
+ (void) casptr(&sysent32[sysnum].sy_callc,
+ (void *)systrace_sysent32[sysnum].stsy_underlying,
+ (void *)dtrace_systrace_syscall32);
+#endif
+}
+
+/*ARGSUSED*/
+static void
+systrace_disable(void *arg, dtrace_id_t id, void *parg)
+{
+ int sysnum = SYSTRACE_SYSNUM((uintptr_t)parg);
+ int disable = (systrace_sysent[sysnum].stsy_entry == DTRACE_IDNONE ||
+ systrace_sysent[sysnum].stsy_return == DTRACE_IDNONE);
+
+ if (disable) {
+ (void) casptr(&sysent[sysnum].sy_callc,
+ (void *)dtrace_systrace_syscall,
+ (void *)systrace_sysent[sysnum].stsy_underlying);
+
+#ifdef _SYSCALL32_IMPL
+ (void) casptr(&sysent32[sysnum].sy_callc,
+ (void *)dtrace_systrace_syscall32,
+ (void *)systrace_sysent32[sysnum].stsy_underlying);
+#endif
+ }
+
+ if (SYSTRACE_ISENTRY((uintptr_t)parg)) {